Skip to main content

Animate Substrata and Biofilms

  • Chapter
  • First Online:
Formation and Control of Biofilm in Various Environments

Abstract

Biofilms form on natural animate substrata. For substrata discussed in this chapter, we selected plants’ surfaces and the tissues inside of human bodies. Biofilms are a result of bacterial activity. First bacteria attach to a surface (at an interface), aggregate, and then increase their number to a certain threshold value. At this point they excrete extracellular polymeric substances to form biofilms. The phenomenon is brought about by quorum sensing, a sort of signal transmission process. This process is similar to that of biofilms in other environments. With an understanding of the proposed mechanisms and phenomenon, one has a chance to utilize the benefits of biofilms and to control their negative effects. In this chapter, biofilms are described for an animate natural environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lear, G., & Lewis, G. (2012). Microbial biofilms. Caister Academic Press.

    Google Scholar 

  2. Bais, H. P., Fall, R., & Vivanco, J. M. (2004). Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiology, 134(1), 307–319. https://doi.org/10.1104/pp.103.028712.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hitner, L. (1904). Uber neuer Erfahrungen und Probleme auf dem Gebiet der Bodenbakteriologie unter besondere Berucksichtingung der Gründungüng und Brache. Arbeiten der Deustchen Landwirtschaftsgesellesschaft, 98, 59–78.

    Google Scholar 

  4. Hartmann, A., Rothballer, M., & Schmid, M. (2008). Lorenz Hiltner, a pioneer in rhizosphere microbial ecology and soil bacteriology research. Plant and Soil, 312(1–2), 7–14.

    Article  CAS  Google Scholar 

  5. Kidd, E., & Fejerskov, O. (2004). What constitutes dental caries? Histopathology of carious enamel and dentin related to the action of cariogenic biofilms. Journal of Dental Research, 83(1_suppl), 35–38.

    Google Scholar 

  6. Marsh, P. D. (2010). Microbiology of dental plaque biofilms and their role in oral health and caries. Dental Clinics, 54(3), 441–454.

    PubMed  Google Scholar 

  7. Duarte, S., Rosalen, P. L., Hayacibara, M. F., Cury, J. A., Bowen, W. H., Marquis, R., et al. (2006). The influence of a novel propolis on mutans streptococci biofilms and caries development in rats. Archives of Oral Biology, 51(1), 15–22.

    Article  PubMed  Google Scholar 

  8. Hodson, J. J. (1955). A histopathological study of the bacterial plaque in relation to the destruction of enamel, dentine and bone with special reference to dental caries. Proceedings of the Royal Society of Medicine, 48, 641–652.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Boyde, A., & Lester, K. S. (1968). A method of preparing bacterial plaque lining carious cavities for examination by scanning electron microscopy. Archives of Oral Biology, 13, 1413–1419.

    Google Scholar 

  10. Theilade, E., & Theilade, J. (1970). Bacteriology and ultrastructural studies of developing dental plaque. In W. McHugh (Ed.), Denal plaque (pp. 27–40). Dundee: Thomson & Co.

    Google Scholar 

  11. Listgarten, M. A., Mayo, H. E., & Tremblay, R. (1975). Development of dental plaque on epoxy resin crowns in man: A light and electron microscopic study. Journal of Periodontology, 46, 10–26.

    Article  CAS  PubMed  Google Scholar 

  12. Paju, S., & Scannapieco, F. A. (2007). Oral biofilms, periodontitis, and pulmonary infections. Oral Diseases, 13(6), 508–512.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Offenbacher, S., Barros, S. P., Singer, R. E., Moss, K., Williams, R. C., & Beck, J. D. (2007). Periodontal disease at the biofilm–gingival interface. Journal of Periodontology, 78(10), 1911–1925.

    Article  CAS  PubMed  Google Scholar 

  14. Noiri, Y., Ehara, A., Kawahara, T., Takemura, N., & Ebisu, S. (2002). Participation of bacterial biofilms in refractory and chronic periapical periodontitis. Journal of Endodontics, 28(10), 679–683.

    Article  PubMed  Google Scholar 

  15. Ricucci, D., & Siqueira, J. F., Jr. (2010). Biofilms and apical periodontitis: Study of prevalence and association with clinical and histopathologic findings. Journal of Endodontics, 36(8), 1277–1288.

    Article  PubMed  Google Scholar 

  16. Schaudinn, C., Gorur, A., Keller, D., Sedghizadeh, P. P., & Costerton, J. W. (2009). Periodontitis: an archetypical biofilm disease. The Journal of the American Dental Association, 140(8), 978–986.

