Detection and Evaluation of Biofilms



This chapter describes a variety of ways for detecting and evaluating biofilms. The biological methods include staining, gene analysis, and proteomics. An instrumental analysis section is available too. It introduces many microscopes and discusses their uses for observing and analyzing biofilms.


  1. 1.
    Lee, G. M., & Bishop, P. (2013). Microbiology and infection control for health professionals (5th ed.). Melbourne, Australia: Pearson Australia.Google Scholar
  2. 2.
    Kanematsu, H., Sasaki, S., Miura, Y., Kogo, T., Sano, K., Wada, N., et al. (2015). Composite coating to control biofilm formation and effect of alternate electro-magnetic field. Materials Technology, 30, 21–26. Scholar
  3. 3.
    Kanematsu, H., Ikigai, H., & Yoshitake, M. (2009). Evaluation of various metallic coatings on steel to mitigate biofilm formation. International Journal of Molecular Science, 10, 559–571. Scholar
  4. 4.
    Ogawa A., Kiyohara, T., Kobayashi, Y.-h., Sano, K., & Kanematsu, H. (2017). Nickel, molybdenum, and tungsten nanoparticle-dispersed alkylalkoxysilane polymer for biomaterial coating: evaluation of effects on bacterial biofilm formation and biosafety. Biomedical Research and Clinical Practice, 2, 1–7.
  5. 5.
    Xu, Z., Liang, Y., Lin, S., Chen, D., Li, B., Li, L., & Deng, Y. J. C. m. (2016). Crystal violet and XTT assays on Staphylococcus aureus biofilm quantification 73, 474–482.Google Scholar
  6. 6.
    Qayyum, S., Oves, M., & Khan, A. U. (2017). Obliteration of bacterial growth and biofilm through ROS generation by facilely synthesized green silver nanoparticles. PLoS ONE, 12, 1–18. Scholar
  7. 7.
    Iqbal, M. J., Ali, S., Rashid, U., Kamran, M., Malik, M. F., Sughra, K., Zeeshan, N., Afroz, A., Saleem, J., & Saghir, M. (2018). Biosynthesis of silver nanoparticles from leaf extract of Litchi chinensis and its dynamic biological impact on microbial cells and human cancer cell lines. Cell Mol Biol (Noisy-le-grand), 64, 42–47.Google Scholar
  8. 8.
    Lau, Y. Y., How, K. Y., Yin, W. F., & Chan, K. G. (2018). Cloning and characterization of short-chain N-acyl homoserine lactone-producing Enterobacter asburiae strain L1 from lettuce leaves. Microbiologyopen, 7, e00610. Scholar
  9. 9.
    Lin, N. J., Keeler, C., Kraigsley, A. M., Ye, J., & Lin-Gibson, S. (2018). Effect of dental monomers and initiators on Streptococcus mutans oral biofilms. Dental Materials. Scholar
  10. 10.
    Kanematsu, H. (2017). A new international standard for testing antibacterial effects. Advanced Materials & Processing, 175, 26–29.Google Scholar
  11. 11.
    Coughlin, M., Kinkle, B., Tepper, A., & Bishop, P. (1997). Characterization of aerobic azo dye-degrading bacteria and their activity in biofilms. Water Science and Technology, 36, 215–220.CrossRefGoogle Scholar
  12. 12.
    Awad, H., & Galwa, N. A. (2005). Electrochemical degradation of acid blue and basic brown dyes on Pb/PbO2 electrode in the presence of different conductive electrolyte and effect of various operating factors. Chemosphere, 61, 1327–1335.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Haldar, S., Paul, P., & Bhattacharya, A. (2010). Polysulfone-azo composite membrane: New preparative approach, importance in bactericidal and biofilm inhibition activities. Journal of Applied Polymer Science, 115, 3710–3715.CrossRefGoogle Scholar
  14. 14.
    Chengalroyen, M., & Dabbs, E. (2013). The microbial degradation of azo dyes: Minireview. World Journal of Microbiology & Biotechnology, 29, 389–399.CrossRefGoogle Scholar
  15. 15.
