Skip to main content

Advanced Materials for Aerospace Applications

  • Chapter
  • First Online:

Part of the book series: Materials Horizons: From Nature to Nanomaterials ((MHFNN))

Abstract

Advances in material science, especially in composite technology, allowed the development of promising new materials for aerospace engineering to reduce fuel consumption and to improve safety and performance. Composites, nonmaterial, and artificially engineered materials made a breakthrough in aerospace engineering by reducing the size and improving the performance. Although several applications are there in the aerospace sector, the emphasis of the review is on applications of these advanced materials as stealth materials where they will reduce the aircraft signature both in microwave regime and in IR regime.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Katz D  (2017) The ‘Magic’ behind radar-absorbing materials for stealthy aircraft, part 3, special topic state of stealth, e-book series. Aviation Week & Space Technology

    Google Scholar 

  2. Sidiki K (Maj, HAF), Skondras A (2nd Lt, HAF), Tokas C (2nd Lt, HAF) (2014) Low observable principles, stealth aircraft and anti-stealth technologies. J Comput Model 4(1):129–165 (2014). ISSN: 1792-7625 (print), 1792-8850 (online) (Scienpress Ltd)

    Google Scholar 

  3. Fang Z, Fang C (2010) Novel radar absorbing materials with broad absorbing band: carbon foams. Appl Mech Mater 26–28:246–249

    Article  Google Scholar 

  4. Bhattacharya P, Sahoo S, Das CK (2013) Microwave absorption behavior of MWCNT based nanocomposites in X-band region. eXPRESS Polym Lett 7:212–223

    Article  CAS  Google Scholar 

  5. Ye W, Sun Q, Zhang GY (2018) Effect of heat treatment conditions on properties of carbon-fiber based electromagnetic-wave-absorbing composites. Ceram Int

    Google Scholar 

  6. da Silva VA, Rezende MC (2018) Effect of the morphology and structure on the microwave absorbing properties of multiwalled carbon nanotube filled epoxy resin nanocomposites. Mater Res

    Google Scholar 

  7. en.wikipedia.org

  8. Panwar R, Puthucheri S, Singh D, Agarwala V (2015) Design of ferrite–graphene-based thin broadband radar wave absorber for stealth application. IEEE Trans Magn 51(11)

    Article  Google Scholar 

  9. Chen H, Lu W-B, Liu Z-G, Zhang J, Zhang A-Q, Wu B (2018) Experimental demonstration of microwave absorber using large-area multilayer graphene-based frequency selective surface. IEEE Trans Microw Theory Tech 66(8)

    Article  Google Scholar 

  10. Zhou JH, Huo LX, Li WW, You BQ, Li YL, Li HX (2013) A magnetic-controlled detection system for radar absorbing coatings. Adv Mater Res

    Google Scholar 

  11. Smitha P, Singh I, Nazism M, Panwar R, Singh D, Agarwala V, das Varma G (2016) Development of thin broadband radar absorbing materials using nanostructured spinel ferrites. J Mater Sci: Mater Electron 27:7731–7737

    CAS  Google Scholar 

  12. Verma A, Mendiratta RG, Goel TC, Dube DC (2002) Microwave studies on strontium ferrite based absorbers. J Electroceramics 8:203–208

    Google Scholar 

  13. Meshrama MR, Agrawala NK, Sinhaa B, Misrab PS (2004) Characterization of M-type barium hexagonal ferrite-based wide band microwave absorber. J Magn Magn Mater 271:207–214

    Article  CAS  Google Scholar 

  14. Liu C, Yu D, Kirk DW, Xu Y (2017) Electromagnetic wave absorption of silicon carbide-based materials. J R Soc Chem RSC Adv

    Google Scholar 

  15. Wu R, Zhou K, Yue CY, Wei J, Pan Y (2015) Recent progress in synthesis, properties and potential applications of SiC nanomaterials. Prog Mater Sci 72:1–60

    Article  CAS  Google Scholar 

  16. Liang C, Guo Y, Wu L, Zhou J, Kang Z, Shen B, Wang Z (2016) Nature of electromagnetic-transparent SiO2 shell in hybrid nanostructure enhancing electromagnetic attenuation. J Phys Chem C 120:12967–12973

    Article  CAS  Google Scholar 

  17. nano.materials.drexel.edu

  18. Han M, Yin X, Wu H, Hou Z, Song C, Li X, Zhang L, Cheng L (2016) Ti3C2 MXenes with modified surface for high-performance electromagnetic absorption and shielding in the X-band. ACS Appl Mater Interfaces 8:21011–21019

    Article  CAS  Google Scholar 

  19. Wakatsuchi H, Greedy S, Christopoulos C, Paul J (2010) Customized broadband metamaterial absorbers for arbitrary polarization. Opt Express 18(21):22187–22198