    Article  PubMed  Google Scholar 

  17. Hajishengallis, G., Liang, S., Payne, M. A., Hashim, A., Jotwani, R., Eskan, M. A., et al. (2011). Low-abundance biofilm species orchestrates inflammatory periodontal disease through the commensal microbiota and complement. Cell Host & Microbe, 10(5), 497–506.

    Article  CAS  Google Scholar 

  18. Herrera, D., Alonso, B., León, R., Roldán, S., & Sanz, M. (2008). Antimicrobial therapy in periodontitis: The use of systemic antimicrobials against the subgingival biofilm. Journal of Clinical Periodontology, 35, 45–66.

    Article  CAS  PubMed  Google Scholar 

  19. Chen, C. (2001). Periodontitis as a biofilm infection. Journal of the California Dental Association, 29(5), 362–369.

    CAS  PubMed  Google Scholar 

  20. Haffajee, A. D., & Socransky, S. S. (2000). Introduction to microbial aspects of periodontal biofilm communities, development and treatment. Periodontology, 42(1), 7–12.

    Article  Google Scholar 

  21. Schlafer, S., Riep, B., Griffen, A. L., Petrich, A., Hübner, J., Berning, M., et al. (2010). Filifactor alocis-involvement in periodontal biofilms. BMC Microbiology, 10(1), 66.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Theilade, J. (1977). Development of bacterial plaque in the oral cavity. Journal of Clinical Periodontology, 4(5), 1–12.

    Article  CAS  PubMed  Google Scholar 

  23. Zijnge, V., van Leeuwen, M. B. M., Degener, J. E., Abbas, F., Thurnheer, T., Gmür, R., & Harmsen, H. J. M. (2010). Oral biofilm architecture on natural teeth. PloS ONE, 5(2), e9321.

    Google Scholar 

  24. Peciuliene, V., Reynaud, A. H., Balciuniene, I., & Haapasalo, M. (2001). Isolation of yeasts and enteric bacteria in root filled teeth with chronic apical periodontitis. International Endodontic Journal, 34(6), 429–434.

    Article  CAS  PubMed  Google Scholar 

  25. Rosan, B., & Lamont, R. J. (2000). Dental plaque formation. Microbes and Infection, 2(13), 1599–1607.

    Article  CAS  PubMed  Google Scholar 

  26. Aas, J. A., Griffen, A. L., Dardis, S. R., Lee, A. M., Olsen, I., Dewhirst, F. E., et al. (2008). Bacteria of dental caries in primary and permanent teeth in children and young adults. Journal of Clinical Microbiology, 46(4), 1407–1417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dige, I., Nilsson, H., Kilian, M., & Nyvad, B. (2007). In situ identification of streptococci and other bacteria in initial dental biofilm by confocal laser scanning microscopy and fluorescence in situ hybridization. European Journal of Oral Sciences, 115, 459–467.

    Article  PubMed  Google Scholar 

  28. Berthold, P., & Listgarten, M. A. (1986). Distribution of Actinobacillus actinomycetemcomitans in localized juvenile periodontitis plaque: An electron immunocytochemical study. Journal of Periodontal Research, 21(5), 473–485.

    Article  CAS  PubMed  Google Scholar 

  29. Bjarnsholt, T., Jensen, P. Ø., Fiandaca, M. J., Pedersen, J., Hansen, C. R., Andersen, C. B., et al. (2009). Pseudomonas aeruginosa biofilms in the respiratory tract of cystic fibrosis patients. Pediatric Pulmonology, 44(6), 547–558.

    Article  PubMed  Google Scholar 

  30. Moreau-Marquis, S., Stanton, B. A., & O’Toole, G. A. (2008). Pseudomonas aeruginosa biofilm formation in the cystic fibrosis airway. Pulmonary Pharmacology & Therapeutics, 21(4), 595–599.

    Article  CAS  Google Scholar 

  31. Moskowitz, S. M., Foster, J. M., Emerson, J., & Burns, J. L. (2004). Clinically feasible biofilm susceptibility assay for isolates of Pseudomonas aeruginosa from patients with cystic fibrosis. Journal of Clinical Microbiology, 42(5), 1915–1922.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Høiby, N., Ciofu, O., & Bjarnsholt, T. (2010). Pseudomonas aeruginosa biofilms in cystic fibrosis. Future Microbiology, 5(11), 1663–1674.

    Article  PubMed  Google Scholar 

  33. Costerton, J. W. (2001). Cystic fibrosis pathogenesis and the role of biofilms in persistent infection. Trends in Microbiology, 9(2), 50–52.

    Article  CAS  PubMed  Google Scholar 

  34. Demko, C. A., Byard, P. J., & Davis, P. B. (1995). Gender differences in cystic fibrosis: Pseudomonas aeruginosa infection. Journal of Clinical Epidemiology, 48(8), 1041–1049.

