Animate Substrata and Biofilms



Biofilms form on natural animate substrata. For substrata discussed in this chapter, we selected plants’ surfaces and the tissues inside of human bodies. Biofilms are a result of bacterial activity. First bacteria attach to a surface (at an interface), aggregate, and then increase their number to a certain threshold value. At this point they excrete extracellular polymeric substances to form biofilms. The phenomenon is brought about by quorum sensing, a sort of signal transmission process. This process is similar to that of biofilms in other environments. With an understanding of the proposed mechanisms and phenomenon, one has a chance to utilize the benefits of biofilms and to control their negative effects. In this chapter, biofilms are described for an animate natural environment.


  1. 1.
    Lear, G., & Lewis, G. (2012). Microbial biofilms. Caister Academic Press.Google Scholar
  2. 2.
    Bais, H. P., Fall, R., & Vivanco, J. M. (2004). Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiology, 134(1), 307–319. Scholar
  3. 3.
    Hitner, L. (1904). Uber neuer Erfahrungen und Probleme auf dem Gebiet der Bodenbakteriologie unter besondere Berucksichtingung der Gründungüng und Brache. Arbeiten der Deustchen Landwirtschaftsgesellesschaft, 98, 59–78.Google Scholar
  4. 4.
    Hartmann, A., Rothballer, M., & Schmid, M. (2008). Lorenz Hiltner, a pioneer in rhizosphere microbial ecology and soil bacteriology research. Plant and Soil, 312(1–2), 7–14.CrossRefGoogle Scholar
  5. 5.
    Kidd, E., & Fejerskov, O. (2004). What constitutes dental caries? Histopathology of carious enamel and dentin related to the action of cariogenic biofilms. Journal of Dental Research, 83(1_suppl), 35–38.Google Scholar
  6. 6.
    Marsh, P. D. (2010). Microbiology of dental plaque biofilms and their role in oral health and caries. Dental Clinics, 54(3), 441–454.PubMedGoogle Scholar
  7. 7.
    Duarte, S., Rosalen, P. L., Hayacibara, M. F., Cury, J. A., Bowen, W. H., Marquis, R., et al. (2006). The influence of a novel propolis on mutans streptococci biofilms and caries development in rats. Archives of Oral Biology, 51(1), 15–22.PubMedCrossRefGoogle Scholar
  8. 8.
    Hodson, J. J. (1955). A histopathological study of the bacterial plaque in relation to the destruction of enamel, dentine and bone with special reference to dental caries. Proceedings of the Royal Society of Medicine, 48, 641–652.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Boyde, A., & Lester, K. S. (1968). A method of preparing bacterial plaque lining carious cavities for examination by scanning electron microscopy. Archives of Oral Biology, 13, 1413–1419.Google Scholar
  10. 10.
    Theilade, E., & Theilade, J. (1970). Bacteriology and ultrastructural studies of developing dental plaque. In W. McHugh (Ed.), Denal plaque (pp. 27–40). Dundee: Thomson & Co.Google Scholar
  11. 11.
    Listgarten, M. A., Mayo, H. E., & Tremblay, R. (1975). Development of dental plaque on epoxy resin crowns in man: A light and electron microscopic study. Journal of Periodontology, 46, 10–26.PubMedCrossRefGoogle Scholar
  12. 12.
    Paju, S., & Scannapieco, F. A. (2007). Oral biofilms, periodontitis, and pulmonary infections. Oral Diseases, 13(6), 508–512.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Offenbacher, S., Barros, S. P., Singer, R. E., Moss, K., Williams, R. C., & Beck, J. D. (2007). Periodontal disease at the biofilm–gingival interface. Journal of Periodontology, 78(10), 1911–1925.PubMedCrossRefGoogle Scholar
  14. 14.
    Noiri, Y., Ehara, A., Kawahara, T., Takemura, N., & Ebisu, S. (2002). Participation of bacterial biofilms in refractory and chronic periapical periodontitis. Journal of Endodontics, 28(10), 679–683.PubMedCrossRefGoogle Scholar
  15. 15.
    Ricucci, D., & Siqueira, J. F., Jr. (2010). Biofilms and apical periodontitis: Study of prevalence and association with clinical and histopathologic findings. Journal of Endodontics, 36(8), 1277–1288.PubMedCrossRefGoogle Scholar
  16. 16.
    Schaudinn, C., Gorur, A., Keller, D., Sedghizadeh, P. P., & Costerton, J. W. (2009). Periodontitis: an archetypical biofilm disease. The Journal of the American Dental Association, 140(8), 978–986.PubMedCrossRefGoogle Scholar
  17. 17.
    Hajishengallis, G., Liang, S., Payne, M. A., Hashim, A., Jotwani, R., Eskan, M. A., et al. (2011). Low-abundance biofilm species orchestrates inflammatory periodontal disease through the commensal microbiota and complement. Cell Host & Microbe, 10(5), 497–506.CrossRefGoogle Scholar
  18. 18.
