Advertisement

Laboratory Biofilm Reactors

Chapter
  • 274 Downloads

Abstract

Biofilms form at the interface between different phases in nature. To investigate biofilms and to solve practical problems, we have to reproduce the phenomena in laboratories. To achieve this purpose, we need to produce biofilms in laboratories and to evaluate them properly and accurately. As for the artificial production of biofilms, we need laboratory biofilm reactors. They have to mimic natural phenomena as much as possible, while the conditions should be idealized without some unnecessary factors. However, the simplification and idealization are very often difficult. It depends on the design and production of the laboratory biofilm reactors. In this chapter, we describe some representative laboratory biofilm reactors and discuss the efficacy and also the problems.

References

  1. 1.
    Lewandowski, Z., & Beyenal, H. (2014). Fundamentals of biofilm research (2nd ed.). Boca Raton, London, New York: CRC Press.Google Scholar
  2. 2.
    Lebeaux, D., Chauhan, A., rendueles, O., & Beloin, C. (2013). From in vitro to in vivo models of bacterial biofilm-related infections. Pathogens, 2, 238–356.  https://doi.org/10.3390/pathogens2020288.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Anderl, J. N., Franklin, M. J., & Stewart, P. S. (2000). Role of antibiotic penetration limitation in Klebsiella pneumoniae biofilm resistance to ampicillin and ciprofloxacin. Antimicrobial Agents and Chemotherapy, 44, 1818–1824.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Zuroff, T. R., Bernstein, H., Lloyd-Randolfi, J., Jimenez-Taracido, L., Stewart, P. S., & Carlson, R. P. (2010). Robustness analysis of culturing perturbations on Escherichia coli colony biofilm beta-lactam and aminoglycoside antibiotic tolerance. BMC Microbiology, 10, 185.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Christensen, G. D., Simpson, W. A., Younger, J. J., Baddour, L. M., Barrett, F. F., Melton, D. M., et al. (1985). Adherence of coagulase-negative Staphylococci to plastic tissue culture plates: A quantitative model for the adherence of Staphylococci to medical devices. Journal of Clinical Microbiology, 22, 996–1006.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Genevaux, P., Muller, S., & Bauda, P. (1996). A rapid screening procedure to identify mini-Tn10 insertion mutants of Escherichia coli K-12 with altered adhesion properties. FEMS Microbiology Letters, 142, 27–30.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Chavant, P., Gaillard-Martinie, B., Talon, R., Hébraud, M., & Bernardi, T. (2007). A new device for rapid evaluation of biofilm formation potential by bacteria. Journal of Microbiological Methods, 68, 605–612.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Ceri, H., Olson, M. E., Stremick, C., Read, R. R., Morck, D., & Buret, A. (1999). The Calgary biofilm device: New technology for rapid determination of antibiotic susceptibilities of bacterial biofilms. Journal of Clinical Microbiology, 37, 1771–1776.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Kanematsu, H., Oizumi, A., Sato, T., Kamijo, T., Honma, S., Barry, D. M., et al. (2018). Biofilm formation of a polymer brush coating with ionic liquids compared to a polymer brush coating with a non-ionic liquid. Coatings, 8(11), 398–412.  https://doi.org/10.3390/coatings8110398.CrossRefGoogle Scholar
  10. 10.
    Kanematsu, H., Oizumi, A., Sato, T., Kamijo, T., Honma, S., Barry, D. M., et al. (2018). Polymer brush made by ionic liquids and the inhibition effects for biofilm formation. ECS Transactions, 85(13), 1089–1095.  https://doi.org/10.1149/08513.1089ecst.CrossRefGoogle Scholar
  11. 11.
    Kanematsu, H., Sakagami, Y., Barry, D. M., Yoshitake, M., Ogawa, A., Hirai, N., et al. (2018). Evaluation for immunity of biomaterials based on Raman spectroscopy. In MS & T 2018. Columbus, Ohio, USA: The minerals, Metals and Materials Society.Google Scholar
  12. 12.
    Kanematsu, H., Sakagami, Y., Barry, D. M., Yoshitake, M., Ogawa, A., Hirai, N., et al. (2018). Evaluation for immunity of biomaterials based on Raman spectroscopy. Paper presented at the Materials Science and Technology 2018 (MS&T18), greater Columbus Convention Center, Columbus, Ohio, USA.Google Scholar
  13. 13.
    Kanematsu, H., Shindo, K., Barry, D. M., Hirai, N., Ogawa, A., Kuroda, D., et al. (2018). Electrochemical responses of graphene with biofilm formation on various metallic substrates by using laboratory biofilm reactors. ECS Transactions, 85(13), 491–498.  https://doi.org/10.1149/08513.0491ecst.CrossRefGoogle Scholar
  14. 14.
    De Beer, D., Stoodley, P., Roe, F., & Lewandowski, Z. (1994). Effects of biofilm structures on oxygen distribution and mass transport. Biotechnology and Bioengineering, 43(11), 1131–1138.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Stoodley, P., De Beer, D., & Lewandowski, Z. (1994). Liquid flow in biofilm systems. Applied and Environmental Microbiology, 60(8), 2711–2716.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Beyenal, H., & Lewandowski, Z. (2001). Mass transport dynamics, activity, and structure of sulfate reducing biofilms. AIChE Journal, 47(7), 1689–1697.CrossRefGoogle Scholar
  17. 17.
    Beyenal, H., Şleker, Ş., Tanyolaç, A., & Salih, B. (1997). Diffusion coefficients of phenol and oxygen in a biofilm of Pseudomonas putida. AIChE Journal, 43(1), 243–250.CrossRefGoogle Scholar
  18. 18.
    Beyenal, H., Yakymyshyn, C., Hyungnak, J., Davis, C. C., & Lewandowski, Z. (2004). An optical microsensor to measure fluorescent light intensity in biofilms. Journal of Microbiological Methods, 58(3), 367–374.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Groenenboom, M. D. (2000). Increase of frictional resistance in closed conduit systems fouled with biofilms. Montana State University-Bozeman, College of Engineering.Google Scholar
  20. 20.
    Lewandowski, Z., Altobelli, S. A., & Fukushima, E. (1993). NMR and microelectrode studies of hydrodynamics and kinetics in biofilms. Biotechnology Progress, 9(1), 40–45.CrossRefGoogle Scholar
  21. 21.
    Lewandowski, Z., & Beyenal, H. (2003). Mass transfer in heterogeneous biofilms. In S. Wuertz, P. L. Bishop, & P. A. Wilderer (Eds.), Biofilms in wastewater treatment (pp. 145–172). IWA Publishing, London.Google Scholar
  22. 22.
    Lewandowski, Z., Walser, G., & Characklis, W. G. (1991). Reaction kinetics in biofilms. Biotechnology and Bioengineering, 38(8), 877–882.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Rasmussen, K., & Lewandowski, Z. (1998). The accuracy of oxygen flux measurements using microelectrodes. Water Research, 32(12), 3747–3755.CrossRefGoogle Scholar
  24. 24.
    Rasmussen, K., & Lewandowski, Z. (1998). Microelectrode measurements of local mass transport rates in heterogeneous biofilms. Biotechnology and Bioengineering, 59(3), 302–309.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Schwartz, K., Stephenson, R., Hernandez, M., Jambang, N., & Boles, B. R. (2010). The use of drip flow and rotating disk reactors for Staphylococcus aureus biofilm analysis. Journal of Visualized Experiments (46), 2470.  https://doi.org/10.3791/2470.
  26. 26.
    Kanematsu, H., Kudara, H., Kanesaki, S., Kogo, T., Ikegai, H., Ogawa, A., et al. (2016). Application of a loop-type laboratory biofilm reactor to the evaluation of biofilm for some metallic materials and polymers such as urinary stents and catheters. Materials, 9(10), 824–834.  https://doi.org/10.3390/ma9100824.CrossRefPubMedCentralGoogle Scholar
  27. 27.