    Article  CAS  PubMed  Google Scholar 

  35. Hull, J., & Thomson, A. H. (1998). Contribution of genetic factors other than CFTR to disease severity in cystic fibrosis. Thorax, 53(12), 1018–1021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Drumm, M. L., Konstan, M. W., Schluchter, M. D., Handler, A., Pace, R., Zou, F., et al. (2005). Genetic modifiers of lung disease in cystic fibrosis. New England Journal of Medicine, 353(14), 1443–1453.

    Article  CAS  Google Scholar 

  37. Kuppuswamy, M. N., Hoffmann, J. W., Kasper, C. K., Spitzer, S. G., Groce, S. L., & Bajaj, S. P. (1991). Single nucleotide primer extension to detect genetic diseases: experimental application to hemophilia B (factor IX) and cystic fibrosis genes. Proceedings of the National Academy of Sciences, 88(4), 1143–1147.

    Article  CAS  Google Scholar 

  38. James, G. A., Swogger, E., Wolcott, R., Pulcini, E. D., Secor, P., Sestrich, J., et al. (2008). Biofilms in chronic wounds. Wound Repair and Regeneration, 16(1), 37–44.

    Article  PubMed  Google Scholar 

  39. Wolcott, R. D., Rhoads, D. D., & Dowd, S. E. (2008). Biofilms and chronic wound inflammation. Journal of Wound Care, 17(8), 333–341.

    Article  CAS  PubMed  Google Scholar 

  40. Wolcott, R. D., Rhoads, D. D., Bennett, M. E., Wolcott, B. M., Gogokhia, L., Costerton, J. W., et al. (2010). Chronic wounds and the medical biofilm paradigm. Journal of Wound Care, 19(2), 45–53.

    Article  CAS  PubMed  Google Scholar 

  41. Zhao, G., Usui, M. L., Lippman, S. I., James, G. A., Stewart, P. S., Fleckman, P., et al. (2013). Biofilms and inflammation in chronic wounds. Advances in Wound Care, 2(7), 389–399.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Siddiqui, A. R., & Bernstein, J. M. (2010). Chronic wound infection: Facts and controversies. Clinics in Dermatology, 28(5), 519–526.

    Article  PubMed  Google Scholar 

  43. Bjarnsholt, T., Kirketerp-Møller, K., Jensen, P. Ø. Madsen, K. G., Phipps, R., et al. (2008). Why chronic wounds will not heal: A novel hypothesis. Wound Repair and Regeneration, 16(1), 2–10.

    Article  PubMed  Google Scholar 

  44. Hall-Stoodley, L., Hu, F. Z., Gieseke, A., Nistico, L., Nguyen, D., Hayes, J., et al. (2006). Direct detection of bacterial biofilms on the middle-ear mucosa of children with chronic otitis media. JAMA, 296(2), 202–211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Post, J. C. (2001). Candidate’s thesis: Direct evidence of bacterial biofilms in otitis media. The Laryngoscope, 111(12), 2083–2094.

    Article  CAS  PubMed  Google Scholar 

  46. Ehrlich, G. D., Veeh, R., Wang, X., Costerton, J. W., Hayes, J. D., Hu, F. Z., et al. (2002). Mucosal biofilm formation on middle-ear mucosa in the chinchilla model of otitis media. JAMA, 287(13), 1710–1715.

    Article  PubMed  Google Scholar 

  47. Bakaletz, L. O. (2007). Bacterial biofilms in otitis media: Evidence and relevance. The Pediatric Infectious Disease Journal, 26(10), S17–S19.

    Article  PubMed  Google Scholar 

  48. Fergie, N., Bayston, R., Pearson, J. P., & Birchall, J. P. (2004). Is otitis media with effusion a biofilm infection? Clinical Otolaryngology & Allied Sciences, 29(1), 38–46.

    Article  CAS  Google Scholar 

  49. Momomachi, M. (Ed.) (2009). Interaction between microbes and plants—Diseases and protections. Soft Science Co. Ltd. Tokyo (In Japanese). ISBN 978-4881711200.

    Google Scholar 

  50. Watanabe, A., Sato, T., & Yaguchi, Y. (2003). Fungi’s seasonal change on leaves of plants—Examples of 8 kinds of evergreen broadleaf trees. The 114th convention of the Japan Forest Society. https://doi.org/10.11519/jfs.114.0.362.0.

  51. Grbić, M. L., Vukojević, J. E. L. E. N. A., Simić, G. S., Krizmanić, J. E. L. E. N. A., & Stupar, M. I. L. O. Š. (2010). Biofilm forming cyanobacteria, algae and fungi on two historic monuments in Belgrade, Serbia. Archives of Biological Science, Belgrade, 62(3), 625–631.