    Mawad, A., Yousef, N., & Shoreit, A. (2015). Application of fungal biofilm supported on activated carbon for adsorption of two azo dyes: Adsorption kinetics and isotherms. Advances in Bioscience and Bioengineering, 3, 11–19. Scholar
  16. 16.
    Trasad, V. A, & Bhat, P. R. (2015). Effect of various plaque disclosing agents on color stability of esthetic restorative materials an invitro study. Indian Journal of Dental Sciences, 7, 36–39.Google Scholar
  17. 17.
    Manion M. K., Peppou, G. C. (2017). Empire technology development LLC, Color change indicator of biofilm formation. U.S. Patent 9,535,043.Google Scholar
  18. 18.
    Ala’Aldeen, D., Mahdavi, J., & Soultanas, P. (2018). Biofilm inhibiting compositions enhancing weight gain in livestock. U.S. Patent Application, Biomedical Inc, 10/106,567.Google Scholar
  19. 19.
    Andjouh, S., Perrin, F. X., & Blache, Y. G. (2018). Bis-Triazole Compounds with Anti-Biofilm and Anti-Corrosion Properties. U.S. Patent Application, Universite de Toulon, 16/061,767.Google Scholar
  20. 20.
    Chamberlain, A. H. L., Angell, P., & Campbell, H. S. (1988). Staining procedures for characterising biofilms in corrosion investigations. British Corrosion Journal, 23(3), 197–198.CrossRefGoogle Scholar
  21. 21.
    Allison, D. G., Ruiz, B., SanJose, C., Jaspe, A., & Gilbert, P. (1998). Extracellular products as mediators of the formation and detachment of Pseudomonas fluorescens biofilms. FEMS Microbiology Letters, 167(2), 179–184.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Gao, L., Giglio, K. M., Nelson, J. L., Sondermann, H., & Travis, A. J. (2014). Ferromagnetic nanoparticles with peroxidase-like activity enhance the cleavage of biological macromolecules for biofilm elimination. Nanoscale, 6(5), 2588–2593.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    De Beer, D., Stoodley, P., Roe, F., & Lewandowski, Z. (1994). Effects of biofilm structures on oxygen distribution and mass transport. Biotechnology and Bioengineering, 43, 1131–1138.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Fassel, T. A., & Edmiston, C. E. Jr. (1999). Bacterial biofilms: Strategies for preparing glycocalyx for electron microscopy. In Methods in enzymology (Vol. 310, pp. 194–203, 0076-6879). Elsevier.Google Scholar
  25. 25.
    Rayner, J., Veeh, R., & Flood, J. (2004). Prevalence of microbial biofilms on selected fresh produce and household surfaces. International Journal of Food Microbiology, 95, 29–39.CrossRefGoogle Scholar
  26. 26.
    Berman, T., & Holenberg, M. (2005). Don’t fall foul of biofilm through high TEP levels. Filtration & Separation, 42, 30–32.CrossRefGoogle Scholar
  27. 27.
    Pelkonen, S., Häyrinen, J., & Finne, J. (1988). Polyacrylamide gel electrophoresis of the capsular polysaccharides of Escherichia coli K1 and other bacteria. Journal of Bacteriology, 170, 2646–2653.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Ellison, R. r., Giehl, T. J., & LaForce, F. M. (1988). Damage of the outer membrane of enteric gram-negative bacteria by lactoferrin and transferrin. Infection and Immunity, 56, 2774–2781.Google Scholar
  29. 29.
    Eugene, C. Y., & Hackett, M. (2000). Rapid isolation method for lipopolysaccharide and lipid A from gram-negative bacteria. Analyst, 125, 651–656.CrossRefGoogle Scholar
  30. 30.
    Jiang, H., & Bishop, P. (1994). Aerobic biodegradation of azo dyes in biofilms. Water Science and Technology, 29, 525.CrossRefGoogle Scholar
  31. 31.
    Pinheiro, H. M., Touraud, E., & Thomas, O. (2004). Aromatic amines from azo dye reduction: status review with emphasis on direct UV spectrophotometric detection in textile industry wastewaters. Dyes and Pigments, 61, 121–139.CrossRefGoogle Scholar
  32. 32.