    Kanematsu, H., Kanesaki, S., Kudara, H., Barry, D. M., Ogawa, A., & Mizunoe, Y. (2018). Biofilm formation on titanium alloy surfaces in a laboratory biofilm reactor. In M. M. Mahmoud, K. Sridharan, H. Colorado, A. S. Bhalla, J. P. Singh, S. Gupta, J. Langhorn, A. Jitianu, & N. J. Manjooran (Eds.), Ceramic Transactions—Advances in ceramics for environmental, functional, structural, and energy applications (Vol. 265, pp. 221–228). New York, the United States: Wiley, Inc.Google Scholar
  28. 28.
    Schaller, M., Schafer, W., Korting, H. C., & Hube, B. (1998). Differential expression of secreted aspartyl proteinases in a model of human oral candidosis and in patient samples from the oral cavity. Molecular Microbiology, 29, 605–615.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Guggenheim, B., Giertsen, E., Schüpbach, P., & Shapiro, S. (2001). Validation of an in vitro biofilm model of supragingival plaque. Journal of Dental Research, 80, 363–370.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Guggenheim, M., Thurnheer, T., Gmur, R., Giovanoli, P., & Guggenheim, B. (2011). Validation of the Zurich burn-biofilm model. Burns: Journal of the International Society for Burn Injuries, 37, 1125–1133.CrossRefGoogle Scholar
  31. 31.
    Grubb, S. E., Murdoch, C., Sudbery, P. E., Saville, S. P., Lopez-Ribot, J. L., & Thornhill, M. H. (2009). Adhesion of Candida albicans to endothelial cells under physiological conditions of flow. Infection and Immunity, 77, 3872–3878.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Woodworth, B. A., Tamashiro, E., Bhargave, G., Cohen, N. A., & Palmer, J. N. (2008). An in vitro model of Pseudomonas aeruginosa biofilms on viable airway epithelial cell monolayers. American Journal of Rhinology, 22, 235–238.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    McBain, A. J., Sissons, C., Ledder, R. G., Sreenivasan, P. K., De Vizio, W., & Gilbert, P. (2005). Development and characterization of a simple perfused oral microcosm. Journal of Applied Microbiology, 98, 624–634.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Kim, J., Hegde, M., & Jayaraman, A. (2010). Microfluidic co-culture of epithelial cells and bacteria for investigating soluble signal-mediated interactions. Journal of Visualized Experiments, 38, e1749.Google Scholar
  35. 35.
    Huang, T. Y., Gulabivala, K., & Ng, Y. L. (2008). A bio-molecular film ex vivo model to evaluate the influence of canal dimensions and irrigation variables on the efficacy of irrigation. International Endodontic Journal, 41, 60–71.PubMedPubMedCentralGoogle Scholar
  36. 36.
    Chuang-Smith, O. N., Wells, C. L., Henry-Stanley, M. J., & Dunny, G. M. (2010). Acceleration of Enterococcus faecalis biofilm formation by aggregation substance expression in an ex vivo model of cardiac valve colonization. PLoS One, 5, e15798.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Harriott, M. M., Lilly, E. A., Rodriguez, T. E., Fidel, P. L., Jr., & Noverr, M. C. (2010). Candida albicans forms biofilms on the vaginal mucosa. Microbiology, 156, 3635–3644.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Carterson, A. J., Honer zu Bentrup, K., Ott, C. M., Clarke, M. S., Pierson, D. L., Vanderburg, C. R., et al. (2005). A549 lung epithelial cells grown as three-dimensional aggregates: Alternative tissue culture model for Pseudomonas aeruginosa pathogenesis. Infection and Immunity, 73, 1129–1140.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Nickerson, C. A., Goodwin, T. J., Terlonge, J., Ott, C. M., Buchanan, K. L., Uicker, W. C., et al. (2001). Three-dimensional tissue assemblies: Novel models for the study of Salmonella enterica serovar Typhimurium pathogenesis. Infection and Immunity, 69, 7106–7120.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Smith, Y. C., Grande, K. K., Rasmussen, S. B., & O’Brien, A. D. (2006). Novel three-dimensional organoid model for evaluation of the interaction of uropathogenic Escherichia coli with terminally differentiated human urothelial cells. Infection and Immunity, 74, 750–757.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Kanematsu, H., Hirai, N., Miura, Y., Itoh, H., Kuroda, D., & Umeki, S. (2013). Biofilm leading to corrosion on material surface and the moderation by alternative electro-magnetic field. Paper presented at the Materials Science and Technology (MS & T), Montreal, Quebec, Canada.Google Scholar
  42. 42.
    Kanematsu, H., Hirai, N., Miura, Y., Tanaka, M., Kogo, T., & Itoh, H. (2013). Various metals from water by biofilm from ambient germs in a reaction container. Paper presented at the Materials Science and Technology conference, Montreal, Quebec, Canada.Google Scholar
  43. 43.
    Kanematsu, H., Kogo, T., Itoh, H., Wada, N., & Yoshitake, M. (2013). Fogged glass by biofilm formation and its evaluation. Paper presented at the Proceedings of MS & T’ 13, Montreal, Quebec, Canada.Google Scholar
  44. 44.
    Kanematsu, H., Kogo, T., Sano, K., Noda, M., Wada, N., & Yoshitake, M. (2014). Nano-composite coating on glasses for biofilm control. Journal of Materials Science & Surface Engineering, 1(2), 58–63 (in Japanese).Google Scholar
  45. 45.
    Nakanishi, Y., Kanematsu, H., Miura, Y., Arumugam, V., Hirai, N., & Ogawa, A. (2014). Two kinds of composites and their biofouling behavior in a LBR. CAMP-ISIJ, 27, 602–603 (in Japanese).Google Scholar
  46. 46.
    Nishi, N., Kanematsu, H., Miura, Y., Kito, M., Hirai, N., & Ogawa, A. (2014). Production of desktop LBR and biofilm formation behavior. CAMP-ISIJ, 27, 595–596 (in Japanese).Google Scholar
  47. 47.
    Sano, K., Kanematsu, H., Hirai, N., Ogawa, A., Kogo, K., Kitayabu, K., et al. (2015). Analyses of biofilm formed on various metal substrates by FT-IR and Raman spectroscopy. CAMP-ISIJ, 28, 493–494 (in Japanese).Google Scholar
  48. 48.
    Kanematsu, H., Sano, K., Kougo, T., Ogawa, A., & Hirai, N. (2016). Anti-biofouling surfaces produced by nano-composite films and their evaluation. IEICE Technical Report (OME2016-54–OME2016-58) Organic Molecular Electronics, 116(384), 11–15 (in Japanese).Google Scholar
  49. 49.
    Kanematsu, H., Saito, T., Barry, D. M., Hirai, N., Kogo, T., Ogawa, A., et al. (2017). Effects of ionic liquids on biofilm formation in a loop-type laboratory biofilm reactor. ECS Transactions, 80(10), 1147–1155.  https://doi.org/10.1149/08010.1147ecst.CrossRefGoogle Scholar
  50. 50.
    Kanematsu, H., Maeda, S., Barry, D. M., Umeki, S., Tohji, K., Hirai, N., et al. (2018). Effects of elastic waves at several frequencies on biofilm formation in circulating types of laboratory biofilm reactors. In M. M. Mahmoud, K. Sridharan, H. Colorado, A. S. Bhalla, J. P. Singh, S. Gupta, J. Langhorn, A. Jitianu, & N. J. Manjooran (Eds.), Ceramic transactions—Advances in ceramics for environmental, functional, structural, and energy applications (Vol. 265, pp. 43–51). New York, the United States: Wiley, Inc.Google Scholar
  51. 51.
    Costerton, J. W. (1999). Introduction to biofilm. International Journal of Antimicrobial Agents, 11, 217–221.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Garrett, T. R., Bhakoo, M., & Zhang, Z. (2008). Bacterial adhesion and biofilms on surfaces. Progress in Natural Science, 18, 1049–1056.CrossRefGoogle Scholar
  53. 53.