    Article  Google Scholar 

  52. Lima, N. (2013). Biofilm formation by filamentous fungi recovered from a water system. Journal of Mycology.

    Google Scholar 

  53. Heinrichs, G., Hübner, I., Schmidt, C. K., de Hoog, G. S., & Haase, G. (2013). Analysis of black fungal biofilms occurring at domestic water taps (II): Potential routes of entry. Mycopathologia, 175(5–6), 399–412.

    Article  PubMed  Google Scholar 

  54. Gómez-Cornelio, S., Ortega-Morales, O., Morón-Ríos, A., Reyes-Estebanez, M., & De la Rosa-García, S. (2016). Changes in fungal community composition of biofilms on limestone across a chronosequence in Campeche, Mexico. Acta Botanica Mexicana, 117, 59–77.

    Article  Google Scholar 

  55. Camacho-Chab, J., Castañeda-Chávez, M., Chan-Bacab, M., Aguila-Ramírez, R., Galaviz-Villa, I., Bartolo-Pérez, P., et al. (2018). Biosorption of cadmium by non-toxic extracellular polymeric substances (EPS) synthesized by bacteria from marine intertidal biofilms. International Journal of Environmental Research and Public Health, 15(2), 314.

    Article  PubMed Central  CAS  Google Scholar 

  56. Altaf, M. M., & Ahmad, I. (2016). 5 Biofilm formation on plant surfaces. The Handbook of Microbial Bioresources.

    Google Scholar 

  57. Phukhamsakda, C., Macabeo, A., Yuyama, K., Hyde, K., & Stadler, M. (2018). Biofilm inhibitory abscisic acid derivatives from the plant-associated Dothideomycete Fungus, Roussoella sp. Molecules, 23(9), 2190.

    Article  PubMed Central  CAS  Google Scholar 

  58. Li, X. B., Chen, G. Y., Liu, R. J., Zheng, C. J., Song, X. M., & Han, C. R. (2017). A new biphenyl derivative from the mangrove endophytic fungus Phomopsis longicolla HL-2232. Natural Product Research, 31(19), 2264–2267.

    Article  CAS  PubMed  Google Scholar 

  59. Crous, P. W., Wingfield, M. J., Ferreira, F. A., & Alfenas, A. (1993). Mycosphaerella parkii and Phyllosticta eucalyptorum, two species from eucalyptus leaves in Brazil. Mycological Research, 97(5), 582–584.

    Article  Google Scholar 

  60. Baayen, R. P., Bonants, P. J. M., Verkley, G., Carroll, G. C., Van Der Aa, H. A., De Weerdt, M., et al. (2002). Nonpathogenic isolates of the citrus black spot fungus, Guignardia citricarpa, identified as a cosmopolitan endophyte of woody plants, G. mangiferae (Phyllosticta capitalensis). Phytopathology, 92(5), 464–477.

    Article  CAS  PubMed  Google Scholar 

  61. Ortega-Morales, B. O., Ortega-Morales, F. N., Lara-Reyna, J., De la Rosa-García, S. C., Martínez-Hernández, A., & Montero-m, J. (2009). Antagonism of Bacillus spp. isolated from marine biofilms against terrestrial phytopathogenic fungi. Marine Biotechnology, 11(3), 375–383.

    Google Scholar 

  62. de Lima Favaro, L. C., de Souza Sebastianes, F. L., & Araújo, W. L. (2012). Epicoccum nigrum P16, a sugarcane endophyte, produces antifungal compounds and induces root growth. PLoS ONE, 7(6), e36826.

    Article  CAS  Google Scholar 

  63. Falconi, C. J., & Mendgen, K. (1994). Epiphytic fungi on apple leaves and their value for control of the postharvest pathogens Botrytis cinerea, Monilinia fructigena and Penicillium expansum. Zeitschrift für Pflanzenkrankheiten und Pflanzenschutz, 101(1), 38–47.

    Google Scholar 

  64. Redmond, J. C., Marois, J. J., & MacDonald, J. D. (1987). Biological control of Botrytis cinerea on roses with epiphytic microorganisms. Plant Disease, 71(9), 799–802.

    Article  Google Scholar 

  65. Osono, T. (2008). Endophytic and epiphytic phyllosphere fungi of Camellia japonica: Seasonal and leaf age-dependent variations. Mycologia, 100(3), 387–391.

    Article  PubMed  Google Scholar 

  66. Mukhtar, I., Khokhar, I., Mushtaq, S., & Ali, A. (2010). Diversity of epiphytic and endophytic microorganisms in some dominant weeds. Pakistan Journal of Weed Science Research, 16(3).

