Skip to main content

Biofilms in Nature and Artificial Materials

  • Chapter
  • First Online:
Formation and Control of Biofilm in Various Environments

Abstract

This chapter presents various substrates and their capabilities for biofilm formation, taking into account influential factors like van der Waals forces, hydrophobicity, hydrophilicity, the presence of polar side chains on polymers, and more. It includes information about natural substrates such as roots of plants and rocks (which are slimy in rivers when covered with biofilm). Also the artificial substrates of metals, ceramics, and polymers are described in terms of their interaction with bacteria and the formation/control of biofilms. Studies have been carried out with ceramic materials used in dentistry. The results showed that the greater the surface roughness in crowns, etc. the greater the accumulation of biofilm (called plaque in its hardened form). As for metals, silver has an antibacterial action that depends on the silver ion. It interrupts the ability of a bacterial cell to form chemical bonds that are necessary for survival.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dismukes, G. C., Klimov, V., Baranov, S., Kozlov, Y. N., DasGupta, J., & Tyryshkin, A. (2001). The origin of atmospheric oxygen on Earth: The innovation of oxygenic photosynthesis. Proceedings of the National Academy of Sciences, 98, 2170–2175.

    Article  CAS  Google Scholar 

  2. Kasting, J. F., & Siefert, J. L. (2002). Life and the evolution of Earth’s atmosphere. Science, 296, 1066–1068.

    Article  CAS  Google Scholar 

  3. Altermann, W., Kazmierczak, J., Oren, A., & Wright, D. (2006). Cyanobacterial calcification and its rock building potential during 3.5 billion years of Earth history. Geobiology, 4, 147–166.

    Article  CAS  Google Scholar 

  4. Stal, L. J. (2012). Cyanobacterial mats and stromatolites. In Ecology of cyanobacteria II (pp. 65–125). Berlin: Springer.

    Chapter  Google Scholar 

  5. Krumbein, W. E., Cohen, Y., Shilo, M. Solar, & Lake, S. (1977). Stromatolitic cyanobacterial mats 1. Limnology and Oceanography, 22, 635–656.

    Article  CAS  Google Scholar 

  6. Dupraz, C., & Visscher, P. T. (2005). Microbial lithification in marine stromatolites and hypersaline mats. Trends in Microbiology, 13, 429–438.

    Article  CAS  Google Scholar 

  7. Reid, R. P., Visscher, P. T., Decho, A. W., Stolz, J. F., Bebout, B., Dupraz, C., et al. (2000). The role of microbes in accretion, lamination and early lithification of modern marine stromatolites. Nature, 406, 989.

    Article  CAS  Google Scholar 

  8. Reid, P., Dupraz, C., Visscher, P., & Sumner, D. (2003). Microbial processes forming marine stromatolites. In Fossil and recent biofilms (pp. 103–118). Dordrecht: Springer.

    Google Scholar 

  9. Seilacher, A. (2008). Biomats, biofilms, and bioglue as preservational agents for arthropod trackways. Palaeogeography, Palaeoclimatology, Palaeoecology, 270, 252–257.

    Article  Google Scholar 

  10. Krumbein, W. E., Brehm, U., Gerdes, G., Gorbushina, A. A., Levit, G., & Palinska, K. A. (2003). Biofilm, biodictyon, biomat microbialites, oolites, stromatolites geophysiology, global mechanism, parahistology. In Fossil and recent biofilms (pp. 1–27). Dordrecht: Springer.

    Google Scholar 

  11. Krumbein, W. E., Paterson, D. M., & Zavarzin, G. A. (2013). Fossil and recent biofilms: A natural history of life on Earth. Netherlands: Springer Science & Business Media. 9401701938.

    Google Scholar 

  12. Chrencik, B., & Marsh, T. (2012). Contributions of methanogenic Archaebacteria in community-driven anaerobic chromate reduction by Yellowstone National Park hot spring microorganisms. In Microbes in: Applied research: current advances and challenges (pp. 60–64). World Scientific.