    Pantanella, F., Valenti, P., Natalizi, T., Passeri, D., & Berlutti, F. (2013). Analytical techniques to study microbial biofilm on abiotic surfaces: Pros and cons of the main techniques currently in use. Annali di Igiene, 25, 31–42.  https://doi.org/10.7416/ai.2013.1904.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Barry, D. M., & McGrath, P. B. (2015). Rotation disk process for accelerated assessment of biofilm formation on medical materials. Materials Technology: Advanced Biomaterials, 30(B1), 33–37.CrossRefGoogle Scholar
  55. 55.
    Photo by Dana M. Barry.Google Scholar
  56. 56.
    Grass, G., Rensing, C., & Solioz, M. (2011). Metallic copper as an antimicrobial surface. Applied and Environmental Microbiology, 77(5), 1541–1547.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Banerjee, J., Ghatak, P. D., Roy, S., Khanna, S., Hemann, C., Deng, B., et al. (2015) Silver-zinc redox-coupled electroceutical wound dressing disrupts bacterial biofilm. PloS ONE, 10(3).  https://doi.org/10.1371/journal.pone.0119531.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Perez-Roa, R. E., Tompkins, D. T., Paulose, M., Grimes, C. A., Anderson, M. A., & Noguera, D. R. (2006). Effects of localized, low-voltage pulsed electric fields on the development and inhibition of Pseudomonas aeruginosa biofilms. Biofouling, 22(5–6), 383–390.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Kim, Y. W., Subramanian, S., Gerasopoulos, K., Ben-Yoav, H., Wu, H.-C., Quan, D., et al. (2015). Effect of electrical energy on the efficacy of biofilm treatment using the bioelectric effect. Nature.  https://doi.org/10.1038/npjbiofilms.2015.16.
  60. 60.
    Sandvik, E. L., McLeod, B. R., Parker, A. E., & Stewart, P. S. (2013). Direct electric current treatment under physiologic saline conditions kills Staphylococcus epidermidis Biofilms via electrolytic generation of hypochlorous acid. PloS ONE, 8(2), e55118.  https://doi.org/10.1371/journal.pone.0055118.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Barry, D. M., & McGrath, P. B. (2016). Rotation disk process to assess the influence of metals and voltage on the growth of biofilm: Materials, 9(7), 568.  https://doi.org/10.3390/ma9070568.PubMedCentralCrossRefGoogle Scholar
  62. 62.
    Carpio, I. E. M., Santos, C. M., Wei, X., & Rodrigues, D. F. (2012). Toxicity of a polymer–graphene oxide composite against bacterial planktonic cells, biofilms, and mammalian cells. Nanoscale, 4(15), 4746–4756.CrossRefGoogle Scholar
  63. 63.
    Subbiahdoss, G., Pidhatika, B., Coullerez, G., Charnley, M., Kuijer, R., van der Mei, H. C., et al. (2010). Bacterial biofilm formation versus mammalian cell growth on titanium-based mono-and bi-functional coating. European Cells & Materials, 19, 205–213.CrossRefGoogle Scholar
  64. 64.
    Sanyasi, S., Majhi, R. K., Kumar, S., Mishra, M., Ghosh, A., Suar, M., et al. (2016). Polysaccharide-capped silver nanoparticles inhibit biofilm formation and eliminate multi-drug-resistant bacteria by disrupting bacterial cytoskeleton with reduced cytotoxicity towards mammalian cells. Scientific Reports, 6, 24929.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Fan, J., Li, Y., Nguyen, H. N., Yao, Y., & Rodrigues, D. F. (2015). Toxicity of exfoliated-MoS 2 and annealed exfoliated-MoS 2 towards planktonic cells, biofilms, and mammalian cells in the presence of electron donor. Environmental Science: Nano, 2(4), 370–379.Google Scholar
  66. 66.
    Subbiahdoss, G., Kuijer, R., Busscher, H. J., & van der Mei, H. C. (2010). Mammalian cell growth versus biofilm formation on biomaterial surfaces in an in vitro post-operative contamination model. Microbiology, 156(10), 3073–3078.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Jurcisek, J. A., Bookwalter, J. E., Baker, B. D., Fernandez, S., Novotny, L. A., Munson, R. S., Jr., et al. (2007). The PilA protein of non typeable Haemophilus influenzae plays a role in biofilm formation, adherence to epithelial cells and colonization of the mammalian upper respiratory tract. Molecular Microbiology, 65(5), 1288–1299.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Renner, L. D., & Weibel, D. B. (2011). Physicochemical regulation of biofilm formation. MRS Bulletin, 36(5), 347–355.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Alem, M. A., & Douglas, L. J. (2004). Effects of aspirin and other nonsteroidal anti-inflammatory drugs on biofilms and planktonic cells of Candida albicans. Antimicrobial Agents and Chemotherapy, 48(1), 41–47.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Benghezal, M., Adam, E., Lucas, A., Burn, C., Orchard, M. G., Deuschel, C., et al. (2007). Inhibitors of bacterial virulence identified in a surrogate host model. Cellular Microbiology, 9, 1336–1342.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Sandstrom, G., Saeed, A., & Abd, H. (2011). Acanthamoeba-bacteria: A model to study host interaction with human pathogens. Current Drug Targets, 12, 936–941.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Annesley, S. J., & Fisher, P. R. (2009). Dictyostelium discoideum: A model for many reasons. Molecular and Cellular Biochemistry, 329, 73–91.Google Scholar
  73. 73.
    Zhang, Y., Hu, Y., Yang, B., Ma, F., Lu, P., Li, L., et al. (2010). Duckweed (Lemna minor) as a model plant system for the study of human microbial pathogenesis. PLoS ONE, 5, e13527.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Silo-Suh, L., Suh, S. J., Sokol, P. A., & Ohman, D. E. (2002). A simple alfalfa seedling infection model for Pseudomonas aeruginosa strains associated with cystic fibrosis shows AlgT (sigma-22) and RhlR contribute to pathogenesis. Proceedings of the National Academy of Sciences of the United States of America 2002, 99, 15699–15704.Google Scholar
  75. 75.
    Schlaich, N. L. (2011). Arabidopsis thaliana: The model plant to study host-pathogen interactions. Current Drug Targets, 12, 955–966.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Graf, J. (1999). Symbiosis of Aeromonas veronii biovar sobria and Hirudo medicinalis, the medicinal leech: A novel model for digestive tract associations. Infection and Immunity, 67, 1–7.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Laws, T. R., Smith, S. A., Smith, M. P., Harding, S. V., Atkins, T. P., & Titball, R. W. (2005). The nematode Panagrellus redivivus is susceptible to killing by human pathogens at 37 degrees C. FEMS Microbiology Letters, 250, 77–83.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Marsh, E. K., & May, R. C. (2012). Caenorhabditis elegans, a model organism for investigating immunity. Applied and Environment Microbiology, 78, 2075–2081.CrossRefGoogle Scholar
  79. 79.
    Jander, G., Rahme, L. G., & Ausubel, F. M. (2000). Positive correlation between virulence of Pseudomonas aeruginosa mutants in mice and insects. Journal of Bacteriology, 182, 3843–3845.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Kounatidis, I., & Ligoxygakis, P. (2012). Drosophila as a model system to unravel the layers of innate immunity to infection. Open Biology, 2, 120075.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Kanther, M., & Rawls, J. F. (2010). Host-microbe interactions in the developing zebrafish. Current Opinion in Immunology, 22, 10–19.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Cash, H. A., Woods, D. E., McCullough, B., Johanson, W. G., Jr., & Bass, J. A. (1979). A rat model of chronic respiratory infection with Pseudomonas aeruginosa. American Review of Respiratory Disease, 119, 453–459.PubMedPubMedCentralGoogle Scholar
  83. 83.