    Google Scholar 

  67. Lima, J. M. S., Pereira, J. O., Batista, I. H., Neto, P. D. Q. C., dos Santos, J. C., de Araújo, S. P., et al. (2016). Potential biosurfactant producing endophytic and epiphytic fungi, isolated from macrophytes in the Negro River in Manaus, Amazonas, Brazil. African Journal of Biotechnology, 15(24), 1217–1223.

    Article  CAS  Google Scholar 

  68. Kharwar, R. N., Gond, S. K., Kumar, A., & Mishra, A. (2010). A comparative study of endophytic and epiphytic fungal association with leaf of Eucalyptus citriodora Hook., and their antimicrobial activity. World Journal of Microbiology and Biotechnology, 26(11), 1941–1948.

    Google Scholar 

  69. Gibbs, J. N. (1967). A study of the epiphytic growth habit of Fomes annosus. Annals of Botany, 31(4), 755–774.

    Article  Google Scholar 

  70. Redford, A. J., & Fierer, N. (2009). Bacterial succession on the leaf surface: A novel system for studying successional dynamics. Microbial Ecology, 58(1), 189–198.

    Article  PubMed  Google Scholar 

  71. Hirano, S. S., & Upper, C. D. (1991). Bacterial community dynamics. In Microbial ecology of leaves (pp. 271–294). New York, NY: Springer.

    Google Scholar 

  72. Lambais, M. R., Crowley, D. E., Cury, J. C., Büll, R. C., & Rodrigues, R. R. (2006). Bacterial diversity in tree canopies of the Atlantic forest. Science, 312(5782), 1917.

    Article  CAS  PubMed  Google Scholar 

  73. Gunasekera, T. S., & Sundin, G. W. (2006). Role of nucleotide excision repair and photoreactivation in the solar UVB radiation survival of Pseudomonas syringae pv. syringae B728a. Journal of Applied Microbiology, 100(5), 1073–1083.

    Google Scholar 

  74. Kim, J. J., & Sundin, G. W. (2000). Regulation of the rulAB mutagenic DNA repair operon of Pseudomonas syringae by UV-B (290 to 320 nanometers) radiation and analysis of rulAB-mediated mutability in vitro and in planta. Journal of Bacteriology, 182(21), 6137–6144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Lindow, S. E., & Leveau, J. H. (2002). Phyllosphere microbiology. Current Opinion in Biotechnology, 13(3), 238–243.

    Article  CAS  PubMed  Google Scholar 

  76. Beattie, G. A., & Lindow, S. E. (1995). The secret life of foliar bacterial pathogens on leaves. Annual Review of Phytopathology, 33(1), 145–172.

    Article  CAS  PubMed  Google Scholar 

  77. Quiñones, B., Dulla, G., & Lindow, S. E. (2005). Quorum sensing regulates exopolysaccharide production, motility, and virulence in Pseudomonas syringae. Molecular Plant-Microbe Interactions, 18(7), 682–693.

    Article  PubMed  CAS  Google Scholar 

  78. Bailey, M. J., Lilley, A. K., & Diaper, J. P. (1996). Gene transfer between micro-organisms in the phyllosphere. In Aerial plant surface microbiology (pp. 103–123). Boston, MA: Springer.

    Google Scholar 

  79. Pearce, D., Bazin, M. J., Lynch, J. M., Lappin-Scott, H. M., & Costerton, J. W. (1995). The rhizosphere as a biofilm. Microbial Biofilms, 207–220.

    Google Scholar 

  80. Dennis, P. G., Miller, A. J., & Hirsch, P. R. (2010). Are root exudates more important than other sources of rhizodeposits in structuring rhizosphere bacterial communities? FEMS Microbiology Ecology, 72(3), 313–327.

    Google Scholar 

  81. Timmusk, S., Paalme, V., Pavlicek, T., Bergquist, J., Vangala, A., Danilas, T., et al. (2011). Bacterial distribution in the rhizosphere of wild barley under contrasting microclimates. PLoS ONE, 6(3), e17968.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Van Nieuwenhove, C., Van Holm, L., Kulasooriya, S. A., & Vlassak, K. (2000). Establishment of Azorhizobium caulinodans in the rhizosphere of wetland rice (Oryza sativa L.). Biology and Fertility of Soils, 31(2), 143–149.

    Google Scholar 

  83. Yanni, Y. G., Rizk, R. Y., Corich, V., Squartini, A., Ninke, K., & Philip-Hollingsworth et al. (1997). Natural endophytic association between Rhizobium leguminosarum bv. trifolii and rice roots and assessment of its potential to promote rice growth. In Opportunities for biological nitrogen fixation in rice and other non-legumes (pp. 99–114). Dordrecht: Springer.