    Van der Zee, F. P., & Villaverde, S. (2005). Combined anaerobic–aerobic treatment of azo dyes—A short review of bioreactor studies. Water Research, 39, 1425–1440.PubMedCrossRefGoogle Scholar
  33. 33.
    Serralta, V. W., Harrison-Balestra, C., Cazzaniga, A. L., Davis, S. C., & Mertz, P. M. (2001). Lifestyles of bacteria in wounds: Presence of biofilms? Wounds, 13, 29–34.Google Scholar
  34. 34.
    Harrison-Balestra, C., Cazzaniga, A. L., Davis, S. C., & Mertz, P. M. (2003). A wound-isolated Pseudomonas aeruginosa grows a biofilm in vitro within 10 hours and is visualized by light microscopy. Dermatologic Surgery, 29, 631–635.PubMedGoogle Scholar
  35. 35.
    Kalishwaralal, K., BarathManiKanth, S., Pandian, S. R. K., Deepak, V., & Gurunathan, S. (2010). Silver nanoparticles impede the biofilm formation by Pseudomonas aeruginosa and Staphylococcus epidermidis. Colloids and Surfaces B: Biointerfaces, 79, 340–344.PubMedCrossRefGoogle Scholar
  36. 36.
    Hassan, A., Usman, J., Kaleem, F., Omair, M., Khalid, A., & Iqbal, M. (2011). Evaluation of different detection methods of biofilm formation in the clinical isolates. The Brazilian Journal of Infectious Diseases, 15, 305–311.PubMedCrossRefGoogle Scholar
  37. 37.
    Flemming, H.-C., & Wingender, J. (2010). The biofilm matrix. Nature Reviews Microbiology, 8, 623.PubMedCrossRefGoogle Scholar
  38. 38.
    Boles, B. R., Thoendel, M., Roth, A. J., & Horswill, A. R. (2010). Identification of genes involved in polysaccharide-independent Staphylococcus aureus biofilm formation. PLoS ONE, 5, e10146.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Brown, A., Horobin, A., Blount, D., Hill, P., English, J., Rich, A., et al. (2012). Blow fly Lucilia sericata nuclease digests DNA associated with wound slough/eschar and with Pseudomonas aeruginosa biofilm. Medical and Veterinary Entomology, 26, 432–439.PubMedCrossRefGoogle Scholar
  40. 40.
    Ryu, B. H. (2004). Semicontinuous decolorization of azo dyes by rotating disc contactor immobilized with Aspergillus sojae B-10. Biotechnology and Bioprocess Engineering, 9, 309–312.CrossRefGoogle Scholar
  41. 41.
    Mandal, S. M. (2012). A novel hydroxyproline rich glycopeptide from pericarp of Datura stramonium: proficiently eradicate the biofilm of antifungals resistant Candida albicans. Peptide Science, 98, 332–337.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Pan, H., Xu, J., Kweon, O.-G., Zou, W., Feng, J., He, G.-X., et al. (2015). Differential gene expression in Staphylococcus aureus exposed to Orange II and Sudan III azo dyes. Journal of Industrial Microbiology and Biotechnology, 42, 745–757.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Stewart, P. S., Peyton, B. M., Drury, W. J., & Murga, R. (1993). Quantitative observations of heterogeneities in Pseudomonas aeruginosa biofilms. Applied and Environment Microbiology, 59, 327–329.CrossRefGoogle Scholar
  44. 44.
    Hendricks, S. K., Kwok, C., Shen, M., Horbett, T. A., Ratner, B. D., & Bryers, J. D. (2000). Plasma-deposited membranes for controlled release of antibiotic to prevent bacterial adhesion and biofilm formation. Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 50, 160–170.CrossRefGoogle Scholar
  45. 45.
    Sanders, S. Q., Frank, J. F., & Arnold, J. W. (2008). Temperature and nutrient effects on Campylobacter jejuni attachment on multispecies biofilms on stainless steel. Journal of Food Protection, 71, 271–278.PubMedCrossRefGoogle Scholar
  46. 46.
    Hochstim, C. J., Choi, J. Y., Lowe, D., Masood, R., & Rice, D. H. (2010). Biofilm detection with hematoxylin-eosin staining. Archives of Otolaryngology-Head & Neck Surgery, 136, 453–456.CrossRefGoogle Scholar
  47. 47.