    Herrera, D., Alonso, B., León, R., Roldán, S., & Sanz, M. (2008). Antimicrobial therapy in periodontitis: The use of systemic antimicrobials against the subgingival biofilm. Journal of Clinical Periodontology, 35, 45–66.PubMedCrossRefGoogle Scholar
  19. 19.
    Chen, C. (2001). Periodontitis as a biofilm infection. Journal of the California Dental Association, 29(5), 362–369.PubMedGoogle Scholar
  20. 20.
    Haffajee, A. D., & Socransky, S. S. (2000). Introduction to microbial aspects of periodontal biofilm communities, development and treatment. Periodontology, 42(1), 7–12.CrossRefGoogle Scholar
  21. 21.
    Schlafer, S., Riep, B., Griffen, A. L., Petrich, A., Hübner, J., Berning, M., et al. (2010). Filifactor alocis-involvement in periodontal biofilms. BMC Microbiology, 10(1), 66.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Theilade, J. (1977). Development of bacterial plaque in the oral cavity. Journal of Clinical Periodontology, 4(5), 1–12.PubMedCrossRefGoogle Scholar
  23. 23.
    Zijnge, V., van Leeuwen, M. B. M., Degener, J. E., Abbas, F., Thurnheer, T., Gmür, R., & Harmsen, H. J. M. (2010). Oral biofilm architecture on natural teeth. PloS ONE, 5(2), e9321.Google Scholar
  24. 24.
    Peciuliene, V., Reynaud, A. H., Balciuniene, I., & Haapasalo, M. (2001). Isolation of yeasts and enteric bacteria in root filled teeth with chronic apical periodontitis. International Endodontic Journal, 34(6), 429–434.PubMedCrossRefGoogle Scholar
  25. 25.
    Rosan, B., & Lamont, R. J. (2000). Dental plaque formation. Microbes and Infection, 2(13), 1599–1607.PubMedCrossRefGoogle Scholar
  26. 26.
    Aas, J. A., Griffen, A. L., Dardis, S. R., Lee, A. M., Olsen, I., Dewhirst, F. E., et al. (2008). Bacteria of dental caries in primary and permanent teeth in children and young adults. Journal of Clinical Microbiology, 46(4), 1407–1417.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Dige, I., Nilsson, H., Kilian, M., & Nyvad, B. (2007). In situ identification of streptococci and other bacteria in initial dental biofilm by confocal laser scanning microscopy and fluorescence in situ hybridization. European Journal of Oral Sciences, 115, 459–467.PubMedCrossRefGoogle Scholar
  28. 28.
    Berthold, P., & Listgarten, M. A. (1986). Distribution of Actinobacillus actinomycetemcomitans in localized juvenile periodontitis plaque: An electron immunocytochemical study. Journal of Periodontal Research, 21(5), 473–485.PubMedCrossRefGoogle Scholar
  29. 29.
    Bjarnsholt, T., Jensen, P. Ø., Fiandaca, M. J., Pedersen, J., Hansen, C. R., Andersen, C. B., et al. (2009). Pseudomonas aeruginosa biofilms in the respiratory tract of cystic fibrosis patients. Pediatric Pulmonology, 44(6), 547–558.PubMedCrossRefGoogle Scholar
  30. 30.
    Moreau-Marquis, S., Stanton, B. A., & O’Toole, G. A. (2008). Pseudomonas aeruginosa biofilm formation in the cystic fibrosis airway. Pulmonary Pharmacology & Therapeutics, 21(4), 595–599.CrossRefGoogle Scholar
  31. 31.
    Moskowitz, S. M., Foster, J. M., Emerson, J., & Burns, J. L. (2004). Clinically feasible biofilm susceptibility assay for isolates of Pseudomonas aeruginosa from patients with cystic fibrosis. Journal of Clinical Microbiology, 42(5), 1915–1922.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Høiby, N., Ciofu, O., & Bjarnsholt, T. (2010). Pseudomonas aeruginosa biofilms in cystic fibrosis. Future Microbiology, 5(11), 1663–1674.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Costerton, J. W. (2001). Cystic fibrosis pathogenesis and the role of biofilms in persistent infection. Trends in Microbiology, 9(2), 50–52.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Demko, C. A., Byard, P. J., & Davis, P. B. (1995). Gender differences in cystic fibrosis: Pseudomonas aeruginosa infection. Journal of Clinical Epidemiology, 48(8), 1041–1049.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Hull, J., & Thomson, A. H. (1998). Contribution of genetic factors other than CFTR to disease severity in cystic fibrosis. Thorax, 53(12), 1018–1021.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Drumm, M. L., Konstan, M. W., Schluchter, M. D., Handler, A., Pace, R., Zou, F., et al. (2005). Genetic modifiers of lung disease in cystic fibrosis. New England Journal of Medicine, 353(14), 1443–1453.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Kuppuswamy, M. N., Hoffmann, J. W., Kasper, C. K., Spitzer, S. G., Groce, S. L., & Bajaj, S. P. (1991). Single nucleotide primer extension to detect genetic diseases: experimental application to hemophilia B (factor IX) and cystic fibrosis genes. Proceedings of the National Academy of Sciences, 88(4), 1143–1147.CrossRefGoogle Scholar
  38. 38.