    Bernier, S. P., Silo-Suh, L., Woods, D. E., Ohman, D. E., & Sokol, P. A. (2003). Comparative analysis of plant and animal models for characterization of Burkholderia cepacia virulence. Infection and Immunity, 71, 5306–5313.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Cheung, A. T., Moss, R. B., Leong, A. B., & Novick, W. J., Jr. (1992). Chronic Pseudomonas aeruginosa endobronchitis in rhesus monkeys: I. Effects of pentoxifylline on neutrophil influx. Journal of Medical Primatology, 21, 357–362.PubMedPubMedCentralGoogle Scholar
  85. 85.
    Starke, J. R., Edwards, M. S., Langston, C., & Baker, C. J. (1987). A mouse model of chronic pulmonary infection with Pseudomonas aeruginosa and Pseudomonas cepacia. Pediatric Research, 22, 698–702.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Thomassen, M. J., Klinger, J. D., Winnie, G. B., Wood, R. E., Burtner, C., Tomashefski, J. F., et al. (1984). Pulmonary cellular response to chronic irritation and chronic Pseudomonas aeruginosa pneumonia in cats. Infection and Immunity, 45, 741–747.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Winnie, G. B., Klinger, J. D., Sherman, J. M., & Thomassen, M. J. (1982). Induction of phagocytic inhibitory activity in cats with chronic Pseudomonas aeruginosa pulmonary infection. Infection and Immunity, 38, 1088–1093.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Pedersen, S. S., Shand, G. H., Hansen, B. L., & Hansen, G. N. (1990). Induction of experimental chronic Pseudomonas aeruginosa lung infection with P. aeruginosa entrapped in alginate microspheres. APMIS, 98, 203–211.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Yang, L., Hengzhuang, W., Wu, H., Damkiaer, S., Jochumsen, N., Song, Z., et al. (2012). Polysaccharides serve as scaffold of biofilms formed by mucoid Pseudomonas aeruginosa. FEMS Immunology and Medical Microbiology, 65, 366–376.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Hengzhuang, W., Wu, H., Ciofu, O., Song, Z., & Hoiby, N. (2011). In vivo pharmacokinetics/pharmacodynamics of colistin and imipenem in Pseudomonas aeruginosa biofilm infection. Antimicrobial Agents and Chemotherapy, 56, 2683–2690.CrossRefGoogle Scholar
  91. 91.
    Yanagihara, K., Ohnishi, Y., Morinaga, Y., Nakamura, S., Kurihara, S., Seki, M., et al. (2008). Efficacy of ME1036 against meticillin-resistant Staphylococcus aureus and vancomycin- insensitive S. aureus in a model of haematogenous pulmonary infection. International Journal of Antimicrobial Agents, 32, 401–404.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Yanagihara, K., Seki, M., Izumikawa, K., Higashiyama, Y., Miyazaki, Y., Hirakata, Y., et al. (2006). Potency of DX-619, a novel des-F(6)-quinolone, in haematogenous murine bronchopneumonia caused by methicillin-resistant and vancomycin-intermediate Staphylococcus aureus. International Journal of Antimicrobial Agents, 28, 212–216.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Clarke, L. L., Grubb, B. R., Gabriel, S. E., Smithies, O., Koller, B. H., & Boucher, R. C. (1992). Defective epithelial chloride transport in a gene-targeted mouse model of cystic fibrosis. Science, 257, 1125–1128.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Keiser, N. W., & Engelhardt, J. F. (2011). New animal models of cystic fibrosis: what are they teaching us? Current Opinion in Pulmonary Medicine, 17, 478–483.PubMedPubMedCentralGoogle Scholar
  95. 95.
    Rogers, C. S., Hao, Y., Rokhlina, T., Samuel, M., Stoltz, D. A., Li, Y., et al. (2008). Production of CFTR-null and CFTR-DeltaF508 heterozygous pigs by adeno-associated virus-mediated gene targeting and somatic cell nuclear transfer. Journal of Clinical Investigation, 118, 1571–1577.Google Scholar
  96. 96.
    Pang, B., Hong, W., West-Barnette, S. L., Kock, N. D., & Swords, W. E. (2008). Diminished ICAM-1 expression and impaired pulmonary clearance of nontypeable Haemophilus influenzae in a mouse model of chronic obstructive pulmonary disease/emphysema. Infection and Immunity, 76, 4959–4967.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Yanagihara, K., Tomono, K., Sawai, T., Hirakata, Y., Kadota, J., Koga, H., et al. (1997). Effect of clarithromycin on lymphocytes in chronic respiratory Pseudomonas aeruginosa infection. American Journal of Respiratory and Critical Care Medicine, 155, 337–342.PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Nagata, T., Mukae, H., Kadota, J., Hayashi, T., Fujii, T., Kuroki, M., et al. (2004). Effect of erythromycin on chronic respiratory infection caused by Pseudomonas aeruginosa with biofilm formation in an experimental murine model. Antimicrobial Agents and Chemotherapy, 48, 2251–2259.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Yanagihara, K., Tomono, K., Sawai, T., Kuroki, M., Kaneko, Y., Ohno, H., et al. (2000). Combination therapy for chronic Pseudomonas aeruginosa respiratory infection associated with biofilm formation. Journal of Antimicrobial Chemotherapy, 46, 69–72.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Anderson, G. G., Palermo, J. J., Schilling, J. D., Roth, R., Heuser, J., & Hultgren, S. J. (2003). Intracellular bacterial biofilm-like pods in urinary tract infections. Science, 301, 105–107.PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Justice, S. S., Hung, C., Theriot, J. A., Fletcher, D. A., Anderson, G. G., Footer, M. J., et al. (2004). Differentiation and developmental pathways of uropathogenic Escherichia coli in urinary tract pathogenesis. Proceedings of the National Academy of Sciences of the United States of America 2004, 101, 1333–1338.CrossRefGoogle Scholar
  102. 102.
    Ozok, H. U., Ekim, O., Saltas, H., Arikok, A. T., Babacan, O., Sagnak, L., et al. (2012). The preventive role of transurethral antibiotic delivery in a rat model. Drug Design, Development and Therapy, 6, 187–194.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Kim, H. W., Ha, U. S., Woo, J. C., Kim, S. J., Yoon, B. I., Lee, S. J., et al. (2012). Preventive effect of selenium on chronic bacterial prostatitis. Journal of Infection and Chemotherapy, 18, 30–34.PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Phan, V., Belas, R., Gilmore, B. F., & Ceri, H. (2008). ZapA, a virulence factor in a rat model of Proteus mirabilis-induced acute and chronic prostatitis. Infection and Immunity, 76, 4859–4864.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Kim, S. H., Ha, U. S., Lee, H. R., Sohn, D. W., Lee, S. J., Kim, H. W., et al. (2011). Do Escherichia coli extract and cranberry exert preventive effects on chronic bacterial prostatitis? Pilot study using an animal model. Journal of Infection and Chemotherapy, 17, 322–326.PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Nickel, J. C., Olson, M., McLean, R. J., Grant, S. K., & Costerton, J. W. (1987). An ecological study of infected urinary stone genesis in an animal model. British Journal of Urology, 59, 21–30.PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Vermeulen, C. W., & Goetz, R. (1954). Experimental urolithiasis. IX. Influence of infection on stone growth in rats. Journal of Urology, 72, 761–769.PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Satoh, M., Munakata, K., Kitoh, K., Takeuchi, H., & Yoshida, O. (1984). A newly designed model for infection-induced bladder stone formation in the rat. Journal of Urology, 132, 1247–1249.PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Clerc, M., Bebear, C., Goursolle, M., & Aparicio, M. (1984). Calculi experimentally obtained in the rat by intrarenal injection of Ureaplasma urealyticum. Annales de Biologie Clinique (Paris), 42, 277–281.Google Scholar
  110. 110.