    Freire, F., Costa, A. C. B. P., Pereira, C. A., & Junior, M. B. (2014). Comparison of the effect of rose bengal- and eosin Y-medited photodynamic inactivation on planktonic cells and biofilms of Candida albicans. Lasers in Medical Science, 29, 949–955. Scholar
  48. 48.
    Marinic, K., Manoil, D., Filieri, A., Wataha, J. C., Schrenzel, J., Lange, N., & Bouillaguet, S. (2015). Repeated exposures to blue light-activated eosin Y enhance inactivation of E.faecalis biofilms, in vitro. Photodiagnosis and Photodynamic Therapy, 12, 393–400. Scholar
  49. 49.
    Muyzer, G., De Waal, E. C., & Uitterlinden, A. G. (1993). Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Applied and Environment Microbiology, 59, 695–700.CrossRefGoogle Scholar
  50. 50.
    O’toole, G. A., & Kolter, R. (1998). Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis. Molecular Microbiology, 28, 449–461.Google Scholar
  51. 51.
    Pratt, L. A., & Kolter, R. (1998). Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili. Molecular Microbiology, 30, 285–293.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    O’Toole, G. A., Pratt, L. A., Watnick, P. I., Newman, D. K., Weaver, V. B., & Kolter, R. (1999). Genetic approaches to study of biofilms. In Methods in enzymology (Vol. 310, pp. 91–109, 0076-6879). Elsevier.Google Scholar
  53. 53.
    Pratt, L. A., & Kolter, R. (1999). Genetic analyses of bacterial biofilm formation. Current Opinion in Microbiology, 2, 598–603.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Watnick, P., & Kolter, R. (2000). Biofilm, city of microbes. Journal of Bacteriology, 182, 2675–2679.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Solano, C., García, B., Valle, J., Berasain, C., Ghigo, J. M., Gamazo, C., et al. (2002). Genetic analysis of Salmonella enteritidis biofilm formation: Critical role of cellulose. Molecular Microbiology, 43, 793–808.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Mah, T.-F., Pitts, B., Pellock, B., Walker, G. C., Stewart, P. S., & O’toole, G. A. (2003). A genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance. Nature, 426, 306.Google Scholar
  57. 57.
    Zhang, Y. Q., Ren, S. X., Li, H. L., Wang, Y. X., Fu, G., Yang, J., et al. (2003). Genome-based analysis of virulence genes in a non-biofilm-forming Staphylococcus epidermidis strain (ATCC 12228). Molecular Microbiology, 49, 1577–1593.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Branda, S. S., Vik, Å., Friedman, L., & Kolter, R. (2005). Biofilms: The matrix revisited. Trends in Microbiology, 13, 20–26.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Maseda, H., Ikigai, H., Kuroda, D., Ogawa, A., & Kanematsu, H. (2010). Immersion of iron and steel materials into marine environment at Ise Gulf and gene analysis of attached microorganism. CAMP-ISIJ, 23, 668–669.Google Scholar
  60. 60.
    Ogawa, A., Noda, M., Kanematsu, H., & Sano, K. (2015). Application of bacterial 16S rRNA gene analysis to a comparison of the degree of biofilm formation on the surface of metal coated glasses. Materials Technology, 30, 61–65.CrossRefGoogle Scholar
  61. 61.
    Ogawa, A., et al. (2016). Effect of silver or copper nanoparticles-dispersed silane coatings on biofilm formation in cooling water systems. Materials (Basel), 9, 632–651.CrossRefGoogle Scholar
  62. 62.
    Ogawa, A., Takakura, K., Sano, K., Kanematsu, H., Yamano, T., Saishin, T., & Terada, S. (2018). Microbiome analysis of biofilms of silver nanoparticle-dispersed silane-based coated carbon steel using a next-generation sequencing technique. Antibiotics, 7, 91. Scholar
  63. 63.