    James, G. A., Swogger, E., Wolcott, R., Pulcini, E. D., Secor, P., Sestrich, J., et al. (2008). Biofilms in chronic wounds. Wound Repair and Regeneration, 16(1), 37–44.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Wolcott, R. D., Rhoads, D. D., & Dowd, S. E. (2008). Biofilms and chronic wound inflammation. Journal of Wound Care, 17(8), 333–341.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Wolcott, R. D., Rhoads, D. D., Bennett, M. E., Wolcott, B. M., Gogokhia, L., Costerton, J. W., et al. (2010). Chronic wounds and the medical biofilm paradigm. Journal of Wound Care, 19(2), 45–53.PubMedCrossRefGoogle Scholar
  41. 41.
    Zhao, G., Usui, M. L., Lippman, S. I., James, G. A., Stewart, P. S., Fleckman, P., et al. (2013). Biofilms and inflammation in chronic wounds. Advances in Wound Care, 2(7), 389–399.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Siddiqui, A. R., & Bernstein, J. M. (2010). Chronic wound infection: Facts and controversies. Clinics in Dermatology, 28(5), 519–526.PubMedCrossRefGoogle Scholar
  43. 43.
    Bjarnsholt, T., Kirketerp-Møller, K., Jensen, P. Ø. Madsen, K. G., Phipps, R., et al. (2008). Why chronic wounds will not heal: A novel hypothesis. Wound Repair and Regeneration, 16(1), 2–10.PubMedCrossRefGoogle Scholar
  44. 44.
    Hall-Stoodley, L., Hu, F. Z., Gieseke, A., Nistico, L., Nguyen, D., Hayes, J., et al. (2006). Direct detection of bacterial biofilms on the middle-ear mucosa of children with chronic otitis media. JAMA, 296(2), 202–211.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Post, J. C. (2001). Candidate’s thesis: Direct evidence of bacterial biofilms in otitis media. The Laryngoscope, 111(12), 2083–2094.PubMedCrossRefGoogle Scholar
  46. 46.
    Ehrlich, G. D., Veeh, R., Wang, X., Costerton, J. W., Hayes, J. D., Hu, F. Z., et al. (2002). Mucosal biofilm formation on middle-ear mucosa in the chinchilla model of otitis media. JAMA, 287(13), 1710–1715.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Bakaletz, L. O. (2007). Bacterial biofilms in otitis media: Evidence and relevance. The Pediatric Infectious Disease Journal, 26(10), S17–S19.PubMedCrossRefGoogle Scholar
  48. 48.
    Fergie, N., Bayston, R., Pearson, J. P., & Birchall, J. P. (2004). Is otitis media with effusion a biofilm infection? Clinical Otolaryngology & Allied Sciences, 29(1), 38–46.CrossRefGoogle Scholar
  49. 49.
    Momomachi, M. (Ed.) (2009). Interaction between microbes and plants—Diseases and protections. Soft Science Co. Ltd. Tokyo (In Japanese). ISBN 978-4881711200.Google Scholar
  50. 50.
    Watanabe, A., Sato, T., & Yaguchi, Y. (2003). Fungi’s seasonal change on leaves of plants—Examples of 8 kinds of evergreen broadleaf trees. The 114th convention of the Japan Forest Society.
  51. 51.
    Grbić, M. L., Vukojević, J. E. L. E. N. A., Simić, G. S., Krizmanić, J. E. L. E. N. A., & Stupar, M. I. L. O. Š. (2010). Biofilm forming cyanobacteria, algae and fungi on two historic monuments in Belgrade, Serbia. Archives of Biological Science, Belgrade, 62(3), 625–631.CrossRefGoogle Scholar
  52. 52.
    Lima, N. (2013). Biofilm formation by filamentous fungi recovered from a water system. Journal of Mycology.Google Scholar
  53. 53.
    Heinrichs, G., Hübner, I., Schmidt, C. K., de Hoog, G. S., & Haase, G. (2013). Analysis of black fungal biofilms occurring at domestic water taps (II): Potential routes of entry. Mycopathologia, 175(5–6), 399–412.PubMedCrossRefGoogle Scholar
  54. 54.
    Gómez-Cornelio, S., Ortega-Morales, O., Morón-Ríos, A., Reyes-Estebanez, M., & De la Rosa-García, S. (2016). Changes in fungal community composition of biofilms on limestone across a chronosequence in Campeche, Mexico. Acta Botanica Mexicana, 117, 59–77.CrossRefGoogle Scholar
  55. 55.