    Google Scholar 

  13. Wagner, I. D., & Wiegel, J. (2008). Diversity of thermophilic anaerobes. Annals of the New York Academy of Sciences, 1125, 1–43.

    Article  CAS  Google Scholar 

  14. Inagaki, F., Motomura, Y., Doi, K., Taguchi, S., Izawa, E., Lowe, D. R., et al. (2001). Silicified microbial community at steep cone hot spring, Yellowstone National Park. Microbes and Environments, 16, 125–130.

    Article  Google Scholar 

  15. Smith, W. F., Hashemi, J., & Presuel-Moreno, F. (2006). Foundations of materials science and engineering. Mcgraw-Hill Publishing. 0071256903.

    Google Scholar 

  16. Llorente, I., Fajardo, S., & Bastidas, J. (2014). Applications of electrokinetic phenomena in materials science. Journal of Solid State Electrochemistry, 18, 293–307.

    Article  CAS  Google Scholar 

  17. Sprycha, R. (1989). Electrical double layer at alumina/electrolyte interface: I. Surface charge and zeta potential. Journal of Colloid and Interface Science, 127, 1–11.

    Article  CAS  Google Scholar 

  18. Parsons, R. (1990). The electrical double layer: Recent experimental and theoretical developments. Chemical Reviews, 90, 813–826.

    Article  CAS  Google Scholar 

  19. Garrett, T. R., Bhakoo, M., & Zhang, Z. (2008). Bacterial adhesion and biofilms on surfaces. Progress in Natural Science, 18, 1049–1056.

    Article  CAS  Google Scholar 

  20. Rijnaarts, H. H., Norde, W., Lyklema, J., & Zehnder, A. J. (1999). DLVO and steric contributions to bacterial deposition in media of different ionic strengths. Colloids and Surfaces B: Biointerfaces, 14, 179–195.

    Article  CAS  Google Scholar 

  21. Birdi, K. (1979). Adherence of bacteria to solid surfaces and the surface forces. Journal of Dentistry, 7, 230–234.

    Article  CAS  Google Scholar 

  22. Alexander, J. W. (2009). History of the medical use of silver. Surgical Infections, 10(3), 289–292.

    Article  Google Scholar 

  23. Pearson Scott Foresman. File: Bandage (PSF) png. This work is in the public domain. Retrieved September 8, 2008 from https://commons.wikimedia.org/wiki/File:Bandage_(PSF).png.

  24. Bouadma, L., Wolff, M., & Lucet, J.-C. (2012). Ventilator- associated pneumonia and its prevention. Current Opinion in Infectious Diseases25(4), 395–404. https://doi.org/10.1097/qco.0b013e328355a835.

    Article  Google Scholar 

  25. Lederer, J. W., Jarvis, W. R., Thomas, L., & Ritter, J. (2014). Multicenter cohort study to assess the impact of a silver-alloy and hydrogel- coated urinary catheter on symptomatic catheter-associated urinary tract infections. Journal of Wound, Ostomy and Continence Nursing, 41(5), 473–480.

    Article  Google Scholar 

  26. Barry, D. M., & McGrath, P. B. (2016). Rotation disk process to assess the influence of metals and voltage on the growth of biofilm. Materials, 9(7), 568. https://doi.org/10.3390/ma9070568.

    Article  Google Scholar 

  27. Akhavan, O., & Ghaderi, E. (2009). Enhancement of antibacterial properties of Ag nanorods by electric field. Science and Technology of Advanced Materials, 10(1). https://doi.org/10.1088/1468-6996/10/1/015003.

    Article  Google Scholar 

  28. Xiu, Z.-M., Zhang, Q. B., Puppala, H. L., Colvin, V. L., & Alvarez, P. J. (2012). Negligible particle-specific antibacterial activity of silver nanoparticles. Nano Letters12(8), 4271–4275. https://doi.org/10.1021/nl301934w.