    Aebersold, R., & Mann, M. (2003). Mass spectrometry-based proteomics. Nature, 422(6928), 198.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Hanash, S. (2003). Disease proteomics. Nature, 422(6928), 226.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Pandey, A., & Mann, M. (2000). Proteomics to study genes and genomes. Nature, 405(6788), 837.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Percival, S. L., Malic, S., Cruz, H., & Williams, D. W. (2011). Introduction to biofilms. In S. L. Percival (Ed.), Biofilms and veterinary medicine (pp. 41–68). Berlin Heidelberg: Springer.Google Scholar
  67. 67.
    Lewandowski, Z., & Beyenal, H. (2014). Fundamentals of biofilm research (2nd ed., pp. 642, 978-1-4665-5959-2). Boca Raton, London, New York: CRC Press.Google Scholar
  68. 68.
    Flemming, H. C. (2016). EPS-then and now. Microorganisms, 4. Scholar
  69. 69.
    Mehta, D. K., & Das, R. (2018). Microbial biofilm and quorum sensing inhibition: Endowment of medicinal plants to combat multidrug- resistant bacteria. Current Drug Targets. Scholar
  70. 70.
    Moriarty, T. F., Zaat, S. A. J., & Busscher, H. J. (2013). Biomaterials associated infection. New York: Springer. 978-1-4614-1030-0978-1-4614-1031-7 (eBook).Google Scholar
  71. 71.
    Larkin, P. (2011). Infrared and Raman spectroscopy: Principles and spectral interpretation (1st ed., pp. 230, 978-0123869845). Waltham, MA: Elsevier.Google Scholar
  72. 72.
    Dass, C. (2007). Fundamentals of contemporary mass spectrometry (Vol. 16). Wiley.Google Scholar
  73. 73.
    Cole, R. B. (ed.). (2011). Electrospray and MALDI mass spectrometry: Fundamentals, instrumentation, practicalities, and biological applications. Wiley.Google Scholar
  74. 74.
    Kleinberg, R. L., & Jackson, J. A. (2001). An introduction to the history of NMR well logging. Concepts in Magnetic Resonance, 13(6), 340–342.CrossRefGoogle Scholar
  75. 75.
    Preston, C. M. (1996). Applications of NMR to soil organic matter analysis: History and prospects. Soil Science, 161(3), 144–166.CrossRefGoogle Scholar
  76. 76.
    Lewandowski, Z., Altobelli, S. A., & Fukushima, E. (1993). NMR and microelectrode studies of hydrodynamics and kinetics in biofilms. Biotechnology Progress, 9(1), 40–45.CrossRefGoogle Scholar
  77. 77.
    Hoskins, B. C., Fevang, L., Majors, P. D., Sharma, M. M., & Georgiou, G. (1999). Selective imaging of biofilms in porous media by NMR relaxation. Journal of Magnetic Resonance, 139(1), 67–73.PubMedCrossRefGoogle Scholar
  78. 78.
    Majors, P. D., McLean, J. S., Pinchuk, G. E., Fredrickson, J. K., Gorby, Y. A., Minard, K. R., et al. (2005). NMR methods for in situ biofilm metabolism studies. Journal of Microbiological Methods, 62(3), 337–344.PubMedCrossRefGoogle Scholar
  79. 79.
    Lewandowski, Z., & Beyenal, H. (2013). Fundamentals of biofilm research (1466559608). CRC Press.Google Scholar
  80. 80.
    Vikramaditya, B., & Nelson, B. J. (1997). Visually guided microassembly using optical microscopes and active vision techniques. In Proceedings of the 1997 IEEE International Conference on Robotics and Automation (pp. 3172–3177). New Mexico: Albuquerque.Google Scholar
  81. 81.
    Levoy, M., Ng, R., Adams, A., Footer, M., & Horowitz, M. (2006). Light field microscopy. ACM Transactions on Graphics (TOG), 25, 924–934.CrossRefGoogle Scholar
  82. 82.
    Nagahara, H., Kuthirummal, S., Zhou, C., & Nayar, S. K. (2011). Flexible depth of field photography. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(1).Google Scholar
  83. 83.
    Noguchi, M., & Nayar, S. K. (1994, October). Microscopic shape from focus using active illumination. In Proceedings of 12th International Conference on Pattern Recognitio (Vol. 1, pp. 147–152). IEEE.Google Scholar
  84. 84.
