Advertisement

Standardization—Current and Future

Chapter
  • 263 Downloads

Abstract

To improve and develop industrial products and processes, a standard is always needed. Nowadays, not only for academic activities, but also for industrial ones, various standards are developed beyond borders among nations. Therefore, the international standards are also needed. In light of that, we introduce various industrial standards relating to biofilms. Since the concept of biofilms is relatively new, there are not many existing standards for them. However, we already have some standards in advanced countries. In this chapter, we describe some related national standards for the United States, the European Union (EU), and Japan, as well as the International Organization for Standardization (ISO).

References

  1. 1.
    ASTM International. Standard test method for quantification of Pseudomonas aeruginosa biofilm grown with medium shear and continuous flow using rotating disk reactor. https://www.astm.org/Standards/E2196.htm.
  2. 2.
    Garo, E., Eldridge, G. R., Goering, M. G., Pulcini, E. D., Hamilton, M. A., Costerton, J. W., et al. (2007). Asiatic acid and corosolic acid enhance the susceptibility of Pseudomonas aeruginosa biofilms to tobramycin. Antimicrobial Agents and Chemotherapy, 51(5), 1813–1817.CrossRefGoogle Scholar
  3. 3.
    Rayner, J., Veeh, R., & Flood, J. (2004). Prevalence of microbial biofilms on selected fresh produce and household surfaces. International Journal of Food Microbiology, 95, 29–39.CrossRefGoogle Scholar
  4. 4.
    Buckingham-Meyer, K., Goeres, D. M., & Hamilton, M. A. (2007). Comparative evaluation of biofilm disinfectant efficacy tests. Journal of Microbiological Methods, 70, 236–244.CrossRefGoogle Scholar
  5. 5.
    Kanematsu, H., Barry, D. M., Ikegai, H., Yoshitake, M., & Mizunoe, Y. (2017). Biofilm evaluation methods outside body to inside—Problem presentations for the future. Medical Research Archives, 5, 1–17.Google Scholar
  6. 6.
    ASTM International. (2012). ASTM E2562-12 standard test method for quantification of Pseudomonas Aeruginosa biofilm grown with high shear and continuous flow using CDC biofilm reactor. West Conshohocken, PA: ASTM International.Google Scholar
  7. 7.
    Garvey, M., Rabbitt, D., Stocca, A., & Rowan, N. (2015). Pulsed ultraviolet light inactivation of Pseudomonas aeruginosa and Staphylococcus aureus biofilms. Water and Environment Journal, 29, 36–42.CrossRefGoogle Scholar
  8. 8.
    Martinez-Gutierrez, F., Boegli, L., Agostinho, A., Sánchez, E. M., Bach, H., Ruiz, F., et al. (2013). Anti-biofilm activity of silver nanoparticles against different microorganisms. Biofouling, 29, 651–660.CrossRefGoogle Scholar
  9. 9.
    ASTM Testing Materials. ASTM E2562-12: standard test method for quantification of Pseudomonas Aeruginosa biofilm grown with high shear and continuous flow using CDC biofilm reactor.Google Scholar
  10. 10.
    Standard, A. (2008). ASTM E2647-08 standard test method for quantification of a Pseudomonas aeruginosa biofilm grown using a drip flow biofilm reactor with low shear and continuous flow. ASTM International.Google Scholar
  11. 11.
    Woods, J., Boegli, L., Kirker, K. R., Agostinho, A. M., Durch, A. M., Delancey Pulcini, E., et al. (2012). Development and application of a polymicrobial, in vitro, wound biofilm model. Journal of Applied Microbiology, 112, 998–1006.CrossRefGoogle Scholar
  12. 12.
    Alvarado-Gomez, E., Perez-Diaz, M., Valdez-Perez, D., Ruiz-Garcia, J., Magaña-Aquino, M., Martinez-Castañon, G., et al. (2018). Adhesion forces of biofilms developed in vitro from clinical strains of skin wounds. Materials Science and Engineering: C, 82, 336–344.CrossRefGoogle Scholar
  13. 13.
    Velázquez-Velázquez, J. L., Santos-Flores, A., Araujo-Meléndez, J., Sanchez-Sanchez, R., Velasquillo, C., González, C., et al. (2015). Anti-biofilm and cytotoxicity activity of impregnated dressings with silver nanoparticles. Materials Science and Engineering: C, 49, 604–611.CrossRefGoogle Scholar
  14. 14.
    Pérez-Díaz, M., Alvarado-Gomez, E., Magaña-Aquino, M., Sánchez-Sánchez, R., Velasquillo, C., Gonzalez, C., et al. (2016). Anti-biofilm activity of chitosan gels formulated with silver nanoparticles and their cytotoxic effect on human fibroblasts. Materials Science and Engineering: C, 60, 317–323.CrossRefGoogle Scholar
  15. 15.
    ASTM International. (2013). ASTM E2871-13 standard test method for evaluating disinfectant efficacy against Pseudomonas aeruginosa biofilm grown in CDC biofilm reactor using single tube method. West Conshohocken, PA: ASTM International.Google Scholar
  16. 16.
    Fritz, B., Walker, D. K., Goveia, D., Parker, A. E., & Goeres, D. M. (2015). Evaluation of Petrifilm™ Aerobic Count Plates as an equivalent alternative to drop plating on R2A Agar Plates in a biofilm disinfectant efficacy test. Current Microbiology, 70, 450–456.CrossRefGoogle Scholar