    Article  CAS  Google Scholar 

  29. Gugala, N., Lemire, J., Chatfield-Reed, K., Yan, Y., Chua, G., & Turner, R. J. (2018). Using a chemical genetic screen to enhance our understanding of the antibacterial properties of silver. Genes, 9(7), 344. https://doi.org/10.3390/genes9070344.

    Article  CAS  PubMed Central  Google Scholar 

  30. Dollwet, H. H. A., & Sorenson, J. R. J. (1985). Historic uses of copper compounds in medicine. Trace Elements in Medicine, 2, 80–87.

    Google Scholar 

  31. Kuhn, P. J. (1983). Doorknobs: A source of nosocomial infection? Copper Development Association, New York, NY. http://www.copperinfo.co.uk/antimicrobial/downloads/kuhn-doorknob.pdf.

  32. Espirito Santo, C., et al. (2011). Bacterial killing by dry metallic copper surfaces. Applied and Environment Microbiology, 77, 794–802.

    Article  Google Scholar 

  33. Espirito Santo, C., Taudte, N., Nies, D. H., & Grass, G. (2008). Contribution of copper ion resistance to survival of Escherichia coli on metallic copper surfaces. Applied and Environment Microbiology, 74, 977–986.

    Article  Google Scholar 

  34. Marais, F., Mehtar, S., & Chalkley, L. (2010). Antimicrobial efficacy of copper touch surfaces in reducing environmental bioburden in a South African community healthcare facility. Journal of Hospital Infection, 74, 80–82.

    Article  CAS  Google Scholar 

  35. Parra, A., Toro, M., Riocardo, J., Navarrete, P., Troncoso, M., Figueroa, G., et al. (2018). Antimicrobial effect of copper surfaces on bacteria isolated from poultry meat. Brazilian Journal of Microbiology, 49(1), 113–118.

    Article  CAS  Google Scholar 

  36. Pasquet, J., Chevalier, Y., Pelletier, J., Couval, E., Bouvier, D., & Bolzinger, M.-A. (2014, September, 5) The contribution of zinc ions to the antimicrobial activity of zinc oxide. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 457, 263–274.

    Google Scholar 

  37. Xie, Y., He, Y., Irwin, P. L., Jin, T., & Shi, X. (2011). Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni. Applied and Environmental Microbiology, 77(7), 2325–2331.

    Article  CAS  Google Scholar 

  38. Tayel, A., El-Tras, W. F., Moussa, S., El-Baz, A. F. Mahrous, H., Salem, M. F., & Brimer, L. (2011). Antibacterial action of zinc oxide particles against food-borne pathogens. Journal of Food Safety. https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1745-4565.2010.00287.x.

  39. Jang, Y., Choi, W. T., Johnson, C. T., García, A. J., Singh, P. M., Breedveld, V., Hess, D. W., & Champion, J. A. (2018). Inhibition of bacterial adhesion on nanotextured stainless steel 316L by electrochemical etching. ACS Biomaterials Science & Engineering4(1), 90–97. https://doi.org/10.1021/acsbiomaterials.7b00544.

    Article  Google Scholar 

  40. Pratt, F. (a gift from them). File: Spherical Hanging Ornament, 1575–1585.jpg. This work is in the public domain. Date: between 1575 and 1585. https://commons.wikimedia.org/wiki/File:Spherical_Hanging_Ornament,_1575-1585.jpg.

  41. Waprap. File: Aluminum Nitride.jpg. This work is in the public domain. Retrieved December 22, 2005 from https://commons.wikimedia.org/wiki/File:Aluminium_Nitride.jpg.

  42. Karg, S. (2006). File: Silicon carbide chunk.jpg. License: Creative Commons Attribution 2.5 Generic. Retrieved May 28, 2006 from https://commons.wikimedia.org/wiki/File:Silicon_carbide_chunk.jpg.

