Skip to main content

Some Aspects of Artificial Engineered Materials: Planar and Conformal Geometries

  • Chapter
  • First Online:

Part of the book series: Materials Horizons: From Nature to Nanomaterials ((MHFNN))

Abstract

Artificial engineered materials or metamaterial (MTM) have received considerable attention in recent years due to eccentric and alluring properties compared to ordinary material which are not found in nature. MTM consists of unit cells of different shapes with periodic intervals which are much smaller than operation wavelength. Because of these fascinating EM characteristics, LHM has been widely used in numerous applications at microwave band, such as filters, antennas, and flat lens.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bose JC (1927) Collected physical papers. Longmans, Green and Co., New York

    Google Scholar 

  2. Veselago VG (1968) The electrodynamics of substances with simultaneously negative values of ε and μ. Sov Phys Usp 10:509–514

    Google Scholar 

  3. Pendry JB, Holden AJ, Robbins DJ, Stewart WJ (1999) Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans Microw Theory Tech 47(11):2075–2084

    Article  Google Scholar 

  4. Smith DR, Padilla WJ, Vier DC, Nemat-Nasser SC, Schultz S (2000) Composite medium with simultaneously negative permeability and permittivity. Phys Rev Lett 84(18):4184

    Article  CAS  Google Scholar 

  5. Aydin K, Guven K, Soukoulis Costas M, Ozbay Ekmel (2005) Observation of negative refraction and negative phase velocity in left-handed metamaterials. Appl Phys Lett 86:124102

    Article  Google Scholar 

  6. Aydin K, Ozbay E (2006) Negative refraction through an impedance-matched left-handed metamaterial slab. J Opt Soc Am B 23(3):415–418

    Article  CAS  Google Scholar 

  7. Ziolkowski RW (2003) Design, fabrication, and testing of double negative metamaterials. IEEE Trans Antennas Propag 51(7):1516–1529

    Article  Google Scholar 

  8. Chen H, Ran L, Huangfu J, Zhang X, Chen K, Grzegorcyzk TM, Kong JA (2004) A left-handed materials composed of only S-shaped resonators. Phys Rev E 70:057605

    Google Scholar 

  9. Bulu I, Caglayan H, Ozbay E (2005) Experimental demonstration of labyrinth-based left-handed metamaterials. Opt Express 13(25):10238–10247

    Article  Google Scholar 

  10. Bilotti F, Toscano A, Vegni L (2007) Design of spiral and multiple split-ring resonators for the realization of miniaturized metamaterial samples. IEEE Trans Antennas Propag 55(8):2258–2267

    Article  Google Scholar 

  11. Saadoun MMI, Engheta N (1992) A reciprocal phase shifter using novel pseudochiral or Ω medium. Microw Opt Technol Lett 5:184–188

    Article  Google Scholar 

  12. Chen H, Ran L, Huangfu J, Zhang X, Chen K, Grzegorcyzk TM, Kong JA (2004) A left-handed materials composed of only S-shaped resonators. Phys Rev E 70(5):057605

    Google Scholar 

  13. Khan MF, Mughal M, Bilal M (2012) Effective permeability of an S-shaped resonator. Microw Opt Technol Lett 54:282–286

    Article  Google Scholar 

  14. Tang MC, Xiao S, Deng T et al (2012) Design of a broadband μ-negative planar material with low frequency dispersion. Appl Phys A 106:821

    Article  CAS  Google Scholar 

  15. Lv JH, Hu XW, Liu MH, Yan BR, Kong LH (2009) Negative refraction of a double L-shaped metamaterial. J Opt A: Pure Appl Opt 11:085101

    Article  Google Scholar 

  16. Dong ZG, Lei SY, Li Q, Xu MX, Liu H, Li T, Wang FM, Zhu SN (2007) Non-left-handed transmission and bianisotropic effect in a π-shaped metallic metamaterial. Phys Rev B 75:075117

    Article  Google Scholar 

  17. Marathe Dushyant, Kulat Kishore (2018) A compact dual, triple band resonators for negative permittivity metamaterial. AEU—Int J Electron Commun 88:157–165

    Article  Google Scholar 

  18. Aydin K, Li Z, Hudlička M, Tretyakov SA, Ozbay E (2007) Transmission characteristics of bianisotropic metamaterials based on omega shaped metallic inclusions. New J Phys 9:326

    Article  Google Scholar 

  19. Panda AK, Sahu Sudhakar, Mishra Rabindra K (2015) Optimization of skewed omega for left-handed material characteristics. J Nanophotonics 9:093039

    Article  Google Scholar 

  20. Cheng Z, Yang HL, Nie Y et al (2011) Investigation of negative index properties of planar metamaterials based on split-ring pairs. Appl Phys A 103:989–994

    Article  CAS  Google Scholar 

  21. Amiri N, Forooraghi K, Atlasbaf Z (2011) Miniaturized resonant inclusions as non-bianisotropic double negative metamaterials for normal incidence. AEU—Int J Electron Commun 65:993–996

    Article  Google Scholar 

  22. Smith DR, Vier DC, Koschny Th, Soukoulis CM (2005) Electromagnetic parameter retrieval from inhomogeneous metamaterials. Phys Rev E 71(3):36617

    Article  CAS  Google Scholar 

  23. Panda Asit K, Mishra Rabindra K, Sahu Sudhakar (2016) A skewed omega for LHM characteristics. Microw Opt Technol Lett 58(4):847–850

    Article  Google Scholar 

  24. Melais SE, Weller TM (2009) A multilayer jerusalem cross frequency selective surface. In: 2009 IEEE 10th annual wireless and microwave technology conference. Clearwater, FL, pp 1–5

    Google Scholar 

  25. Tao H, Strikwerda AC, Zhang X, Adilla W, Bingham CM, Fan K (2008) Terahertz metamaterials on free-standing highly-flexible polyimide substrates. J Phys 41:1–4

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Panda, A.K. (2020). Some Aspects of Artificial Engineered Materials: Planar and Conformal Geometries. In: Kumari, R., Choudhury, B. (eds) Multiscale Modelling of Advanced Materials. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-15-2267-3_2

Download citation

Publish with us

Policies and ethics