    Eckmann, L. (2006). Animal models of inflammatory bowel disease: Lessons from enteric infections. Annals of the New York Academy of Sciences, 1072, 28–38.PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Nell, S., Suerbaum, S., & Josenhans, C. (2010). The impact of the microbiota on the pathogenesis of IBD: Lessons from mouse infection models. Nature Reviews Microbiology, 8, 564–577.PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Bohnhoff, M., Miller, C. P., & Martin, W. R. (1964). Resistance of the mouse’s intestinal tract to experimental salmonella infection. II. Factors responsible for its loss following streptomycin treatment. Journal of Experimental Medicine, 120, 817–828.PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Kaiser, P., Diard, M., Stecher, B., & Hardt, W. D. (2012). The streptomycin mouse model for Salmonella diarrhea: functional analysis of the microbiota, the pathogen’s virulence factors, and the host’s mucosal immune response. Immunological Reviews, 245, 56–83.PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Sukupolvi, S., Edelstein, A., Rhen, M., Normark, S. J., & Pfeifer, J. D. (1997). Development of a murine model of chronic Salmonella infection. Infection and Immunity, 65, 838–842.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Monack, D. M., Bouley, D. M., & Falkow, S. (2004). Salmonella typhimurium persists within macrophages in the mesenteric lymph nodes of chronically infected Nramp1+/+ mice and can be reactivated by IFNgamma neutralization. Journal of Experimental Medicine, 199, 231–241.PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Crawford, R. W., Reeve, K. E., & Gunn, J. S. (2010). Flagellated but not hyperfimbriated Salmonella enterica serovar Typhimurium attaches to and forms biofilms on cholesterol-coated surfaces. Journal of Bacteriology, 192, 2981–2990.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Dai, T., Tegos, G. P., Zhiyentayev, T., Mylonakis, E., & Hamblin, M. R. (2010). Photodynamic therapy for methicillin-resistant Staphylococcus aureus infection in a mouse skin abrasion model. Lasers in Surgery and Medicine, 42, 38–44.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Simonetti, O., Cirioni, O., Ghiselli, R., Goteri, G., Scalise, A., Orlando, F., et al. (2008). RNAIII-inhibiting peptide enhances healing of wounds infected with methicillin-resistant Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 52, 2205–2211.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Akiyama, H., Kanzaki, H., Tada, J., & Arata, J. (1996). Staphylococcus aureus infection on cut wounds in the mouse skin: Experimental Staphylococcal botryomycosis. Journal of Dermatological Science, 11, 234–238.PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    Nakagami, G., Sanada, H., Sugama, J., Morohoshi, T., Ikeda, T., & Ohta, Y. (2008). Detection of Pseudomonas aeruginosa quorum sensing signals in an infected ischemic wound: An experimental study in rats. Wound Repair and Regeneration, 16, 30–36.PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    Gurjala, A. N., Geringer, M. R., Seth, A. K., Hong, S. J., Smeltzer, M. S., Galiano, R. D., et al. (2011). Development of a novel, highly quantitative in vivo model for the study of biofilm-impaired cutaneous wound healing. Wound Repair and Regeneration, 19, 400–410.PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Mastropaolo, M. D., Evans, N. P., Byrnes, M. K., Stevens, A. M., Robertson, J. L., & Melville, S. B. (2005). Synergy in polymicrobial infections in a mouse model of type 2 diabetes. Infection and Immunity, 73, 6055–6063.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Durack, D. T., Beeson, P. B., & Petersdorf, R. G. (1973). Experimental bacterial endocarditis. 3. Production and progress of the disease in rabbits. British Journal of Experimental Pathology, 54, 142–151.PubMedPubMedCentralGoogle Scholar
  124. 124.
    Xiong, Y. Q., Willard, J., Yeaman, M. R., Cheung, A. L., & Bayer, A. S. (2006). Regulation of Staphylococcus aureus alpha-toxin gene (hla) expression by agr, sarA, and sae in vitro and in experimental infective endocarditis. Journal of Infectious Diseases, 194, 1267–1275.PubMedCrossRefPubMedCentralGoogle Scholar
  125. 125.
    Veloso, T. R., Amiguet, M., Rousson, V., Giddey, M., Vouillamoz, J., Moreillon, P., et al. (2011). Induction of experimental endocarditis by continuous low-grade bacteremia mimicking spontaneous bacteremia in humans. Infection and Immunity, 79, 2006–2011.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Swords, W. E., Moore, M. L., Godzicki, L., Bukofzer, G., Mitten, M. J., & VonCannon, J. (2004). Sialylation of lipooligosaccharides promotes biofilm formation by nontypeable Haemophilus influenzae. Infection and Immunity, 72, 106–113.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Ehrlich, G. D., Veeh, R., Wang, X., Costerton, J. W., Hayes, J. D., Hu, F. Z., et al. (2002). Mucosal biofilm formation on middle-ear mucosa in the chinchilla model of otitis media. JAMA, 287, 1710–1715.PubMedCrossRefPubMedCentralGoogle Scholar
  128. 128.
    Byrd, M. S., Pang, B., Hong, W., Waligora, E. A., Juneau, R. A., Armbruster, C. E., et al. (2011). Direct evaluation of Pseudomonas aeruginosa biofilm mediators in a chronic infection model. Infection and Immunity, 79, 3087–3095.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Dohar, J. E., Hebda, P. A., Veeh, R., Awad, M., Costerton, J. W., Hayes, J., et al. (2005). Mucosal biofilm formation on middle-ear mucosa in a nonhuman primate model of chronic suppurative otitis media. Laryngoscope, 115, 1469–1472.PubMedCrossRefPubMedCentralGoogle Scholar
  130. 130.
    Chaney, E. J., Nguyen, C. T., & Boppart, S. A. (2011). Novel method for non-invasive induction of a middle-ear biofilm in the rat. Vaccine, 29, 1628–1633.PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Eriksson, P. O., Li, J., Ny, T., & Hellstrom, S. (2006). Spontaneous development of otitis media in plasminogen-deficient mice. International Journal of Medical Microbiology, 296, 501–509.PubMedCrossRefPubMedCentralGoogle Scholar
  132. 132.
    Johansson, P., Kumlien, J., Carlsoo, B., Drettner, B., & Nord, C. E. (1988). Experimental acute sinusitis in rabbits. A bacteriological and histological study. Acta Oto-Laryngologica, 105, 357–366.PubMedCrossRefPubMedCentralGoogle Scholar
  133. 133.
    Abreu, N. A., Nagalingam, N. A., Song, Y., Roediger, F. C., Pletcher, S. D., Goldberg, A. N., et al. (2012). Sinus microbiome diversity depletion and Corynebacterium tuberculostearicum enrichment mediates rhinosinusitis. Science Translational Medicine, 4, 151ra124.PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Ha, K. R., Psaltis, A. J., Tan, L., & Wormald, P. J. (2007). A sheep model for the study of biofilms in rhinosinusitis. American Journal of Rhinology, 21, 339–345.PubMedCrossRefPubMedCentralGoogle Scholar
  135. 135.
    Fitzgerald, R. J., & Keyes, P. H. (1960). Demonstration of the etiologic role of streptococci in experimental caries in the hamster. Journal of the American Dental Association, 61, 9–19.PubMedCrossRefPubMedCentralGoogle Scholar
  136. 136.
    Catalan, M. A., Scott-Anne, K., Klein, M. I., Koo, H., Bowen, W. H., & Melvin, J. E. (2011). Elevated incidence of dental caries in a mouse model of cystic fibrosis. PLoS ONE, 6, e16549.PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Bainbridge, B., Verma, R. K., Eastman, C., Yehia, B., Rivera, M., Moffatt, C., et al. (2010). Role of Porphyromonas gingivalis phosphoserine phosphatase enzyme SerB in inflammation, immune response, and induction of alveolar bone resorption in rats. Infection and Immunity, 78, 4560–4569.PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Lee, S. F., Andrian, E., Rowland, E., & Marquez, I. C. (2009). Immune response and alveolar bone resorption in a mouse model of Treponema denticola infection. Infection and Immunity, 77, 694–698.PubMedCrossRefPubMedCentralGoogle Scholar
  139. 139.