    Camacho-Chab, J., Castañeda-Chávez, M., Chan-Bacab, M., Aguila-Ramírez, R., Galaviz-Villa, I., Bartolo-Pérez, P., et al. (2018). Biosorption of cadmium by non-toxic extracellular polymeric substances (EPS) synthesized by bacteria from marine intertidal biofilms. International Journal of Environmental Research and Public Health, 15(2), 314.PubMedCentralCrossRefPubMedGoogle Scholar
  56. 56.
    Altaf, M. M., & Ahmad, I. (2016). 5 Biofilm formation on plant surfaces. The Handbook of Microbial Bioresources.Google Scholar
  57. 57.
    Phukhamsakda, C., Macabeo, A., Yuyama, K., Hyde, K., & Stadler, M. (2018). Biofilm inhibitory abscisic acid derivatives from the plant-associated Dothideomycete Fungus, Roussoella sp. Molecules, 23(9), 2190.PubMedCentralCrossRefPubMedGoogle Scholar
  58. 58.
    Li, X. B., Chen, G. Y., Liu, R. J., Zheng, C. J., Song, X. M., & Han, C. R. (2017). A new biphenyl derivative from the mangrove endophytic fungus Phomopsis longicolla HL-2232. Natural Product Research, 31(19), 2264–2267.PubMedCrossRefGoogle Scholar
  59. 59.
    Crous, P. W., Wingfield, M. J., Ferreira, F. A., & Alfenas, A. (1993). Mycosphaerella parkii and Phyllosticta eucalyptorum, two species from eucalyptus leaves in Brazil. Mycological Research, 97(5), 582–584.CrossRefGoogle Scholar
  60. 60.
    Baayen, R. P., Bonants, P. J. M., Verkley, G., Carroll, G. C., Van Der Aa, H. A., De Weerdt, M., et al. (2002). Nonpathogenic isolates of the citrus black spot fungus, Guignardia citricarpa, identified as a cosmopolitan endophyte of woody plants, G. mangiferae (Phyllosticta capitalensis). Phytopathology, 92(5), 464–477.PubMedCrossRefGoogle Scholar
  61. 61.
    Ortega-Morales, B. O., Ortega-Morales, F. N., Lara-Reyna, J., De la Rosa-García, S. C., Martínez-Hernández, A., & Montero-m, J. (2009). Antagonism of Bacillus spp. isolated from marine biofilms against terrestrial phytopathogenic fungi. Marine Biotechnology, 11(3), 375–383.Google Scholar
  62. 62.
    de Lima Favaro, L. C., de Souza Sebastianes, F. L., & Araújo, W. L. (2012). Epicoccum nigrum P16, a sugarcane endophyte, produces antifungal compounds and induces root growth. PLoS ONE, 7(6), e36826.CrossRefGoogle Scholar
  63. 63.
    Falconi, C. J., & Mendgen, K. (1994). Epiphytic fungi on apple leaves and their value for control of the postharvest pathogens Botrytis cinerea, Monilinia fructigena and Penicillium expansum. Zeitschrift für Pflanzenkrankheiten und Pflanzenschutz, 101(1), 38–47.Google Scholar
  64. 64.
    Redmond, J. C., Marois, J. J., & MacDonald, J. D. (1987). Biological control of Botrytis cinerea on roses with epiphytic microorganisms. Plant Disease, 71(9), 799–802.CrossRefGoogle Scholar
  65. 65.
    Osono, T. (2008). Endophytic and epiphytic phyllosphere fungi of Camellia japonica: Seasonal and leaf age-dependent variations. Mycologia, 100(3), 387–391.PubMedCrossRefGoogle Scholar
  66. 66.
    Mukhtar, I., Khokhar, I., Mushtaq, S., & Ali, A. (2010). Diversity of epiphytic and endophytic microorganisms in some dominant weeds. Pakistan Journal of Weed Science Research, 16(3).Google Scholar
  67. 67.
    Lima, J. M. S., Pereira, J. O., Batista, I. H., Neto, P. D. Q. C., dos Santos, J. C., de Araújo, S. P., et al. (2016). Potential biosurfactant producing endophytic and epiphytic fungi, isolated from macrophytes in the Negro River in Manaus, Amazonas, Brazil. African Journal of Biotechnology, 15(24), 1217–1223.CrossRefGoogle Scholar
  68. 68.
    Kharwar, R. N., Gond, S. K., Kumar, A., & Mishra, A. (2010). A comparative study of endophytic and epiphytic fungal association with leaf of Eucalyptus citriodora Hook., and their antimicrobial activity. World Journal of Microbiology and Biotechnology, 26(11), 1941–1948.Google Scholar
  69. 69.
    Gibbs, J. N. (1967). A study of the epiphytic growth habit of Fomes annosus. Annals of Botany, 31(4), 755–774.CrossRefGoogle Scholar
  70. 70.
    Redford, A. J., & Fierer, N. (2009). Bacterial succession on the leaf surface: A novel system for studying successional dynamics. Microbial Ecology, 58(1), 189–198.PubMedCrossRefGoogle Scholar
  71. 71.
    Hirano, S. S., & Upper, C. D. (1991). Bacterial community dynamics. In Microbial ecology of leaves (pp. 271–294). New York, NY: Springer.Google Scholar
  72. 72.