    Hermanson, G. T. (2013). Bioconjugate techniques (3rd ed.).Google Scholar
  85. 85.
    Goding, J. W. (1996). Immunofluorescence. In: Monoclonal antibodies (3rd ed., pp. 352–399).CrossRefGoogle Scholar
  86. 86.
    File: Bloodcell sun flares pathology.jpeg. Date: October 27, 2005. This work is in the public domain.
  87. 87.
    Morrison, L. E., Ramakrishnan, R., & Wilber, K. (2002). Labeling fluorescence in situ hybridization probes for genomic targets. In Methods in molecular biology.
  88. 88.
    Crivat, G., & Taraska, J. (2012, January 1). Imaging proteins inside cells with fluorescent tags. Trends in Biotechnology, 30(1), 8–16.Google Scholar
  89. 89.
    Vindin, H. File: STD Depth Coded Stack Slices through Cells.png. Date: June 30, 2014. License: Creative Commons Attribution-Share Alike, 4.0 International
  90. 90.
    Pawley, J. B. (Ed.). (2006). Handbook of biological confocal microscopy (3rd ed.). Berlin: Springer.Google Scholar
  91. 91.
    Kamjunke, Norbert, Spohn, Uwe, Futing, Manfred, Wagner, Georg, Scharf, Eva-Maria, Sandrock, Stefan, et al. (2012). Use of confocal laser scanning microscopy for biofilm investigation on paints under field conditions. International Biodeterioration & Biodegradation, 69, 17–22. Scholar
  92. 92.
    Cerca, N., Gomes, F., Pereira, S., Teixeira, P., & Oliveira, R. (2012). Confocal laser scanning microscopy analysis of S. epidermidis biofilms exposed to farnesol, vancomycin, and rifampicin. BMC Research Notes, 5, 244.
  93. 93.
    Hall-Stoodley, L., & Stoodley, P. (2009, June 1). Evolving concepts in biofilm infections. Cellular Microbiology,11(7). Scholar
  94. 94.
    Peters, G., Locci, R., & Pulverer, G. (1982). Adherence and growth of coagulase- negative staphylococci on surfaces of intravenous catheters. Journal of Infectious Diseases, 146(4), 479–482.PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Kouider, N., Hamadi, F., Mallouki, B., Bengoram, J., Mabrouki, M., Zekraoui, M., et al. (2010). Effect of stainless steel surface roughness on Staphylococcus aureus adhesion. International Journal of Pure and Applied Science, 4(1), 17.Google Scholar
  96. 96.
    File: Misc pollen. jpg. Date: December 9, 2004. This work is in the public domain.
  97. 97.
    Modgi, S., McQuaid, M. E., & Englezos, P. (2006). SEM/EDX analysis of Z-direction distribution of mineral content in paper along the cross direction. Pulp and Paper Canada, 48–51.
  98. 98.
    Stokes, D. J. (2001). Characterization of soft condensed matter and delicate materials using environmental scanning electron microscopy (ESEM). Advanced Engineering Materials, 3(3), 126–130.CrossRefGoogle Scholar
  99. 99.
    Ricce. File: Simens numeri.jpg. Date: August 19, 2008. This work is in the public domain.
  100. 100.
    Murphy, F., & Whitfield, S. File: Polio EM PHIL 1875 lores.png. Date: May 27, 2006. The image (a work of the U.S. federal government) is in the public domain.
  101. 101.
    Williams, R. C., & Wyckoff, R. W. G. (1946). Applications of metallic shadow—Castings to microscopy. Journal of Applied Physics, 17(23). Scholar
  102. 102.
    Ayache, J., Beaunier, L., Boumendil, J., Ehret, G., & Laub, D. (2013, June 17). A guide to sample preparation methods for TEM in materials science and biology, (magazine). Microscopy and Analysis.
  103. 103.
    Hunter, Ryan C., & Beveridge, Terry J. (2005). High–resolution visualization of Pseudomonas aeruginosa PAO1 biofilms by freeze-substitution transmission electron microscopy. Journal of Bacteriology, 187(22), 7619–7630. Scholar
  104. 104.
    Cheng, Y., Grigorieff, N., Penczek, P., & Waltz, T. (2015). A primer to single- particle cryo-electron microscopy. Cell, 161(3), 438–449. Scholar
  105. 105.