    Settem, R. P., El-Hassan, A. T., Honma, K., Stafford, G. P., & Sharma, A. (2012). Fusobacterium nucleatum and Tannerella forsythia induce synergistic alveolar bone loss in a mouse periodontitis model. Infection and Immunity, 80, 2436–2443.PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Polak, D., Wilensky, A., Shapira, L., Halabi, A., Goldstein, D., Weiss, E. I., et al. (2009). Mouse model of experimental periodontitis induced by Porphyromonas gingivalis/Fusobacterium nucleatum infection: bone loss and host response. Journal of Clinical Periodontology, 36, 406–410.PubMedCrossRefPubMedCentralGoogle Scholar
  141. 141.
    Hasturk, H., Kantarci, A., Goguet-Surmenian, E., Blackwood, A., Andry, C., Serhan, C. N., et al. (2007). Resolvin E1 regulates inflammation at the cellular and tissue level and restores tissue homeostasis in vivo. Journal of Immunology, 179, 7021–7029.CrossRefGoogle Scholar
  142. 142.
    Pouliot, M., Clish, C. B., Petasis, N. A., Van Dyke, T. E., & Serhan, C. N. (2000). Lipoxin A(4) analogues inhibit leukocyte recruitment to Porphyromonas gingivalis: A role for cyclooxygenase-2 and lipoxins in periodontal disease. Biochemistry, 39, 4761–4768.PubMedCrossRefPubMedCentralGoogle Scholar
  143. 143.
    Scheman, L., Janot, M., & Lewin, P. (1941). The production of experimental osteomyelitis: Preliminary report. JAMA, 117, 1525–1529.CrossRefGoogle Scholar
  144. 144.
    Brady, R. A., Leid, J. G., Camper, A. K., Costerton, J. W., & Shirtliff, M. E. (2006). Identification of Staphylococcus aureus proteins recognized by the antibody- mediated immune response to a biofilm infection. Infection and Immunity, 74, 3415–3426.PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Brady, R. A., O’May, G. A., Leid, J. G., Prior, M. L., Costerton, J. W., & Shirtliff, M. E. (2011). Resolution of Staphylococcus aureus biofilm infection using vaccination and antibiotic treatment. Infection and Immunity, 79, 1797–1803.PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Poeppl, W., Tobudic, S., Lingscheid, T., Plasenzotti, R., Kozakowski, N., Lagler, H., et al. (2011). Daptomycin, fosfomycin, or both for treatment of methicillin-resistant Staphylococcus aureus osteomyelitis in an experimental rat model. Antimicrobial Agents and Chemotherapy, 55, 4999–5003.PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Funao, H., Ishii, K., Nagai, S., Sasaki, A., Hoshikawa, T., Aizawa, M., et al. (2012). Establishment of a real-time, quantitative, and reproducible mouse model of Staphylococcus osteomyelitis using bioluminescence imaging. Infection and Immunity, 80, 733–741.PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Rupp, M. E., Ulphani, J. S., Fey, P. D., & Mack, D. (1999). Characterization of Staphylococcus epidermidis polysaccharide intercellular adhesin/hemagglutinin in the pathogenesis of intravascular catheter-associated infection in a rat model. Infection and Immunity, 67, 2656–2659.PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Cirioni, O., Giacometti, A., Ghiselli, R., Dell’Acqua, G., Orlando, F., Mocchegiani, F., et al. (2006). RNAIII-inhibiting peptide significantly reduces bacterial load and enhances the effect of antibiotics in the treatment of central venous catheter-associated Staphylococcus aureus infections. Journal of Infectious Diseases, 193, 180–186.PubMedCrossRefPubMedCentralGoogle Scholar
  150. 150.
    Andes, D., Nett, J., Oschel, P., Albrecht, R., Marchillo, K., & Pitula, A. (2004). Development and characterization of an in vivo central venous catheter Candida albicans biofilm model. Infection and Immunity, 72, 6023–6031.PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    Hall, L. L., DeLopez, O. H., Roberts, A., & Smith, F. A. (1974). A procedure for chronic intravenous catheterization in the rabbit. Laboratory Animal Science, 24, 79–83.Google Scholar
  152. 152.
    Fernandez-Hidalgo, N., Gavalda, J., Almirante, B., Martin, M. T., Onrubia, P. L., Gomis, X., et al. (2010). Evaluation of linezolid, vancomycin, gentamicin and ciprofloxacin in a rabbit model of antibiotic-lock technique for Staphylococcus aureus catheter-related infection. Journal of Antimicrobial Chemotherapy, 65, 525–530.PubMedCrossRefPubMedCentralGoogle Scholar
  153. 153.
    Raad, I., Hachem, R., Tcholakian, R. K., & Sherertz, R. (2002). Efficacy of minocycline and EDTA lock solution in preventing catheter-related bacteremia, septic phlebitis, and endocarditis in rabbits. Antimicrobial Agents and Chemotherapy, 46, 327–332.PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Chauhan, A., Lebeaux, D., Decante, B., Kriegel, I., Escande, M. C., Ghigo, J. M., et al. (2012). A rat model of central venous catheter to study establishment of long-term bacterial biofilm and related acute and chronic infections. PLoS One, 7, e37281.PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    Haraoka, M., Matsumoto, T., Takahashi, K., Kubo, S., Tanaka, M., & Kumazawa, J. (1995). Effect of prednisolone on ascending renal infection due to biofilm disease and lower urinary tract obstruction in rats. Urological Research, 22, 383–387.PubMedCrossRefPubMedCentralGoogle Scholar
  156. 156.
    Cirioni, O., Ghiselli, R., Silvestri, C., Minardi, D., Gabrielli, E., Orlando, F., et al. (2011). Effect of the combination of clarithromycin and amikacin on Pseudomonas aeruginosa biofilm in an animal model of ureteral stent infection. Journal of Antimicrobial Chemotherapy, 66, 1318–1323.PubMedCrossRefPubMedCentralGoogle Scholar
  157. 157.
    Allison, K. R., Brynildsen, M. P., & Collins, J. J. (2011). Metabolite-enabled eradication of bacterial persisters by aminoglycosides. Nature, 473, 216–220.PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Fung, L. C., Mittelman, M. W., Thorner, P. S., & Khoury, A. E. (2003). A novel rabbit model for the evaluation of biomaterial associated urinary tract infection. Canadian Journal of Urology, 10, 2007–2012.PubMedPubMedCentralGoogle Scholar
  159. 159.
    Cadieux, P. A., Chew, B. H., Knudsen, B. E., Dejong, K., Rowe, E., Reid, G., et al. (2006). Triclosan loaded ureteral stents decrease Proteus mirabilis 296 infection in a rabbit urinary tract infection model. Journal of Urology, 175, 2331–2335.PubMedCrossRefPubMedCentralGoogle Scholar
  160. 160.
    Kurosaka, Y., Ishida, Y., Yamamura, E., Takase, H., Otani, T., & Kumon, H. (2001). A non-surgical rat model of foreign body-associated urinary tract infection with Pseudomonas aeruginosa. Microbiology and Immunology, 45, 9–15.PubMedCrossRefPubMedCentralGoogle Scholar
  161. 161.
    Guiton, P. S., Hung, C. S., Hancock, L. E., Caparon, M. G., & Hultgren, S. J. (2010). Enterococcal biofilm formation and virulence in an optimized murine model of foreign body-associated urinary tract infections. Infection and Immunity, 78, 4166–4175.PubMedPubMedCentralCrossRefGoogle Scholar
  162. 162.
    Kadurugamuwa, J. L., Modi, K., Yu, J., Francis, K. P., Purchio, T., & Contag, P. R. (2005). Noninvasive biophotonic imaging for monitoring of catheter-associated urinary tract infections and therapy in mice. Infection and Immunity, 73, 3878–3887.PubMedPubMedCentralCrossRefGoogle Scholar
  163. 163.