    Lambais, M. R., Crowley, D. E., Cury, J. C., Büll, R. C., & Rodrigues, R. R. (2006). Bacterial diversity in tree canopies of the Atlantic forest. Science, 312(5782), 1917.PubMedCrossRefGoogle Scholar
  73. 73.
    Gunasekera, T. S., & Sundin, G. W. (2006). Role of nucleotide excision repair and photoreactivation in the solar UVB radiation survival of Pseudomonas syringae pv. syringae B728a. Journal of Applied Microbiology, 100(5), 1073–1083.Google Scholar
  74. 74.
    Kim, J. J., & Sundin, G. W. (2000). Regulation of the rulAB mutagenic DNA repair operon of Pseudomonas syringae by UV-B (290 to 320 nanometers) radiation and analysis of rulAB-mediated mutability in vitro and in planta. Journal of Bacteriology, 182(21), 6137–6144.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Lindow, S. E., & Leveau, J. H. (2002). Phyllosphere microbiology. Current Opinion in Biotechnology, 13(3), 238–243.PubMedCrossRefGoogle Scholar
  76. 76.
    Beattie, G. A., & Lindow, S. E. (1995). The secret life of foliar bacterial pathogens on leaves. Annual Review of Phytopathology, 33(1), 145–172.PubMedCrossRefGoogle Scholar
  77. 77.
    Quiñones, B., Dulla, G., & Lindow, S. E. (2005). Quorum sensing regulates exopolysaccharide production, motility, and virulence in Pseudomonas syringae. Molecular Plant-Microbe Interactions, 18(7), 682–693.PubMedCrossRefGoogle Scholar
  78. 78.
    Bailey, M. J., Lilley, A. K., & Diaper, J. P. (1996). Gene transfer between micro-organisms in the phyllosphere. In Aerial plant surface microbiology (pp. 103–123). Boston, MA: Springer.Google Scholar
  79. 79.
    Pearce, D., Bazin, M. J., Lynch, J. M., Lappin-Scott, H. M., & Costerton, J. W. (1995). The rhizosphere as a biofilm. Microbial Biofilms, 207–220.Google Scholar
  80. 80.
    Dennis, P. G., Miller, A. J., & Hirsch, P. R. (2010). Are root exudates more important than other sources of rhizodeposits in structuring rhizosphere bacterial communities? FEMS Microbiology Ecology, 72(3), 313–327.Google Scholar
  81. 81.
    Timmusk, S., Paalme, V., Pavlicek, T., Bergquist, J., Vangala, A., Danilas, T., et al. (2011). Bacterial distribution in the rhizosphere of wild barley under contrasting microclimates. PLoS ONE, 6(3), e17968.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Van Nieuwenhove, C., Van Holm, L., Kulasooriya, S. A., & Vlassak, K. (2000). Establishment of Azorhizobium caulinodans in the rhizosphere of wetland rice (Oryza sativa L.). Biology and Fertility of Soils, 31(2), 143–149.Google Scholar
  83. 83.
    Yanni, Y. G., Rizk, R. Y., Corich, V., Squartini, A., Ninke, K., & Philip-Hollingsworth et al. (1997). Natural endophytic association between Rhizobium leguminosarum bv. trifolii and rice roots and assessment of its potential to promote rice growth. In Opportunities for biological nitrogen fixation in rice and other non-legumes (pp. 99–114). Dordrecht: Springer.Google Scholar
  84. 84.
    Kim, C., Kecskés, M. L., Deaker, R. J., Gilchrist, K., New, P. B., Kennedy, I. R., et al. (2005). Wheat root colonization and nitrogenase activity by Azospirillum isolates from crop plants in Korea. Canadian Journal of Microbiology, 51(11), 948–956.PubMedCrossRefGoogle Scholar
  85. 85.
    Iniguez, A. L., Dong, Y., & Triplett, E. W. (2004). Nitrogen fixation in wheat provided by Klebsiella pneumoniae 342. Molecular Plant-Microbe Interactions, 17(10), 1078–1085.PubMedCrossRefGoogle Scholar
  86. 86.
    Hawes, M. C., & Smith, L. Y. (1989). Requirement for chemotaxis in pathogenicity of Agrobacterium tumefaciens on roots of soil-grown pea plants. Journal of Bacteriology, 171(10), 5668–5671.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Balandreau, J., Viallard, V., Cournoyer, B., Coenye, T., Laevens, S., & Vandamme, P. (2001). Burkholderia cepacia genomovar III is a common plant-associated bacterium. Applied and Environment Microbiology, 67(2), 982–985.CrossRefGoogle Scholar
  88. 88.
    Bittel, P., & Robatzek, S. (2007). Microbe-associated molecular patterns (MAMPs) probe plant immunity. Current Opinion in Plant Biology, 10(4), 335–341.PubMedCrossRefGoogle Scholar
  89. 89.