    Google Scholar 

  84. Kim, C., Kecskés, M. L., Deaker, R. J., Gilchrist, K., New, P. B., Kennedy, I. R., et al. (2005). Wheat root colonization and nitrogenase activity by Azospirillum isolates from crop plants in Korea. Canadian Journal of Microbiology, 51(11), 948–956.

    Article  CAS  PubMed  Google Scholar 

  85. Iniguez, A. L., Dong, Y., & Triplett, E. W. (2004). Nitrogen fixation in wheat provided by Klebsiella pneumoniae 342. Molecular Plant-Microbe Interactions, 17(10), 1078–1085.

    Article  CAS  PubMed  Google Scholar 

  86. Hawes, M. C., & Smith, L. Y. (1989). Requirement for chemotaxis in pathogenicity of Agrobacterium tumefaciens on roots of soil-grown pea plants. Journal of Bacteriology, 171(10), 5668–5671.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Balandreau, J., Viallard, V., Cournoyer, B., Coenye, T., Laevens, S., & Vandamme, P. (2001). Burkholderia cepacia genomovar III is a common plant-associated bacterium. Applied and Environment Microbiology, 67(2), 982–985.

    Article  CAS  Google Scholar 

  88. Bittel, P., & Robatzek, S. (2007). Microbe-associated molecular patterns (MAMPs) probe plant immunity. Current Opinion in Plant Biology, 10(4), 335–341.

    Article  CAS  PubMed  Google Scholar 

  89. Van Peer, R., Niemann, G. J., & Schippers, B. (1991). Induced resistance and phytoalexin accumulation in biological control of Fusarium wilt of carnation by Pseudomonas sp. strain WCS 417 r. Phytopathology, 81(7), 728–734.

    Google Scholar 

  90. Wei, G., Kloepper, J. W., & Tuzun, S. (1991). Induction of systemic resistance of cucumber to Colletotrichum orbiculare by select strains of plant growth-promoting rhizobacteria. Phytopathology, 81(11), 1508–1512.

    Article  Google Scholar 

  91. Van Loon, L. C. (2007). Plant responses to plant growth-promoting rhizobacteria. In New perspectives and approaches in plant growth-promoting Rhizobacteria research (pp. 243–254). Dordrecht: Springer.

    Google Scholar 

  92. Ongena, M., Jourdan, E., Adam, A., Paquot, M., Brans, A., Joris, B., et al. (2007). Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environmental Microbiology, 9(4), 1084–1090.

    Article  CAS  PubMed  Google Scholar 

  93. Iavicoli, A., Boutet, E., Buchala, A., & Métraux, J. P. (2003). Induced systemic resistance in Arabidopsis thaliana in response to root inoculation with Pseudomonas fluorescens CHA0. Molecular Plant-Microbe Interactions, 16(10), 851–858.

    Article  CAS  PubMed  Google Scholar 

  94. Schuhegger, R., Ihring, A., Gantner, S., Bahnweg, G., Knappe, C., Vogg, G., et al. (2006). Induction of systemic resistance in tomato by NacylLhomoserine lactoneproducing rhizosphere bacteria. Plant, Cell and Environment, 29(5), 909–918.

    Article  CAS  PubMed  Google Scholar 

  95. Zhang, W., Dick, W. A., & Hoitink, H. A. J. (1996). Compost-induced systemic acquired resistance in cucumber to Pythium root rot and anthracnose. Phytopathology, 86(10), 1066–1070.

    Article  Google Scholar 

  96. Liu, L., Kloepper, J. W., & Tuzun, S. (1995). Induction of systemic resistance in cucumber by plant growth-promoting rhizobacteria: Duration of protection and effect of host resistance on protection and root colonization. Phytopathology (USA).

    Google Scholar 

  97. Lee, G., & Bishop, P (2015). Microbiology and infection control for health professional (6th ed.).

    Google Scholar 

  98. Thurlow, L. R., Hanke, M. L., Fritz, T., Angle, A., Aldrich, A., Williams, S. H., et al. (2011). Staphylococcus aureus biofilms prevent macrophage phagocytosis and attenuate inflammation in vivo. The Journal of Immunology, 186(11), 6585–6596.

    Article  CAS  PubMed  Google Scholar 

  99. Costerton, J. W., Stewart, P. S., & Greenberg, E. P. (1999). Bacterial biofilms: A common cause of persistent infections. Science, 284(5418), 1318–1322.

    Article  CAS  PubMed  Google Scholar 

  100. Günther, F., Wabnitz, G. H., Stroh, P., Prior, B., Obst, U., Samstag, Y., et al. (2009). Host defence against Staphylococcus aureus biofilms infection: phagocytosis of biofilms by polymorphonuclear neutrophils (PMN). Molecular Immunology, 46(8–9), 1805–1813.