    Article  CAS  Google Scholar 

  20. Grant J, Ma Y, Saha S, Khalid A, Cumming DRS (2011) Polarization insensitive, broadband terahertz metamaterial absorber. Opt Lett 36(17):3476–3478

    Article  CAS  Google Scholar 

  21. Liu Y, Gun S, Luo C, Zhao X (2012) Ultra-thin broadband metamaterial absorber. Appl Phys A 108(1):19–24

    Article  CAS  Google Scholar 

  22. Yuan W, Cheng Y (2014) Low-frequency and broadband metamaterial absorber based on lumped elements: design, characterization and experiment. Appl Phys A 117(4):1915–1921

    Article  CAS  Google Scholar 

  23. Saville P  (2005) Review of radar absorbing materials, Defence R&D Canada, Technical Memorandum DRDC Atlantic TM 2005-003, Jan 2005

    Google Scholar 

  24. Truong V-V, Turner BD, Muscat RF, Sarina Russo M (1997) Conducting-polymer-based radar-absorbing materials. In: Proceedings of the SPIE 3241, smart materials, structures, and integrated systems, 14 Nov 1997

    Google Scholar 

  25. Huber T, Saville P, Edwards D (2003) Investigations into the polyaniline and polypyrrole families of conducting polymers for application as radar absorbing materials, Defence R&D Canada, Technical Memorandum DRDC Atlantic TM 2003-005, Jan 2003

    Google Scholar 

  26. Zhang Y-Y, Pei Q-X, Liu H-Y, Wei N (2017) Thermal conductivity of a h-BCN monolayer. R Soc Chem Phys Chem Chem Phys 19:27326–27331. https://doi.org/10.1039/c7cp04982j

    Article  CAS  Google Scholar 

  27. Zhang T, Zhang J, Wen G, Zhong B, Xia L, Huang X, Zhao H, Wang H, Qin L () “Ultra-light h-BCN architectures derived from new organic monomer with tunable electromagnetic wave absorption. Carbon 13127

    Google Scholar 

  28. Mahulikar SP, Rao GA, Kale PS (2006) Infrared signatures of low-flying aircraft and their rear fuselage skin’s emissivity optimization. J Aircr 43(1)

    Article  Google Scholar 

  29. Mahulikar SP, Sonawane HR, Arvind Rao G (2007) Infrared signature studies of aerospace vehicles. Prog Aerosp Sci 43(7–8):218–245

    Article  Google Scholar 

  30. Kolanowska A, Janas D, Herman AP, Jędrysiak RG, Giżewski T, Boncel S (2018) From blackness to invisibility—carbon nanotubes role in the attenuation of and shielding from radio waves for stealth technology. Carbon N Y 126:31–52

    Article  CAS  Google Scholar 

  31. Zhang W, Xu G, Zhang J, Wang H, Hou H (2014) Infrared spectrally selective low emissivity from Ge/ZnS one-dimensional heterostructure photonic crystal. Opt Mater (Amst) 37(C):343–346

    Article  CAS  Google Scholar 

  32. Zhao X  (2018) The effects of Ca2+ and Y3+ ions co-doping on reducing infrared emissivity of ceria at high temperature. Infrared Phys Technol 92:454–458

    Article  CAS  Google Scholar 

  33. Peng L, Liu D, Cheng H, Zhou S, Zu M (2018) A multilayer film based selective thermal emitter for infrared stealth technology. Adv Opt Mater 1801006:1–8

    Google Scholar 

  34. Li Chen X, Hui Tian C, Xin Che Z, Ping Chen T (2018) Selective metamaterial perfect absorber for infrared and 1.54 μm laser compatible stealth technology. Optik (Stuttg) 172:840–846

    Article  CAS  Google Scholar 

  35. Shi M  (2018) Achieving good infrared-radar compatible stealth property on metamaterial-based absorber by controlling the floating rate of Al type infrared coating. J Alloys Compd 764:314–322

    Article  CAS  Google Scholar 

  36. Moghimi MJ, Lin G, Jiang H (2018) Broadband and ultrathin infrared stealth sheets. Adv Eng Mater 20(11):1–6

    Article  Google Scholar 

Download references

Acknowledgements

The author (Ms Bhavya E V) acknowledges the Department of Science and Technology (DST), New Delhi for the INSPIRE Fellowship under which a portion of this work has been carried out.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhavya, E.V., Thakur, S.S., Choudhury, B. (2020). Advanced Materials for Aerospace Applications. In: Kumari, R., Choudhury, B. (eds) Multiscale Modelling of Advanced Materials. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-15-2267-3_3

Download citation

Publish with us

Policies and ethics