    Van Peer, R., Niemann, G. J., & Schippers, B. (1991). Induced resistance and phytoalexin accumulation in biological control of Fusarium wilt of carnation by Pseudomonas sp. strain WCS 417 r. Phytopathology, 81(7), 728–734.Google Scholar
  90. 90.
    Wei, G., Kloepper, J. W., & Tuzun, S. (1991). Induction of systemic resistance of cucumber to Colletotrichum orbiculare by select strains of plant growth-promoting rhizobacteria. Phytopathology, 81(11), 1508–1512.CrossRefGoogle Scholar
  91. 91.
    Van Loon, L. C. (2007). Plant responses to plant growth-promoting rhizobacteria. In New perspectives and approaches in plant growth-promoting Rhizobacteria research (pp. 243–254). Dordrecht: Springer.Google Scholar
  92. 92.
    Ongena, M., Jourdan, E., Adam, A., Paquot, M., Brans, A., Joris, B., et al. (2007). Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environmental Microbiology, 9(4), 1084–1090.PubMedCrossRefGoogle Scholar
  93. 93.
    Iavicoli, A., Boutet, E., Buchala, A., & Métraux, J. P. (2003). Induced systemic resistance in Arabidopsis thaliana in response to root inoculation with Pseudomonas fluorescens CHA0. Molecular Plant-Microbe Interactions, 16(10), 851–858.PubMedCrossRefGoogle Scholar
  94. 94.
    Schuhegger, R., Ihring, A., Gantner, S., Bahnweg, G., Knappe, C., Vogg, G., et al. (2006). Induction of systemic resistance in tomato by NacylLhomoserine lactoneproducing rhizosphere bacteria. Plant, Cell and Environment, 29(5), 909–918.PubMedCrossRefGoogle Scholar
  95. 95.
    Zhang, W., Dick, W. A., & Hoitink, H. A. J. (1996). Compost-induced systemic acquired resistance in cucumber to Pythium root rot and anthracnose. Phytopathology, 86(10), 1066–1070.CrossRefGoogle Scholar
  96. 96.
    Liu, L., Kloepper, J. W., & Tuzun, S. (1995). Induction of systemic resistance in cucumber by plant growth-promoting rhizobacteria: Duration of protection and effect of host resistance on protection and root colonization. Phytopathology (USA).Google Scholar
  97. 97.
    Lee, G., & Bishop, P (2015). Microbiology and infection control for health professional (6th ed.).Google Scholar
  98. 98.
    Thurlow, L. R., Hanke, M. L., Fritz, T., Angle, A., Aldrich, A., Williams, S. H., et al. (2011). Staphylococcus aureus biofilms prevent macrophage phagocytosis and attenuate inflammation in vivo. The Journal of Immunology, 186(11), 6585–6596.PubMedCrossRefGoogle Scholar
  99. 99.
    Costerton, J. W., Stewart, P. S., & Greenberg, E. P. (1999). Bacterial biofilms: A common cause of persistent infections. Science, 284(5418), 1318–1322.PubMedCrossRefGoogle Scholar
  100. 100.
    Günther, F., Wabnitz, G. H., Stroh, P., Prior, B., Obst, U., Samstag, Y., et al. (2009). Host defence against Staphylococcus aureus biofilms infection: phagocytosis of biofilms by polymorphonuclear neutrophils (PMN). Molecular Immunology, 46(8–9), 1805–1813.PubMedCrossRefGoogle Scholar
  101. 101.
    Cerca, N., Jefferson, K. K., Oliveira, R., Pier, G. B., & Azeredo, J. (2006). Comparative antibody-mediated phagocytosis of Staphylococcus epidermidis cells grown in a biofilm or in the planktonic state. Infection and Immunity, 74(8), 4849–4855.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Domenech, M., Ramos-Sevillano, E., García, E., Moscoso, M., & Yuste, J. (2013). Biofilm formation avoids complement immunity and phagocytosis of Streptococcus pneumoniae. Infection and Immunity, 81(7), 2606–2615.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Schommer, N. N., Christner, M., Hentschke, M., Ruckdeschel, K., Aepfelbacher, M., & Rohde, H. (2011). Staphylococcus epidermidis uses distinct mechanisms of biofilm formation to interfere with phagocytosis and activation of mouse macrophage-like cells 774A. 1. Infection and Immunity, 79(6), 2267–2276.Google Scholar
  104. 104.
    Katragkou, A., Kruhlak, M. J., Simitsopoulou, M., Chatzimoschou, A., Taparkou, A., Cotten, C. J., et al. (2010). Interactions between human phagocytes and Candida albicans biofilms alone and in combination with antifungal agents. The Journal of Infectious Diseases, 201(12), 1941–1949.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Meyle, E., Stroh, P., Günther, F., Hoppy-Tichy, T., Wagner, C., & Hänsch, G. M. (2010). Destruction of bacterial biofilms by polymorphonuclear neutrophils: Relative contribution of phagocytosis, DNA release, and degranulation. The International Journal of Artificial Organs, 33(9), 608–620.PubMedCrossRefGoogle Scholar
  106. 106.