    Article  PubMed  CAS  Google Scholar 

  101. Cerca, N., Jefferson, K. K., Oliveira, R., Pier, G. B., & Azeredo, J. (2006). Comparative antibody-mediated phagocytosis of Staphylococcus epidermidis cells grown in a biofilm or in the planktonic state. Infection and Immunity, 74(8), 4849–4855.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Domenech, M., Ramos-Sevillano, E., García, E., Moscoso, M., & Yuste, J. (2013). Biofilm formation avoids complement immunity and phagocytosis of Streptococcus pneumoniae. Infection and Immunity, 81(7), 2606–2615.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Schommer, N. N., Christner, M., Hentschke, M., Ruckdeschel, K., Aepfelbacher, M., & Rohde, H. (2011). Staphylococcus epidermidis uses distinct mechanisms of biofilm formation to interfere with phagocytosis and activation of mouse macrophage-like cells 774A. 1. Infection and Immunity, 79(6), 2267–2276.

    Google Scholar 

  104. Katragkou, A., Kruhlak, M. J., Simitsopoulou, M., Chatzimoschou, A., Taparkou, A., Cotten, C. J., et al. (2010). Interactions between human phagocytes and Candida albicans biofilms alone and in combination with antifungal agents. The Journal of Infectious Diseases, 201(12), 1941–1949.

    Article  CAS  PubMed  Google Scholar 

  105. Meyle, E., Stroh, P., Günther, F., Hoppy-Tichy, T., Wagner, C., & Hänsch, G. M. (2010). Destruction of bacterial biofilms by polymorphonuclear neutrophils: Relative contribution of phagocytosis, DNA release, and degranulation. The International Journal of Artificial Organs, 33(9), 608–620.

    Article  CAS  PubMed  Google Scholar 

  106. Thomson, C. H. (2011). Biofilms: Do they affect wound healing? International Wound Journal, 8(1), 63–67.

    Article  PubMed  Google Scholar 

  107. Hekiert, A. M., Kofonow, J. M., Doghramji, L., Kennedy, D. W., Chiu, A. G., Palmer, J. N., et al. (2009). Biofilms correlate with TH1 Inflammation in the Sinonasal Tissue of patients with chronic Rhinosinusitis. Otolaryngology—Head and Neck Surgery, 141(4), 448–453.

    Article  PubMed  Google Scholar 

  108. Secor, P. R., James, G. A., Fleckman, P., Olerud, J. E., McInnerney, K., & Stewart, P. S. (2011). Staphylococcus aureus Biofilm and Planktonic cultures differentially impact gene expression, mapk phosphorylation, and cytokine production in human keratinocytes. BMC Microbiology, 11(1), 143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Ciornei, C. D., Novikov, A., Beloin, C., Fitting, C., Caroff, M., Ghigo, J. M., et al. (2010). Biofilm-forming Pseudomonas aeruginosa bacteria undergo lipopolysaccharide structural modifications and induce enhanced inflammatory cytokine response in human monocytes. Innate Immunity, 16(5), 288–301.

    Article  CAS  PubMed  Google Scholar 

  110. Nguyen, K. T., Seth, A. K., Hong, S. J., Geringer, M. R., Xie, P., Leung, K. P., et al. (2013). Deficient cytokine expression and neutrophil oxidative burst contribute to impaired cutaneous wound healing in diabetic, biofilm containing chronic wounds. Wound Repair and Regeneration, 21(6), 833–841.

    Article  PubMed  Google Scholar 

  111. Fletcher, J., Nair, S., Poole, S., Henderson, B., & Wilson, M. (1998). Cytokine degradation by biofilms of Porphyromonas gingivalis. Current Microbiology, 36(4), 216–219.

    Article  CAS  PubMed  Google Scholar 

  112. Spiliopoulou, A. I., Kolonitsiou, F., Krevvata, M. I., Leontsinidis, M., Wilkinson, T. S., Mack, D., et al. (2012). Bacterial adhesion, intracellular survival and cytokine induction upon stimulation of mononuclear cells with planktonic or biofilm phase Staphylococcus epidermidis. FEMS Microbiology Letters, 330(1), 56–65.

    Article  CAS  PubMed  Google Scholar 

  113. Zhou, Y., Guan, X., Zhu, W., Liu, Z., Wang, X., Yu, H., et al. (2014). Capsaicin inhibits Porphyromonas gingivalis growth, biofilm formation, gingivomucosal inflammatory cytokine secretion, and in vitro osteoclastogenesis. European Journal of Clinical Microbiology and Infectious Diseases, 33(2), 211–219.

