Advertisement

Biofilm Problems and Environments

Chapter
  • 318 Downloads

Abstract

This chapter describes biofilm problems in various environments. It starts by introducing the marine environment and goes on to discuss biofilm problems like biofouling and corrosion that damage structures used in the building of sea vessels and ports. These problems are very expensive for the shipping industry. Next, the topic of soil and its bacteria are discussed. An emphasis is placed on pathogens that cause food contamination and plant diseases. The reader is also made aware of the biofilms colonizing in our households, especially in the bathrooms and kitchens. In this section, biofilms are mentioned that contaminate food, spread illness, stain counters, etc. Tips are provided too for effective cleaning to control and prevent biofilms in our homes and elsewhere. The next topic presents pathogens that cause problems for the food processing industries. This is followed by a description of how biofilms contribute to the slime and scale buildup in pipes and heat exchangers, which result in a reduced ability for liquid flow and heat exchange that might increase a company’s operational cost and energy consumption. The final section of this chapter is about biofilm problems in hospitals and other medical areas.

References

  1. 1.
    Donlan, R. (2002). Biofilms: Microbial life on surfaces. Emerging Infectious Diseases, 8(9), 881–890.CrossRefGoogle Scholar
  2. 2.
    Salta, M., Wharton, J., Blache, Y., Stokes, K., & Briand, J.-F. (2013). Marine biofilms on artificial surfaces: Structure and dynamics. Environmental Microbiology.  https://doi.org/10.1111/1462-2920.12186.CrossRefPubMedGoogle Scholar
  3. 3.
    Aalexopo. File: Biofilm Formation.jpg. Date: May 26, 2011. License: Creative Commons Attribution-Share Alike 3.0. https://commons.wikimedia.org/wiki/File:Biofilm_Formation.jpg.
  4. 4.
    de Carvalho, C. (2018). Marine biofilms: A successful microbial strategy with economic implications. Frontiers in Marine Science.  https://doi.org/10.3389/fmars.2018.00126.CrossRefGoogle Scholar
  5. 5.
    Procopio, L. (2019). The role of biofilms in the corrosion of steel in marine environments. World Journal of Microbiology and Biotechnology, 35(73).Google Scholar
  6. 6.
    Harder, T., & Yee, L. (2009). Bacterial adhesion and marine fouling. In C. Hellio & D. Yebra (Eds.), Advances in marine antifouling coatings and technologies (pp. 113–125). Cambridge, UK: Woodhead.CrossRefGoogle Scholar
  7. 7.
    File: Zebra mussel CLERL 4.jpg. Date: June 1999. This work is in the public domain. Credit is given to NOAA, Great Lakes Environmental Research Laboratory. https://commons.wikimedia.org/wiki/File:Zebra_mussel_GLERL_4.jpg.
  8. 8.
    Lamiot. File: Antifouling 8212.jpg. Date: July 22, 2011. License: Creative Commons Attribution-Share Alike 3.0. https://commons.wikimedia.org/wiki/File:Antifouling_8212.jpg.
  9. 9.
    Nurioglu, A. G., Esteves, A. C. C., & de With, G. (2015). Non-toxic, non-biocide-release antifouling coatings based on molecular structure design for marine applications. Journal of Materials Chemistry B, 3, 6547–6570.  https://doi.org/10.1039/C5TB00232J.CrossRefGoogle Scholar
  10. 10.
    Jiang, S., & Cao, Z. (2010). Ultralow-fouling, functionalizable, and hydrolyzable zwitterionic materials and their derivatives for biological applications. Advanced Materials, 22(9), 920–932.CrossRefGoogle Scholar
  11. 11.
    Burlymearly. File: Fouling Coating.png. Date: June 1, 2011. License: Creative Commons Attribution-Share Alike 3.0. https://commons.wikimedia.org/wiki/File:Fouling_Coating.png.
  12. 12.
    Park, J. S., & Lee, J. H. (2018). Sea-trial verification of ultrasonic antifouling control. Biofouling, 34, 98–110.  https://doi.org/10.1080/08927014.2017.1409347.CrossRefPubMedGoogle Scholar
  13. 13.
