Skip to main content

3D Metamaterial Multilayer Structures

  • Chapter
  • First Online:
Multiscale Modelling of Advanced Materials

Abstract

The word “Meta” is taken from Greek whose meaning is “beyond”. “Metamaterials” have the exotic properties beyond the naturally occurring materials. According to Wikipedia, metamaterial is defined as “a material which gains its properties from its structure rather than directly from its composition”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. http://en.wikipedia.org/wiki/Metamaterial,2019

  2. Vesalogo VG (1968) The electrodynamics of substances with simultaneously negative values of permittivity and magnetic permeability. Soviet Phys 10:509–514

    Article  Google Scholar 

  3. Walser RM (2001) Electromagnetic metamaterial. In: Proceedings of SPIE 4467, pp 1–15

    Google Scholar 

  4. Pendry JB, Holden AJ, Robbins DJ, Stewart WJ (1998) Low frequency plasmons for thin-wire structure. J Phys Condens Matter 10:4785–4809

    Article  CAS  Google Scholar 

  5. Pendry JB, Holden AJ, Robbins DJ, Stewart WJ (1999) Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans Microw Theor Techniques 47(11):2075–2084

    Article  Google Scholar 

  6. Cui TJ, Smith DR, Liu R (2010) Metamaterial theory design and application. Springer New York Dordrecht Heidelberg London. https://doi.org/10.1007/978-1-4419-0573-4

    Google Scholar 

  7. Ziolkowski RW, Heyman E (2001) Wave propagation in media having negative permittivity and permeability. Phys Rev E 64

    Google Scholar 

  8. Alù A, Engheta N (2003) Pairing an epsilon-negative slab with a mu-negative slab: resonance, tunneling and transparency. IEEE Trans Antennas Propag Special issue on metamaterials 51, 10:2558–2571

    Article  Google Scholar 

  9. Pendry JB, Holden AJ, Stewart WJ, Youngs I (1996) Extremely low frequency plasmas in metallic microstructures. Phys Rev Lett 76:4773–4776

    Google Scholar 

  10. Pendry JB, Holden AJ, Robbins DJ, Stewart WJ (1999) Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans Microw Theor Techniq 47(11):2075–2084

    Article  Google Scholar 

  11. Smith DR, Padilla WJ, Vier DC, Nemat-Nasser SC, Schultz S (2000) Composite medium with simultaneously negative permeability and permittivity. Phys Rev Lett 84, 18:4184–4187

    Article  CAS  Google Scholar 

  12. Shelby RA, Smith DR, Schultz S (2001) Experimental verification of negative index of refraction. Science 292:5514

    Article  CAS  Google Scholar 

  13. Cui TJ, Kong JA (2004) Time-domain electromagnetic energy in a frequency-dispersive left handed medium. Phys Rev B 70:205106

    Article  Google Scholar 

  14. Aydina K, Ozbay E (2007) Capacitor-loaded split ring resonators as tunable metamaterial components. J Appl Phys 101:024911

    Article  Google Scholar 

  15. Simovski CR, He S (2003) Frequency range and explicit expressions for negative permittivity and permeability for an isotropic medium formed for lattice of perfectly conducting Ω-particle. Phys Lett A 311:254 (2003)

    Google Scholar 

  16. Caloz C, Itoh T (2002) Application of the transmission line theory of left-handed (LH) materials to the realization of a microstrip LH transmission line. IEEE-AP-S Digest 2, 412–415, San Antonio, TX

    Google Scholar 

  17. Caloz C, Itoh T (2006) Electromagnetic metamaterials: transmission line theory and microwave applications. Wiley. IEEE Press

    Google Scholar 

  18. Caloz C, Itoh T (2004) Transmission line approach of left-handed (LH) structures and microstrip realization of a low-loss broadband LH filter. IEEE Trans Antennas Propagat 52:1159–1166

    Article  Google Scholar 

  19. Iyer AK, Eleftheriades GV (2002) Negative refractive index metamaterials supporting 2-D waves. In: Proceedings of IEEE international symposium on microwave theory and technology 2:1067–1070. Seattle, WA