  43. Zimbres, E. (2005). File: Corindon azulEZ.jpg. License: Creative Commons Attribution-Share Alike 2.0 Brazil. https://commons.wikimedia.org/wiki/File:Corindon_azulEZ.jpg.

  44. Kim, K. H., Loch, C., Waddell, N., Tompkins, G., & Schwass, D. (2017). Surface characteristics and biofilm development on selected dental ceramic materials. International Journal of Dentistry. https://doi.org/10.1155/2017/7627945. Article ID: 7627945.

    Article  CAS  Google Scholar 

  45. Rashid, H. (2014). The effect of surface roughness on ceramics used in dentistry: A review of the literature. European Journal of Dentistry, 8(4), 571–579. https://doi.org/10.4103/1305-7456.143646.

    Article  Google Scholar 

  46. Bremer, F., Grade, S., Kohorst, P., & Stiech, M. (2011). In vivo biofilm formation on different dental ceramics. Quintessence International, 42(7), 574.

    Google Scholar 

  47. Sorrentino, R., Cochis, A., Azzimonti, B., Caravaca, C., Chevalier, J., Kuntz, M., Porporati, A., Streicher, R., & Rimondini, L. (2018). Reduced bacterial adhesion on ceramics used for arthroplasty applications. Journal of the European Ceramic Society, 38(3), 963–970.

    Google Scholar 

  48. Dong, H., Mukinay, T., Li, M. et al. (2017). Improving tribological and anti-bacterial properties of titanium external fixation pins through surface ceramic conversion. Journal of Materials Science. Materials in Medicine, 28(5). https://doi.org/10.1007/s10856-016-5816-0.

  49. Jennison, T., McNally, M., Pandit, H., et al. (2014). Review-prevention of infection in external fixation pin sites. Acta Materialia, 10, 595–603.

    CAS  Google Scholar 

  50. Visai, L. De, Nardo, L., Punta, C., Melone, L., Cigada, A., Imbriani, M., et al. (2011). Titanium oxide antibacterial surfaces in biomedical devices. International Journal of Artificial Organs, 34, 929–946.

    Article  CAS  Google Scholar 

  51. Kirmanidon, Y., et al. (2016). New Ti-alloys and surface modifications to improve the mechanical properties and the biological response to orthopedic and dental implants: A review. BioMed Research International, 2016. https://doi.org/10.1155/2016/2908570. Article ID 2908570.

    Article  Google Scholar 

  52. Simões, M., Simões, L. C., & Vieira, M. J. (2010). A review of current and emergent biofilm control strategies. LWT-Food Science and Technology, 43, 573–583.

    Article  Google Scholar 

  53. Lobelle, D., & Cunliffe, M. (2011). Early microbial biofilm formation on marine plastic debris. Marine Pollution Bulletin, 62, 197–200.

    Article  CAS  Google Scholar 

  54. Karunakaran, E., Mukherjee, J., Ramalingam, B., & Biggs, C. A. (2011). “Biofilmology”: a multidisciplinary review of the study of microbial biofilms. Applied Microbiology and Biotechnology, 90, 1869–1881.

    Article  CAS  Google Scholar 

  55. Lewandowski, Z., & Beyenal, H. (2014). Fundamentals of biofilm research (2nd ed., p. 642). Boca Raton: CRC Press. 978-1-4665-5959-2.

    Google Scholar 

  56. Stratakis, E., Mateescu, A., Barberoglou, M., Vamvakaki, M., Fotakis, C., & Anastasiadis, S. H. (2010). From superhydrophobicity and water repellency to superhydrophilicity: Smart polymer-functionalized surfaces. Chemical Communications, 46, 4136–4138.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dana M. Barry .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kanematsu, H., Barry, D.M. (2020). Biofilms in Nature and Artificial Materials. In: Formation and Control of Biofilm in Various Environments. Springer, Singapore. https://doi.org/10.1007/978-981-15-2240-6_4

Download citation

Publish with us

Policies and ethics