    US Department of Agriculture. File: Soil profile.png. Date: unknown. This is a work of the Federal Government and it is in the public domain. https://commons.wikimedia.org/wiki/File:Soil_profile.png.
  14. 14.
    Mikenorton. File: Soil Texture USDA.png. Date: October 2011. License: Creative Commons Attribution-Share Alike 3.0 2018. https://commons.wikimedia.org/wiki/File:SoilTexture_USDA.png.
  15. 15.
    Chau, J. F., Bagtzoglou, A. C., & Willig, M. R. (2011). The effect of soil texture on richness and diversity of bacterial communities. Environmental Forensics, 12, 333–341.CrossRefGoogle Scholar
  16. 16.
    Gagelidze, N., Amiranashvili, L., Sadunishvili, T., Kvesitadze, G., Urushadze, T., & Kvrivishvili, T. (2018). Bacterial composition of different types of soils in Georgia. Annals of Agrarian Science, 16(1), 17–21.CrossRefGoogle Scholar
  17. 17.
    Murtey, M. D., & Ramasamy, P. File: Bacillus cereus SEM-cr.jpg. Date: 2016. License: Creative Commons Attribution-Share Alike 3.0 https://commons.wikimedia.org/wiki/File:Bacillus_cereus_SEM-cr.jpg.
  18. 18.
    Weekes, C., & Kotra, L. (2007). Bacillus infections. In: X Pharm: The comprehensive pharmacology reference (pp. 1–7). https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/bacillus-anthracis.
  19. 19.
    LKazen. File: Crown Gall of Sunflower.jpg. Date: October 25, 2017. License: Creative Commons Attribution-Share-Alike 4.0 International https://commons.wikimedia.org/wiki/File:Crown_Gall_of_Sunflower.jpg.
  20. 20.
    Johnson, E. A., Summanen, P., & Finegold, S. M. (2007). Clostridium. In P. R. Murray (Ed.), Manual of Clinical Microbiology (9th ed., pp. 889–910). Washington, D.C.: ASM Press.Google Scholar
  21. 21.
    CDC/Don Stalons. File: Clostridium perfringens.jpg. Date: 1974. License: This image is in the public domain. It is a work of the Centers for Disease Control and Prevention, part of the United States Department of Health and Human Services. https://commons.wikimedia.org/wiki/File:Clostridium_perfringens.jpg.
  22. 22.
    CDC. File: Clostridium tetani 01.png. Date: 1995. This work is in the public domain. It is a work of the Centers for Disease Control and Prevention, part of the United States Department of Health and Human Services. https://commons.wikimedia.org/wiki/File:Clostridium_tetani_01.png.
  23. 23.
    Baker, L. A., styled Creazativity. File: A typical American bathroom.jpg. Date: 2004. License: Creative Commons Attribution-Share Alike 2.0 Generic https://commons.wikimedia.org/wiki/File:A_typical_American_bathroom.jpg.
  24. 24.
    Dbn. File: Bloody bread—Serratia marcescens in action.jpg. Date: March 20, 2014. License: Creative Commons Attribution-Share Alike 3.0 https://commons.wikimedia.org/wiki/File:Bloody_bread_-_Serratia_marcescens_in_action.JPG.
  25. 25.
    Yano, Takehisa, Kubota, Hiromi, Hanai, Junya, Hitomi, Jun, & Tokuda, Hajime. (2013). Stress tolerance of Methylobacterium biofilms in bathrooms. Microbes and Environments, 28(1), 87–95.PubMedGoogle Scholar
  26. 26.
    Aslam, Z., Lee, C. S., Kim, K.-H., Im, W.-T., Ten, L.N., & Lee, S.-T. File: Methylobacterium jeotgali.jpg. Date: 2007. License: Creative Commons Attribution-Share Alike 3.0 https://commons.wikimedia.org/wiki/File:Methylobacterium_jeotgali.jpg.
  27. 27.
    U. S. gov. File: Bacteroides biacutis 01.jpg. Date: 1972. License: This image is in the public domain. It is the work of the Centers for disease Control and Prevention, part of the U.S. Dept. of Health and Human Services. https://commons.wikimedia.org/wiki/File:Bacteroides_biacutis_01.jpg.
  28. 28.
    Erbe, E. (photographer), & Pooley, C. (did the digital colorization). File: E. coli at 10000X, original.jpg. Date: March 2005. License: This image is in the public domain. The material came from the Agricultural Research Service (the research agency of the U.S. Department of Agriculture). https://commons.wikimedia.org/wiki/File:E_coli_at_10000x,_original.jpg.
  29. 29.