    Cressey, D., & Callaway, E. (2017, October). Cryo-electron microscopy wins chemistry Nobel. Nature, 550(7675). Scholar
  106. 106.
    Brettjbaker. File: 25KpA9Def4secArman4Box1.png. Date: July 6, 2013. This work is in the public domain.
  107. 107.
    Comolli, Luis R., Baker, Brett J., Downing, Kenneth H., Siegerist, Christina E., & Banfield, Jillian F. (2009). Three-dimensional analysis of the structure and ecology of a novel, ultra-small archaeon. The ISME Journal, 3, 159–167.PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Press Release (1986, October 15). The royal Swedish academy of sciences.
  109. 109.
    Overlord, Q. File: Atomic force microscope block diagram.svg. Date: August 21, 2015. This work is in the public domain.
  110. 110.
    Chych. File: AFM image Rough Glass 20x20.JPG. Date: July 14, 2009. This work is in the public domain.
  111. 111.
    Yurko. File: Single-Molecule-Under-Water-AFM-Tapping-Mode.jpg. Date: May 23, 2005. License: Creative Commons Attribution-Share Alike 3.0 unported.
  112. 112.
    Chatterjee, S., Biswas, N., Datta, A., Dey R., & Maiti, P. K. (2014, August). Atomic force microscopy in biofilm study. Microscop, 63(4), 269–278.Google Scholar
  113. 113.
    Ahimou, Francois, Semmens, Michael J., Novak, Paige J., & Haugstad, Greg. (2007). Biofilm cohesiveness measurement using a novel atomic force microscopy methodology. Applied and Environmental Microbiology. Scholar
  114. 114.
    This diagram is in the public domain.Google Scholar
  115. 115.
    Vickers, T. File: DU640 spectrophotometer.jpg. Date: July 14, 2008. This work is in the public domain.
  116. 116.
    Mehta, A. (2012, April 22). Ultraviolet-visible (UV-Vis) spectroscopy—Derivation of Beer-Lambert law. Pharma X Change info.
  117. 117.
    Lyndon, B. Johnson Space Center. (2004, February). Ultraviolet-absorption spectroscopic biofilm monitor. Tech Briefs.
  118. 118.
    Polytec GmbH. File: Interferometer Schema.jpg. Date: July 1, 2008. License: Creative Commons Attribution – Share Alike 3.0
  119. 119.
    Larimer, Curtis J., Brann, Michelle R., Suter, Jonathan D., Bonheyo, George T., & Addleman, Raymond S. (2016). Conference: Are those bugs reflective? Non-destructive biofilm imaging with white light interferometry. United States: N. p. Web. Scholar
  120. 120.
    Brann, M., Suter, J. D., Addleman, R. S., & Larimer, C. (2017). Monitoring bacterial biofilms with a microfluidic flow chip designed for imagining with white-light interferometry. Biomicrofluidics, 11(4). Scholar
  121. 121.
    Smith, B. C. (2011). Fundamentals of fourier transform infrared spectroscopy. CRC press.Google Scholar
  122. 122.
    Schuttlefield, J. D., & Grassian, V. H. (2008). ATR–FTIR spectroscopy in the undergraduate chemistry laboratory. Part I: fundamentals and examples. Journal of chemical education, 85(2), 279.Google Scholar
  123. 123.
    Lakin, P. (2011). General outline and strategies for IR and Raman spectral interpretation. In Infrared and Raman spectroscopy–Principles and spectral interpretation. Burlington, MA: Elsevier.Google Scholar
  124. 124.
    Huang, H., & Yin, Q. (2011). Fundamentals and application advances in attenuated total internal reflectance fourier transform infrared spectroscopy (ATR-FTIR)[J]. Journal of the Graduates Sun Yat-Sen University (Natural Sciences, Medicine), 1.Google Scholar
  125. 125.
    Chittur, K. K. (1998). FTIR/ATR for protein adsorption to biomaterial surfaces. Biomaterials, 19(4–5), 357–369.PubMedCrossRefPubMedCentralGoogle Scholar
  126. 126.