    Olson, M. E., Nickel, J. C., Khoury, A. E., Morck, D. W., Cleeland, R., & Costerton, J. W. (1989). Amdinocillin treatment of catheter-associated bacteriuria in rabbits. Journal of Infectious Diseases, 159, 1065–1072.PubMedCrossRefPubMedCentralGoogle Scholar
  164. 164.
    Hachem, R., Reitzel, R., Borne, A., Jiang, Y., Tinkey, P., Uthamanthil, R., et al. (2009). Novel antiseptic urinary catheters for prevention of urinary tract infections: correlation of in vivo and in vitro test results. Antimicrobial Agents and Chemotherapy, 53, 5145–5149.PubMedPubMedCentralCrossRefGoogle Scholar
  165. 165.
    Hazan, Z., Zumeris, J., Jacob, H., Raskin, H., Kratysh, G., Vishnia, M., et al. (2006). Effective prevention of microbial biofilm formation on medical devices by low-energy surface acoustic waves. Antimicrobial Agents and Chemotherapy, 50, 4144–4152.PubMedPubMedCentralCrossRefGoogle Scholar
  166. 166.
    Davis, C. P., Shirtliff, M. E., Scimeca, J. M., Hoskins, S. L., & Warren, M. M. (1995). In vivo reduction of bacterial populations in the urinary tract of catheterized sheep by iontophoresis. Journal of Urology, 154, 1948–1953.PubMedCrossRefPubMedCentralGoogle Scholar
  167. 167.
    Mayberry-Carson, K. J., Tober-Meyer, B., Smith, J. K., Lambe, D. W., Jr., & Costerton, J. W. (1984). Bacterial adherence and glycocalyx formation in osteomyelitis experimentally induced with Staphylococcus aureus. Infection and Immunity, 43, 825–833.PubMedPubMedCentralCrossRefGoogle Scholar
  168. 168.
    Mayberry-Carson, K. J., Tober-Meyer, B., Lambe, D. W., Jr., & Costerton, J. W. (1986). An electron microscopic study of the effect of clindamycin therapy on bacterial adherence and glycocalyx formation in experimental Staphylococcus aureus osteomyelitis. Microbios, 48, 189–206.PubMedPubMedCentralGoogle Scholar
  169. 169.
    Sanzen, L., & Linder, L. (1995). Infection adjacent to titanium and bone cement implants: an experimental study in rabbits. Biomaterials, 16, 1273–1277.PubMedCrossRefPubMedCentralGoogle Scholar
  170. 170.
    Eerenberg, J. P., Patka, P., Haarman, H. J., & Dwars, B. J. (1994). A new model for posttraumatic osteomyelitis in rabbits. Journal of Investigative Surgery, 7, 453–465.PubMedCrossRefPubMedCentralGoogle Scholar
  171. 171.
    Del Pozo, J. L., Rouse, M. S., Euba, G., Kang, C. I., Mandrekar, J. N., Steckelberg, J. M., et al. (2009). The electricidal effect is active in an experimental model of Staphylococcus epidermidis chronic foreign body osteomyelitis. Antimicrobial Agents and Chemotherapy, 53, 4064–4068.PubMedPubMedCentralCrossRefGoogle Scholar
  172. 172.
    Evans, R. P., Nelson, C. L., & Harrison, B. H. (1993). The effect of wound environment on the incidence of acute osteomyelitis. Clinical Orthopaedics and Related Research, 289–297.Google Scholar
  173. 173.
    Lucke, M., Schmidmaier, G., Sadoni, S., Wildemann, B., Schiller, R., Haas, N. P., et al. (2003). Gentamicin coating of metallic implants reduces implant-related osteomyelitis in rats. Bone, 32, 521–531.PubMedCrossRefPubMedCentralGoogle Scholar
  174. 174.
    Lucke, M., Wildemann, B., Sadoni, S., Surke, C., Schiller, R., Stemberger, A., et al. (2005). Systemic versus local application of gentamicin in prophylaxis of implant-related osteomyelitis in a rat model. Bone, 36, 770–778.PubMedCrossRefPubMedCentralGoogle Scholar
  175. 175.
    Prabhakara, R., Harro, J. M., Leid, J. G., Keegan, A. D., Prior, M. L., & Shirtliff, M. E. (2011). Suppression of the inflammatory immune response prevents the development of chronic biofilm infection due to methicillin-resistant Staphylococcus aureus. Infection and Immunity, 79, 5010–5018.PubMedPubMedCentralCrossRefGoogle Scholar
  176. 176.
    Li, D., Gromov, K., Soballe, K., Puzas, J. E., O’Keefe, R. J., Awad, H., et al. (2008). Quantitative mouse model of implant-associated osteomyelitis and the kinetics of microbial growth, osteolysis, and humoral immunity. Journal of Orthopaedic Research, 26, 96–105.PubMedPubMedCentralCrossRefGoogle Scholar
  177. 177.
    Fitzgerald, R. H., Jr. (1983). Experimental osteomyelitis: description of a canine model and the role of depot administration of antibiotics in the prevention and treatment of sepsis. Journal of Bone and Joint Surgery. American Volume, 65, 371–380.CrossRefGoogle Scholar
  178. 178.
    Petty, W., Spanier, S., Shuster, J. J., & Silverthorne, C. (1985). The influence of skeletal implants on incidence of infection. Experiments in a canine model. Journal of Bone and Joint Surgery. American Volume, 67, 1236–1244.CrossRefGoogle Scholar
  179. 179.
    Philipov, J. P., Pascalev, M. D., Aminkov, B. Y., & Grosev, C. D. (1995). Changes in serum carboxyterminal telopeptide of type I collagen in an experimental model of canine osteomyelitis. Calcified Tissue International, 57, 152–154.PubMedCrossRefPubMedCentralGoogle Scholar
  180. 180.
    Williams, D. L., Haymond, B. S., Woodbury, K. L., Beck, J. P., Moore, D. E., Epperson, R. T., et al. (2012). Experimental model of biofilm implant- related osteomyelitis to test combination biomaterials using biofilms as initial inocula. Journal of Biomedical Materials Research Part A, 100, 1888–1900.PubMedPubMedCentralCrossRefGoogle Scholar
  181. 181.
    Schurman, D. J., Trindade, C., Hirshman, H. P., Moser, K., Kajiyama, G., & Stevens, P. (1978). Antibiotic-acrylic bone cement composites. Studies of gentamicin and Palacos. Journal of Bone and Joint Surgery. American Volume, 60, 978–984.CrossRefGoogle Scholar
  182. 182.
    Blomgren, G., & Lindgren, U. (1981). Late hematogenous infection in total joint replacement: Studies of gentamicin and bone cement in the rabbit. Clinical Orthopaedics and Related Research, 244–248.Google Scholar
  183. 183.
    Southwood, R. T., Rice, J. L., McDonald, P. J., Hakendorf, P. H., & Rozenbilds, M. A. (1985). Infection in experimental hip arthroplasties. Journal of Bone and Joint Surgery. British Volume, 67, 229–231.CrossRefGoogle Scholar
  184. 184.
    Bernthal, N. M., Stavrakis, A. I., Billi, F., Cho, J. S., Kremen, T. J., Simon, S. I., et al. (2010). A mouse model of post-arthroplasty Staphylococcus aureus joint infection to evaluate in vivo the efficacy of antimicrobial implant coatings. PLoS One, 5, e12580.PubMedPubMedCentralCrossRefGoogle Scholar
  185. 185.
    Berra, L., Curto, F., Li Bassi, G., Laquerriere, P., Baccarelli, A., & Kolobow, T. (2006). Antibacterial-coated tracheal tubes cleaned with the Mucus Shaver: A novel method to retain long-term bactericidal activity of coated tracheal tubes. Intensive Care Medicine, 32, 888–893.PubMedCrossRefPubMedCentralGoogle Scholar
  186. 186.