    Thomson, C. H. (2011). Biofilms: Do they affect wound healing? International Wound Journal, 8(1), 63–67.PubMedCrossRefGoogle Scholar
  107. 107.
    Hekiert, A. M., Kofonow, J. M., Doghramji, L., Kennedy, D. W., Chiu, A. G., Palmer, J. N., et al. (2009). Biofilms correlate with TH1 Inflammation in the Sinonasal Tissue of patients with chronic Rhinosinusitis. Otolaryngology—Head and Neck Surgery, 141(4), 448–453.PubMedCrossRefGoogle Scholar
  108. 108.
    Secor, P. R., James, G. A., Fleckman, P., Olerud, J. E., McInnerney, K., & Stewart, P. S. (2011). Staphylococcus aureus Biofilm and Planktonic cultures differentially impact gene expression, mapk phosphorylation, and cytokine production in human keratinocytes. BMC Microbiology, 11(1), 143.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Ciornei, C. D., Novikov, A., Beloin, C., Fitting, C., Caroff, M., Ghigo, J. M., et al. (2010). Biofilm-forming Pseudomonas aeruginosa bacteria undergo lipopolysaccharide structural modifications and induce enhanced inflammatory cytokine response in human monocytes. Innate Immunity, 16(5), 288–301.PubMedCrossRefGoogle Scholar
  110. 110.
    Nguyen, K. T., Seth, A. K., Hong, S. J., Geringer, M. R., Xie, P., Leung, K. P., et al. (2013). Deficient cytokine expression and neutrophil oxidative burst contribute to impaired cutaneous wound healing in diabetic, biofilm containing chronic wounds. Wound Repair and Regeneration, 21(6), 833–841.PubMedCrossRefGoogle Scholar
  111. 111.
    Fletcher, J., Nair, S., Poole, S., Henderson, B., & Wilson, M. (1998). Cytokine degradation by biofilms of Porphyromonas gingivalis. Current Microbiology, 36(4), 216–219.PubMedCrossRefGoogle Scholar
  112. 112.
    Spiliopoulou, A. I., Kolonitsiou, F., Krevvata, M. I., Leontsinidis, M., Wilkinson, T. S., Mack, D., et al. (2012). Bacterial adhesion, intracellular survival and cytokine induction upon stimulation of mononuclear cells with planktonic or biofilm phase Staphylococcus epidermidis. FEMS Microbiology Letters, 330(1), 56–65.PubMedCrossRefGoogle Scholar
  113. 113.
    Zhou, Y., Guan, X., Zhu, W., Liu, Z., Wang, X., Yu, H., et al. (2014). Capsaicin inhibits Porphyromonas gingivalis growth, biofilm formation, gingivomucosal inflammatory cytokine secretion, and in vitro osteoclastogenesis. European Journal of Clinical Microbiology and Infectious Diseases, 33(2), 211–219.PubMedCrossRefGoogle Scholar
  114. 114.
    Takayama, S., Saitoh, E., Kimizuka, R., Yamada, S., & Kato, T. (2009). Effect of eel galectin AJL-1 on periodontopathic bacterial biofilm formation and their lipopolysaccharide-mediated inflammatory cytokine induction. International Journal of Antimicrobial Agents, 34(4), 355–359.PubMedCrossRefGoogle Scholar
  115. 115.
    Zhang, L., & Mah, T. F. (2008). Involvement of a novel efflux system in biofilm-specific resistance to antibiotics. Journal of Bacteriology, 190(13), 4447–4452.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    De Kievit, T. R., Parkins, M. D., Gillis, R. J., Srikumar, R., Ceri, H., Poole, K., et al. (2001). Multidrug efflux pumps: expression patterns and contribution to antibiotic resistance in Pseudomonas aeruginosa biofilms. Antimicrobial Agents and Chemotherapy, 45(6), 1761–1770.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Soto, S. M. (2013). Role of efflux pumps in the antibiotic resistance of bacteria embedded in a biofilm. Virulence, 4(3), 223–229.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Kvist, M., Hancock, V., & Klemm, P. (2008). Inactivation of efflux pumps abolishes bacterial biofilm formation. Applied and Environment Microbiology, 74(23), 7376–7382.CrossRefGoogle Scholar
  119. 119.
    Yoon, E. J., Chabane, Y. N., Goussard, S., Snesrud, E., Courvalin, P., Dé, E., et al. (2015). Contribution of resistance-nodulation-cell division efflux systems to antibiotic resistance and biofilm formation in Acinetobacter baumannii. MBio, 6(2), e00309–e00315.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Maira-Litran, T., Allison, D. G., & Gilbert, P. (2000). An evaluation of the potential of the multiple antibiotic resistance operon (mar) and the multidrug efflux pump acrAB to moderate resistance towards ciprofloxacin in Escherichia coli biofilms. Journal of Antimicrobial Chemotherapy, 45(6), 789–795.PubMedCrossRefGoogle Scholar
  121. 121.