    Hind, A. R., Bhargava, S. K., & McKinnon, A. (2001). At the solid/liquid interface: FTIR/ATR—The tool of choice. Advances in Colloid and Interface Science, 93(1–3), 91–114.PubMedCrossRefPubMedCentralGoogle Scholar
  127. 127.
    Kogo, T., Kanematsu, H., Sano, K., Kitayabu, K., Wada, N., Miura, Y., Yoshitake, M., & Ikegai, H. (2015). Analyses of biofilm on metallic materials by FTIR-ATR. In Asia Steel International Conference 2015 (Asia Steel 2015), Proceedings of Asia Steel International Conference 2015 (Asia Steel 2015), pp. 156–157. Yokohama, Japan.Google Scholar
  128. 128.
    Sano, K., Kanematsu, H., Hirai, N., Ogawa, A., Kogo, T., & Tanaka, T. (2015). Some anti-fouling silane compound composite films on iron and their corrosion characteristics revealed by Raman spectroscopy and FTIR-ATR spectroscopy. CAMP-ISIJ, 28.Google Scholar
  129. 129.
    Sano, K., Kanematsu, H., Kogo, T., Hirai, N., & Tanaka, T. (2016). Corrosion and biofilm for a composite coated iron observed by FTIR-ATR and Raman spectroscopy. Transaction of the Institute of Materials Finishing, 94, 139–145.CrossRefGoogle Scholar
  130. 130.
    Larkin, P. (2011). Infrared and Raman spectroscopy: Principles and spectral interpretation (1st ed., p. 978-0123869845). Waltham, MA: Elsevier.Google Scholar
  131. 131.
    Raman, C. V., & Krishnan, K. S. (1928). A new type of secondary radiation. Nature, 121(3048), 501.CrossRefGoogle Scholar
  132. 132.
    Krishnan, R. S., & Shankar, R. K. (1981). Raman effect: History of the discovery. Journal of Raman Spectroscopy, 10(1), 1–8.CrossRefGoogle Scholar
  133. 133.
    Krishnan, K. S. (1928). Influence of temperature on the Raman effect. Nature, 122(3078), 650.CrossRefGoogle Scholar
  134. 134.
    Welch, D. F. (2000). A brief history of high-power semiconductor lasers. IEEE Journal of Selected Topics in Quantum Electronics, 6(6), 1470–1477.CrossRefGoogle Scholar
  135. 135.
    Schopf, J. W., Kudryavtsev, A. B., Agresti, D. G., Wdowiak, T. J., & Czaja, A. D. (2002). Laser-Raman imagery of earth’s earliest fossils. Nature, 416(6876), 73.PubMedCrossRefPubMedCentralGoogle Scholar
  136. 136.
    Long, D. A. (1977). Raman spectroscopy (pp. 1–12). New York.Google Scholar
  137. 137.
    Mooradian, A., & Wright, G. B. (1966). First order Raman effect in III–V compounds. Solid State Communications, 4(9), 431–434.CrossRefGoogle Scholar
  138. 138.
    Flaugh, P. L., O’Donnell, S. E., & Asher, S. A. (1984). Development of a new optical wavelength rejection filter: Demonstration of its utility in Raman spectroscopy. Applied Spectroscopy, 38(6), 847–850.CrossRefGoogle Scholar
  139. 139.
    Mike25. File: 700 loab fix. Jpg. Date: May 2008. License: This work is in the public domain.
  140. 140.
    Lewandowski, Z., & Beyenal, H. (2013, December 31). Imaging and characterizing biofilm components. In Fundamentals of biofilm research (p. 107). Bosa Roca: Taylor & Francis.Google Scholar
  141. 141.
    Renslow, R. S., Majors, P. D., McLean, J. S., Fredrickson, J. K., Ahmed, B., & Beyenal, H. (2010, August 15). In situ effective diffusion coefficient profiles in live biofilms using pulsed-field gradient nuclear magnetic resonance. Biotechnology and Bioengineering, 106(6), 928–937., Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringNational Institute of Technology (KOSEN)Shiroko-cho, SuzukaJapan
  2. 2.Department of Electrical and Computer EngineeringClarkson UniversityPotsdamUSA

Personalised recommendations