    File: Salmonella NIAID.jpg. Date: 2005. License: This work is in the public domain. It is from the National Institutes of Health, part of the U.S. Dept. of Health and Human Services. https://commons.wikimedia.org/wiki/File:SalmonellaNIAID.jpg.
  30. 30.
    Elizabeth White: File: Listeria monocytogenes PHIL 2287 lores.jpg. Date: 2002. License: This work is in the public domain. It is a work of the Centers of Disease Control and Prevention, part of the U.S. Department of Health and Human Services. https://commons.wikimedia.org/wiki/File:Listeria_monocytogenes_PHIL_2287_lores.jpg.
  31. 31.
    Leif Jorgensen. File: Tarnborg-Kernefamilien 05.jpg. Date: March 2, 2016. License: Creative Commons Attribution-Share Alike 4.0 International. https://commons.wikimedia.org/wiki/File:T%C3%A5rnborg_-_Kernefamilien_05.jpg.
  32. 32.
    Jaslow, R. (March 29, 2013). Where are germs hiding in your kitchen? Study finds surprising results. CBS News.Google Scholar
  33. 33.
    Flores, G., Bates, S., Caporaso, J. G., Lauber, C., Leff, J., Knight, R., et al. (2012) Diversity, distribution and sources of bacteria in residential kitchens. Environmental Microbiology.  https://doi.org/10.1111/1462-2920.12036.CrossRefGoogle Scholar
  34. 34.
    Iyzadanger/Diliff. File: Fredmeyer edit 1.jpg. Date: December 23, 2004. License: Creative Commons Attribution-Share Alike 2.0 Generic https://commons.wikimedia.org/wiki/File:Fredmeyer_edit_1.jpg.
  35. 35.
    Brooks, J. D., & Flint, S. H. (2008). Biofilms in the food industry: Problems and potential solutions. Food Science & Technology. https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-2621.2008.01839.x.
  36. 36.
    Keskinen, L. A., Todd, E. C. D., & Ryser, E. (2008). Transfer of surface dried Listeria monocytogenes from stainless steel knife blades to roast turkey breast. Journal of Food Protection, 71, 176–181.CrossRefGoogle Scholar
  37. 37.
    Joseph, B., Otta, S. K., Karunasagar, I., & Karunasagar, I. (2001). Biofilm formation by Salmonella spp. on food contact surfaces and their sensitivity to sanitizers. International Journal of Food Microbiology, 64, 367–372.Google Scholar
  38. 38.
    Chmielewsky, R. A. N., & Frank, J. F. (2003). Biofilm formation and control in food processing facilities. Comprehensive Reviews in Food Science and Food Safety, 2, 22–32.CrossRefGoogle Scholar
  39. 39.
    De Wood, P. File: ARS Campylobacter jejuni.jpg. Date: January 2, 2008. License: This image is in the public domain. It is the work of the United States Department of Agriculture. https://commons.wikimedia.org/wiki/File:ARS_Campylobacter_jejuni.jpg.
  40. 40.
    Humm, B. J. (1992). A research update on the effects of cleaners and sanitizers on food processing biofilms. Food Protection Report, 8, 5–6.Google Scholar
  41. 41.
    United States Department of Agriculture: Research, Education, & Economics Information System. https://portal.nifa.usda.gov/web/crisprojectpages/0404877-reduction-and-control-of-pathogens-associated-with-food-processing-surfaces.html.
  42. 42.
    Koen B. File: Tubular heat exchanger.png. Date: April 7, 2007. License: This work is in the public domain. https://commons.wikimedia.org/wiki/File:Tubular_heat_exchanger.png.
  43. 43.
    Malfoy. File: Cooling tower power station Dresden. Jpg. Date: June 29, 2007. License: Creative Commons Attribution-Share Alike 3.0 https://commons.wikimedia.org/wiki/File:Cooling_tower_power_station_Dresden.jpg.
  44. 44.
    Earthman, J. C., & Wood, T. K. (1997). Corrosion inhibition by aerobic biofilms on SAE 1018 steel. Applied Microbial Biotechnology, 47, 62–68.CrossRefGoogle Scholar
  45. 45.
    Sandle, T. (2017). The problem of biofilms and pharmaceutical water systems. American Pharmaceutical Review. https://www.americanpharmaceuticalreview.com/Featured-Articles/345440-The-Problem-of-Biofilms-and-Pharmaceutical-Water-Systems/.
  46. 46.