    Liao, J., Schurr, M. J., & Sauer, K. (2013). The MerR-like regulator BrlR confers biofilm tolerance by activating multidrug efflux pumps in Pseudomonas aeruginosa biofilms. Journal of Bacteriology, 195(15), 3352–3363.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Anderl, J. N., Franklin, M. J., & Stewart, P. S. (2000). Role of antibiotic penetration limitation in Klebsiella pneumoniae biofilm resistance to ampicillin and ciprofloxacin. Antimicrobial Agents and Chemotherapy, 44(7), 1818–1824.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Walters, M. C., Roe, F., Bugnicourt, A., Franklin, M. J., & Stewart, P. S. (2003). Contributions of antibiotic penetration, oxygen limitation, and low metabolic activity to tolerance of Pseudomonas aeruginosa biofilms to ciprofloxacin and tobramycin. Antimicrobial Agents and Chemotherapy, 47(1), 317–323.PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Werner, E., Roe, F., Bugnicourt, A., Franklin, M. J., Heydorn, A., Molin, S., et al. (2004). Stratified growth in Pseudomonas aeruginosa biofilms. Applied and Environment Microbiology, 70(10), 6188–6196.CrossRefGoogle Scholar
  125. 125.
    Anderl, J. N., Zahller, J., Roe, F., & Stewart, P. S. (2003). Role of nutrient limitation and stationary-phase existence in Klebsiella pneumoniae biofilm resistance to ampicillin and ciprofloxacin. Antimicrobial Agents and Chemotherapy, 47(4), 1251–1256.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Stewart, P. S. (2002). Mechanisms of antibiotic resistance in bacterial biofilms. International Journal of Medical Microbiology, 292(2), 107–113.PubMedCrossRefGoogle Scholar
  127. 127.
    Mah, T. F. C., & O’Toole, G. A. (2001). Mechanisms of biofilm resistance to antimicrobial agents. Trends in Microbiology, 9(1), 34–39.PubMedCrossRefGoogle Scholar
  128. 128.
    Fletcher, M., & Savage, D. C. (Eds.) (2013). Bacterial adhesion: Mechanisms and physiological significance. Berlin: Springer Science & Business Media.Google Scholar
  129. 129.
    Blenkinsopp, S. A., & Costerton, J. W. (1991). Understanding bacterial biofilms. Trends in Biotechnology, 9(1), 138–143.CrossRefGoogle Scholar
  130. 130.
    Davies, D. (2003). Understanding biofilm resistance to antibacterial agents. Nature Reviews Drug Discovery, 2(2), 114.PubMedCrossRefGoogle Scholar
  131. 131.
    Drenkard, E., & Ausubel, F. M. (2002). Pseudomonas biofilm formation and antibiotic resistance are linked to phenotypic variation. Nature, 416(6882), 740.PubMedCrossRefGoogle Scholar
  132. 132.
    Gilbert, P., Das, J., & Foley, I. (1997). Biofilm susceptibility to antimicrobials. Advances in Dental Research, 11(1), 160–167.PubMedCrossRefGoogle Scholar
  133. 133.
    Drenkard, E. (2003). Antimicrobial resistance of Pseudomonas aeruginosa biofilms. Microbes and Infection, 5(13), 1213–1219.PubMedCrossRefGoogle Scholar
  134. 134.
    Mah, T. F. (2012). Biofilm-specific antibiotic resistance. Future Microbiology, 7(9), 1061–1072.PubMedCrossRefGoogle Scholar
  135. 135.
    Gilbert, P. E. T. E. R., Collier, P. J., & Brown, M. R. (1990). Influence of growth rate on susceptibility to antimicrobial agents: Biofilms, cell cycle, dormancy, and stringent response. Antimicrobial Agents and Chemotherapy, 34(10), 1865.PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Lewis, K. (2008). Multidrug tolerance of biofilms and persister cells. In Bacterial biofilms (pp. 107–131). Berlin, Heidelberg: Springer.Google Scholar
  137. 137.
    Lewis, K. (2005). Persister cells and the riddle of biofilm survival. Biochemistry (Moscow), 70(2), 267–274.CrossRefGoogle Scholar
  138. 138.
    LaFleur, M. D., Kumamoto, C. A., & Lewis, K. (2006). Candida albicans biofilms produce antifungal-tolerant persister cells. Antimicrobial Agents and Chemotherapy, 50(11), 3839–3846.PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Keren, I., Shah, D., Spoering, A., Kaldalu, N., & Lewis, K. (2004). Specialized persister cells and the mechanism of multidrug tolerance in Escherichia coli. Journal of Bacteriology, 186(24), 8172–8180.PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Lewis, K. (2007). Persister cells, dormancy and infectious disease. Nature Reviews Microbiology, 5(1), 48.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringNational Institute of Technology (KOSEN)Shiroko-cho, SuzukaJapan
  2. 2.Department of Electrical and Computer EngineeringClarkson UniversityPotsdamUSA

Personalised recommendations