    Google Scholar 

  20. Ruvio G, Leone G (2014) State-of-the-art of metamaterials: characterization, realization and applications. Stud Eng Technol 1(2). https://doi.org/10.11114/set.v1i2.456

    Article  Google Scholar 

  21. Marqués R, Mesa F, Martel J, Medina F (2003) Comparative analysis of edge- and broadside coupled split ring resonators for metamaterial design—theory and experiments. IEEE Trans Antennas Propag 51:10

    Article  Google Scholar 

  22. Aznar F, Gil M, Bonache J, Garcia-Garcia J, Martin F (2007) Metamaterial transmission lines based on broad-side coupled spiral resonators. Electron Lett 43:9

    Article  Google Scholar 

  23. Chen H, Ran L, Huangfu J, Zhang X, Chen K (2004) Left-handed materials composed of only S-shaped resonators. Phys Rev E 70:1–4

    CAS  Google Scholar 

  24. O’brien S, Pendry JB (2002) Magnetic activity at infrared frequencies in structured metallic photonic crystals. J Phys Condens Matter 14:6383–6394

    Google Scholar 

  25. Noginov MA, Podolskiy VA (2012) Tutorials in metamaterial. Series in nano optics and nanophotonic. Taylor and Francis

    Google Scholar 

  26. Tanaka T, Ishikawa A (2017) Towards three-dimensional optical metamaterial. Nano Convergence 4:1–6

    Google Scholar 

  27. Iyer AK, Eleftheriades GV (2008) Three-dimensional isotropic transmission-line metamaterial topology for free-space excitation. J Appl Phys 92:106–261

    Google Scholar 

  28. Baena JD, Jelinek L, Marques R, Zehentner J (2006) Electrically small isotropic three-dimensional magnetic resonators for metamaterial design. Appl Phys Lett 88:13, 134108

    Article  Google Scholar 

  29. Silveirinha MG, Fernandes CA (2005) Homogenization of 3-d-connected and nonconnected wire metamaterials. IEEE Trans Microw Theor Tech 53(4):1418–1430

    Article  Google Scholar 

  30. Sajuyigbe S, Justice BJ, Starr AF, Smith DR (2009) Design and analysis of three dimensionalized ELC metamaterial Unit Cell. IEEE Antennas Wireless Propag Lett 8:1268–1271

    Article  Google Scholar 

  31. Varadan VV, Kim IK (2012) Fabrication of 3-D metamaterials using LTCC techniques for high-frequency application. IEEE Trans Components Packaging Manufact Technol 2:410–417

    Article  Google Scholar 

  32. Yu K, Li Y, Liu X (2018) Mutual coupling reduction of a MIMO antenna array using 3-D novel meta-material structures. Appl Comput Electromag Soc J 33:758–762

    Google Scholar 

  33. Islam SS, Faruque MR, Islam MT (2015) A new direct retrieval method of refractive index for the metamaterial. Curr Sci 109:337–342

    Google Scholar 

  34. Nicolson AM, Ross GF (1970) Measurement of the intrinsic properties of materials by time-domain techniques. IEEE Trans Instrument Measure 19:377–382

    Article  Google Scholar 

  35. Morse PM, Feshbach H (1953) Derivatives of analytic functions, Taylor and Laurent series. Methods Theor Phys Part I 374–398

    Google Scholar 

  36. Baena JD, Bonache J, Martin F et al (2005) Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission line. IEEE Trans Microw Theor Techniques 53:1451–1461

    Article  Google Scholar 

  37. Can S, Yılmaz AE, Kapusuz KY (2017) An equivalent-circuit model of miniaturized split-ring resonator. In: IEEE international symposium on antenna and propagation & UNSC/URSI. IEEE Press, CA, USA. https://doi.org/10.1109/APUSNCURSINRSM

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Husna Khouser, G., Choukiker, Y.K. (2020). 3D Metamaterial Multilayer Structures. In: Kumari, R., Choudhury, B. (eds) Multiscale Modelling of Advanced Materials. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-15-2267-3_5

Download citation

Publish with us

Policies and ethics