    United States Environmental Protection Agency, Office of Water. (2000, September). Legionella: Drinking water fact sheet. EPA. https://www.epa.gov/sites/production/files/2015-10/documents/legionella-factsheet.pdf.
  47. 47.
    CDC Public Health Image Library #1187. File: Legionella pneumophila 01.jpg. Date: June 5, 2006. License: This work is in the public domain. The image is the work of the Centers for Disease Control and Prevention, part of the U.S. Department of Health and Human Services. https://commons.wikimedia.org/wiki/File:Legionella_pneumophila_01.jpg.
  48. 48.
    Fukuzaki, S. (2015). Chemical cleaning. In H. Kanematsu & D. M. Barry (Eds.), Biofilm and materials science (pp. 155–162). Switzerland: Springer.Google Scholar
  49. 49.
    Hallam, N. B., West, J. R., Forster, C. F., & Simms, J. (2001). The potential for biofilm growth in water distribution systems. Water Research, 35(17), 4063–4071.  https://doi.org/10.1016/S0043-1354(01)00248-2.CrossRefPubMedGoogle Scholar
  50. 50.
    Liu, X., Tang, B., Gu, Q., & Yu, X. (2014). Elimination of the formation of biofilm in industrial pipes using enzyme cleaning technique. MethodsX, 1, 130–136.  https://doi.org/10.1016/j.mex.2014.08.008.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Barrison, H. File: Pipeline PIG.jpg. Date: February 24, 2009. License: Creative Commons Attribution-Share Alike 2.0 Generic https://commons.wikimedia.org/wiki/File:PipelinePIG.jpg.
  52. 52.
    Colwell, R. R., & Grimes, D. J. (2000). Nonculturable microorganisms in the environment: ASM Press.Google Scholar
  53. 53.
    Kieft, T. L. (2000). Size matters: Dwarf cells in soil and subsurface terrestrial environments. In Nonculturable microorganisms in the environment (pp. 19–46). Springer.Google Scholar
  54. 54.
    Byrd, J. J. (2000). Morphological changes leading to the nonculturable state. In Nonculturable microorganisms in the environment (pp. 7–18). Springer.Google Scholar
  55. 55.
    Kim, J., Hahn, J.-S., Franklin, M. J., Stewart, P. S., & Yoon, J. (2008). Tolerance of dormant and active cells in Pseudomonas aeruginosa PA01 biofilm to antimicrobial agents. Journal of Antimicrobial Chemotherapy, 63(1), 129–135.CrossRefGoogle Scholar
  56. 56.
    García-Contreras, R., Zhang, X.-S., Kim, Y., & Wood, T. K. (2008). Protein translation and cell death: The role of rare tRNAs in biofilm formation and in activating dormant phage killer genes. PLoS ONE, 3(6), e2394.CrossRefGoogle Scholar
  57. 57.
    Chihara, K., Matsumoto, S., Kagawa, Y., & Tsuneda, S. (2015). Mathematical modeling of dormant cell formation in growing biofilm. Frontiers in Microbiology, 6, 534.CrossRefGoogle Scholar
  58. 58.
    Kim, J., Park, H.-J., Lee, J.-H., Hahn, J.-S., Gu, M. B., & Yoon, J. (2009). Differential effect of chlorine on the oxidative stress generation in dormant and active cells within colony biofilm. Water Research, 43(20), 5252–5259.CrossRefGoogle Scholar
  59. 59.
    Burkharta, C. N., Burkhart, C. G., & Gupta, A. K. (2002). Dermatophytoma: Recalcitrance to treatment because of existence of fungal biofilm. Journal of the American Academy of Dermatology, 47(4), 629–631.CrossRefGoogle Scholar
  60. 60.
    Olsen, I. (2015). Biofilm-specific antibiotic tolerance and resistance. European Journal of Clinical Microbiology and Infectious Diseases, 34(5), 877–886.CrossRefGoogle Scholar
  61. 61.
    Costerton, J. W., Cheng, K. J., Geesey, G. G., Ladd, T. I., Nickel, J. C., Dasgupta, M., et al. (1987). Bacterial biofilms in nature and disease: Annual review of. Microbiology, 41(1), 435–464.CrossRefGoogle Scholar
  62. 62.
    Jamal, M., Tasneem, U., Hussain, T., & Andleeb, S. (2015). Bacterial biofilm: Its composition, formation and role in human infections. Journal of Microbiology and Biotechnology, 4, 1–14.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringNational Institute of Technology (KOSEN)Shiroko-cho, SuzukaJapan
  2. 2.Department of Electrical and Computer EngineeringClarkson UniversityPotsdamUSA

Personalised recommendations