    Fernandez-Barat, L., Li Bassi, G., Ferrer, M., Bosch, A., Calvo, M., Vila, J., et al. (2012). Direct analysis of bacterial viability in endotracheal tube biofilm from a pig model of methicillin-resistant Staphylococcus aureus pneumonia following antimicrobial therapy. FEMS Immunology and Medical Microbiology, 65, 309–317.PubMedCrossRefPubMedCentralGoogle Scholar
  187. 187.
    Olson, M. E., Harmon, B. G., & Kollef, M. H. (2002). Silver-coated endotracheal tubes associated with reduced bacterial burden in the lungs of mechanically ventilated dogs. Chest, 121, 863–870.PubMedCrossRefPubMedCentralGoogle Scholar
  188. 188.
    Tollefson, D. F., Bandyk, D. F., Kaebnick, H. W., Seabrook, G. R., & Towne, J. B. (1987). Surface biofilm disruption. Enhanced recovery of microorganisms from vascular prostheses. Archives of Surgery, 122, 38–43.PubMedCrossRefPubMedCentralGoogle Scholar
  189. 189.
    Bergamini, T. M., Bandyk, D. F., Govostis, D., Kaebnick, H. W., & Towne, J. B. (1988). Infection of vascular prostheses caused by bacterial biofilms. Journal of Vascular Surgery, 7, 21–30.PubMedCrossRefPubMedCentralGoogle Scholar
  190. 190.
    Farooq, M., Freischlag, J., Kelly, H., Seabrook, G., Cambria, R., & Towne, J. (1999). Gelatin-sealed polyester resists Staphylococcus epidermidis biofilm infection. Journal of Surgical Research, 87, 57–61.PubMedCrossRefPubMedCentralGoogle Scholar
  191. 191.
    Aboshady, I., Raad, I., Shah, A. S., Vela, D., Dvorak, T., Safi, H. J., et al. (2012). A pilot study of a triple antimicrobial-bonded Dacron graft for the prevention of aortic graft infection. Journal of Vascular Surgery, 56, 794–801.PubMedCrossRefPubMedCentralGoogle Scholar
  192. 192.
    Jacombs, A., Allan, J., Hu, H., Valente, P. M., Wessels, W. L., Deva, A. K., et al. (2012). Prevention of biofilm-induced capsular contracture with antibiotic-impregnated mesh in a porcine model. Aesthetic Surgery Journal, 32, 886–891.PubMedCrossRefPubMedCentralGoogle Scholar
  193. 193.
    Tamboto, H., Vickery, K., & Deva, A. K. (2010). Subclinical (biofilm) infection causes capsular contracture in a porcine model following augmentation mammaplasty. Plastic and Reconstructive Surgery, 126, 835–842.PubMedCrossRefPubMedCentralGoogle Scholar
  194. 194.
    Arad, E., Navon-Venezia, S., Gur, E., Kuzmenko, B., Glick, R., Frenkiel-Krispin, D., et al. (2013). Novel rat model of Methicillin- Resistant Staphylococcus aureus infected silicone breast-implants: A Study of biofilm pathogenesis. Plastic and Reconstructive Surgery, 131, 205–214.PubMedCrossRefPubMedCentralGoogle Scholar
  195. 195.
    Sun, Y., Chandra, J., Mukherjee, P., Szczotka-Flynn, L., Ghannoum, M. A., & Pearlman, E. (2010). A murine model of contact lens-associated Fusarium keratitis. Investigative Ophthalmology & Visual Science, 51, 1511–1516.CrossRefGoogle Scholar
  196. 196.
    Freire, M. O., Sedghizadeh, P. P., Schaudinn, C., Gorur, A., Downey, J. S., Choi, J. H., et al. (2011). Development of an animal model for Aggregatibacter actinomycetemcomitans biofilm-mediated oral osteolytic infection: a preliminary study. Journal of Periodontology, 82, 778–789.PubMedPubMedCentralCrossRefGoogle Scholar
  197. 197.
    Rimondini, L., Fare, S., Brambilla, E., Felloni, A., Consonni, C., Brossa, F., et al. (1997). The effect of surface roughness on early in vivo plaque colonization on titanium. Journal of Periodontology, 68, 556–562.PubMedCrossRefPubMedCentralGoogle Scholar
  198. 198.
    Coenye, T., & Nelis, H. J. (2010). In vitro and in vivo model systems to study microbial biofilm formation. Journal of Microbiological Methods, 83, 89–105.PubMedCrossRefPubMedCentralGoogle Scholar
  199. 199.
    Ensing, G. T., Roeder, B. L., Nelson, J. L., van Horn, J. R., van der Mei, H. C., Busscher, H. J., et al. (2005). Effect of pulsed ultrasound in combination with gentamicin on bacterial viability in biofilms on bone cements in vivo. Journal of Applied Microbiology, 99, 443–448.PubMedPubMedCentralCrossRefGoogle Scholar
  200. 200.
    Hansen, L. K., Brown, M., Johnson, D., Palme, D. F., II, Love, C., & Darouiche, R. (2009). I n vivo model of human pathogen infection and demonstration of efficacy by an antimicrobial pouch for pacing devices. Pacing and Clinical Electrophysiology, 32, 898–907.PubMedCrossRefPubMedCentralGoogle Scholar
  201. 201.
    Illingworth, B. L., Tweden, K., Schroeder, R. F., & Cameron, J. D. (1998). In vivo efficacy of silver-coated (Silzone) infection-resistant polyester fabric against a biofilm-producing bacteria, Staphylococcus epidermidis. Journal of Heart Valve Disease, 7, 524–530.PubMedPubMedCentralGoogle Scholar
  202. 202.
    Illingworth, B., Bianco, R. W., & Weisberg, S. (2000). In vivo efficacy of silver- coated fabric against Staphylococcus epidermidis. Journal of Heart Valve Disease, 9, 135–141.PubMedPubMedCentralGoogle Scholar
  203. 203.
    Darouiche, R. O., Meade, R., Mansouri, M., & Raad, I. I. (1998). In vivo efficacy of antimicrobial-coated fabric from prosthetic heart valve sewing rings. Journal of Heart Valve Disease, 7, 639–646.PubMedPubMedCentralGoogle Scholar
  204. 204.
    Nakamoto, D. A., Rosenfield, M. L., Haaga, J. R., Merritt, K., Sachs, P. B., Hutton, M. C., et al. (1994). Young investigator award. In vivo treatment of infected prosthetic graft material with urokinase: An animal model. Journal of Vascular and Interventional Radiology, 5, 549–552.PubMedCrossRefPubMedCentralGoogle Scholar
  205. 205.
    Garrison, J. R., Jr., Henke, P. K., Smith, K. R., Brittian, K. R., Lam, T. M., Peyton, J. C., et al. (1997). In vitro and in vivo effects of rifampin on Staphylococcus epidermidis graft infections. ASAIO Journal, 43, 8–12.PubMedCrossRefPubMedCentralGoogle Scholar
  206. 206.
    Chilukuri, D. M., & Shah, J. C. (2005). Local delivery of vancomycin for the prophylaxis of prosthetic device-related infections. Pharmaceutical Research, 22, 563–572.PubMedCrossRefPubMedCentralGoogle Scholar
  207. 207.
    Rediske, A. M., Roeder, B. L., Nelson, J. L., Robison, R. L., Schaalje, G. B., Robison, R. A., et al. (2000). Pulsed ultrasound enhances the killing of Escherichia coli biofilms by aminoglycoside antibiotics in vivo. Antimicrobial Agents and Chemotherapy, 44, 771–772.PubMedPubMedCentralCrossRefGoogle Scholar
  208. 208.
    Engelsman, A. F., van Dam, G. M., van der Mei, H. C., Busscher, H. J., & Ploeg, R. J. (2010). In vivo evaluation of bacterial infection involving morphologically different surgical meshes. Annals of Surgery, 251, 133–137.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringNational Institute of Technology (KOSEN)Shiroko-cho, SuzukaJapan
  2. 2.Department of Electrical and Computer EngineeringClarkson UniversityPotsdamUSA

Personalised recommendations