  17. 17.
    Saha, R., Saha, N., Atwain, A., & Donofrio, R. S. (2014). Evaluation of disinfection efficacy of ozone and chlorinated disinfectant against the biofilm of Klebsiella michiganensis and Pseudomonas aeruginosa. Annals of Microbiology, 64, 1607–1613.CrossRefGoogle Scholar
  18. 18.
    Wahlen, L., Parker, A., Walker, D., Pasmore, M., & Sturman, P. (2016). Predictive modeling for hot water inactivation of planktonic and biofilm-associated Sphingomonas parapaucimobilis to support hot water sanitization programs. Biofouling, 32, 751–761.CrossRefGoogle Scholar
  19. 19.
    Allan, N., Omar, A., Harding, M., & Olson, M. (2011). A rapid, high-throughput method for culturing, characterizing and biocide efficacy testing of both planktonic cells and biofilms. In A. Mendez-Vilas (Ed.), Science against microbial pathogens: communicating current research and technological advances. Microbiology book series (pp. 864–871). Formatex.Google Scholar
  20. 20.
    Percival, S. L., Mayer, D., & Salisbury, A. M. (2017). Efficacy of a surfactant-based wound dressing on biofilm control. Wound Repair and Regeneration, 25, 767–773.CrossRefGoogle Scholar
  21. 21.
    Howard, R., Harding, M., Daniels, G., Mobbs, S., Lisowski, S., & De Boer, S. (2015). Efficacy of agricultural disinfectants on biofilms of the bacterial ring rot pathogen, Clavibacter michiganensis subsp. sepedonicus. Canadian Journal of Plant Pathology, 37, 273–284.CrossRefGoogle Scholar
  22. 22.
    ASTM International. (2018). Standard test method for determining antimicrobial activity and biofilm resistance properties of tube, yarn, or fiber specimens. In E35.15 (Vol. ASTM E3151-18).Google Scholar
  23. 23.
    ASTM International. (2018). Standard practice for preparing a Pseudomonas aeruginosa or Staphylococcus aureus biofilm using the CDC biofilm reactor (Vol. ASTM E3161-18). ASTM International.Google Scholar
  24. 24.
    CENELEC. European Committee for Electrotechnical Standardization. https://www.cenelec.eu/.
  25. 25.
    CEN. European Committee for Standardization. https://www.cen.eu/Pages/default.aspx.
  26. 26.
    Sandle, J. T. (2017). The European approach to disinfectant qualification. La Vague, N52, 45–48.Google Scholar
  27. 27.
    International Standard. (2019). Dentistry—Test methods for dental unit waterline biofilm treatment.Google Scholar
  28. 28.
    Offner, D., Fioretti, F., & Musset, A.-M. (2016). Contamination of dental unit waterlines: Assessment of three continuous water disinfection systems. BDJ Open, 2, 16007.Google Scholar
  29. 29.
    International Standard. (2019). Measurement of antibacterial activity on plastics and other non-porous surfaces.Google Scholar
  30. 30.
    Ando, Y., Miyamoto, H., Noda, I., Sakurai, N., Akiyama, T., Yonekura, Y., et al. (2010). Calcium phosphate coating containing silver shows high antibacterial activity and low cytotoxicity and inhibits bacterial adhesion. Materials Science and Engineering: C, 30, 175–180.CrossRefGoogle Scholar
  31. 31.
    Torlak, E., & Sert, D. (2013). Antibacterial effectiveness of chitosan–propolis coated polypropylene films against foodborne pathogens. International Journal of Biological Macromolecules, 60, 52–55.CrossRefGoogle Scholar
  32. 32.
    Vincent, M., Hartemann, P., & Engels-Deutsch, M. (2016). Antimicrobial applications of copper. International Journal of Hygiene and Environmental Health, 219, 585–591.CrossRefGoogle Scholar
  33. 33.
    Chiu, T.-W., Yang, Y.-C., Yeh, A.-C., Wang, Y.-P., & Feng, Y.-W. (2013). Antibacterial property of CuCrO2 thin films prepared by RF magnetron sputtering deposition. Vacuum, 87, 174–177.CrossRefGoogle Scholar
  34. 34.
    ICROCHEM. JIS Z 2801 test for antimicrobial activity of plastics. https://microchemlab.com/test/jis-z-2801-test-antimicrobial-activity-plastics.
  35. 35.
  36. 36.
    Yao, Y., Ochiai, T., Ishiguro, H., Nakano, R., & Kubota, Y. (2011). Antibacterial performance of a novel photocatalytic-coated cordierite foam for use in air cleaners. Applied Catalysis B: Environmental, 106, 592–599.CrossRefGoogle Scholar
  37. 37.
    Nakano, R., Hara, M., Ishiguro, H., Yao, Y., Ochiai, T., Nakata, K., et al. (2013). Broad spectrum microbicidal activity of photocatalysis by TiO2. Catalysts, 3, 310–323.CrossRefGoogle Scholar
  38. 38.
    Japanese Industrial Standard. Dentistry—Test methods for dental unit waterline biofilm treatment http://www.kikakurui.com/t5/T5111-2018-01.html (in Japanese).
  39. 39.
    Kanematsu, H. (2017). A new international standard for testing antibacterial effects. Advanced Materials & Processing, 175, 26–29.Google Scholar
  40. 40.

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringNational Institute of Technology (KOSEN)Shiroko-cho, SuzukaJapan
  2. 2.Department of Electrical and Computer EngineeringClarkson UniversityPotsdamUSA

Personalised recommendations