    Article  CAS  PubMed  Google Scholar 

  114. Takayama, S., Saitoh, E., Kimizuka, R., Yamada, S., & Kato, T. (2009). Effect of eel galectin AJL-1 on periodontopathic bacterial biofilm formation and their lipopolysaccharide-mediated inflammatory cytokine induction. International Journal of Antimicrobial Agents, 34(4), 355–359.

    Article  CAS  PubMed  Google Scholar 

  115. Zhang, L., & Mah, T. F. (2008). Involvement of a novel efflux system in biofilm-specific resistance to antibiotics. Journal of Bacteriology, 190(13), 4447–4452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. De Kievit, T. R., Parkins, M. D., Gillis, R. J., Srikumar, R., Ceri, H., Poole, K., et al. (2001). Multidrug efflux pumps: expression patterns and contribution to antibiotic resistance in Pseudomonas aeruginosa biofilms. Antimicrobial Agents and Chemotherapy, 45(6), 1761–1770.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Soto, S. M. (2013). Role of efflux pumps in the antibiotic resistance of bacteria embedded in a biofilm. Virulence, 4(3), 223–229.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Kvist, M., Hancock, V., & Klemm, P. (2008). Inactivation of efflux pumps abolishes bacterial biofilm formation. Applied and Environment Microbiology, 74(23), 7376–7382.

    Article  CAS  Google Scholar 

  119. Yoon, E. J., Chabane, Y. N., Goussard, S., Snesrud, E., Courvalin, P., Dé, E., et al. (2015). Contribution of resistance-nodulation-cell division efflux systems to antibiotic resistance and biofilm formation in Acinetobacter baumannii. MBio, 6(2), e00309–e00315.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Maira-Litran, T., Allison, D. G., & Gilbert, P. (2000). An evaluation of the potential of the multiple antibiotic resistance operon (mar) and the multidrug efflux pump acrAB to moderate resistance towards ciprofloxacin in Escherichia coli biofilms. Journal of Antimicrobial Chemotherapy, 45(6), 789–795.

    Article  CAS  Google Scholar 

  121. Liao, J., Schurr, M. J., & Sauer, K. (2013). The MerR-like regulator BrlR confers biofilm tolerance by activating multidrug efflux pumps in Pseudomonas aeruginosa biofilms. Journal of Bacteriology, 195(15), 3352–3363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Anderl, J. N., Franklin, M. J., & Stewart, P. S. (2000). Role of antibiotic penetration limitation in Klebsiella pneumoniae biofilm resistance to ampicillin and ciprofloxacin. Antimicrobial Agents and Chemotherapy, 44(7), 1818–1824.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Walters, M. C., Roe, F., Bugnicourt, A., Franklin, M. J., & Stewart, P. S. (2003). Contributions of antibiotic penetration, oxygen limitation, and low metabolic activity to tolerance of Pseudomonas aeruginosa biofilms to ciprofloxacin and tobramycin. Antimicrobial Agents and Chemotherapy, 47(1), 317–323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Werner, E., Roe, F., Bugnicourt, A., Franklin, M. J., Heydorn, A., Molin, S., et al. (2004). Stratified growth in Pseudomonas aeruginosa biofilms. Applied and Environment Microbiology, 70(10), 6188–6196.

    Article  CAS  Google Scholar 

  125. Anderl, J. N., Zahller, J., Roe, F., & Stewart, P. S. (2003). Role of nutrient limitation and stationary-phase existence in Klebsiella pneumoniae biofilm resistance to ampicillin and ciprofloxacin. Antimicrobial Agents and Chemotherapy, 47(4), 1251–1256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Stewart, P. S. (2002). Mechanisms of antibiotic resistance in bacterial biofilms. International Journal of Medical Microbiology, 292(2), 107–113.

    Article  CAS  PubMed  Google Scholar 

  127. Mah, T. F. C., & O’Toole, G. A. (2001). Mechanisms of biofilm resistance to antimicrobial agents. Trends in Microbiology, 9(1), 34–39.

    Article  CAS  PubMed  Google Scholar 

  128. Fletcher, M., & Savage, D. C. (Eds.) (2013). Bacterial adhesion: Mechanisms and physiological significance. Berlin: Springer Science & Business Media.

    Google Scholar 

  129. Blenkinsopp, S. A., & Costerton, J. W. (1991). Understanding bacterial biofilms. Trends in Biotechnology, 9(1), 138–143.

    Article  Google Scholar 

  130. Davies, D. (2003). Understanding biofilm resistance to antibacterial agents. Nature Reviews Drug Discovery, 2(2), 114.

    Article  CAS  PubMed  Google Scholar 

  131. Drenkard, E., & Ausubel, F. M. (2002). Pseudomonas biofilm formation and antibiotic resistance are linked to phenotypic variation. Nature, 416(6882), 740.

    Article  CAS  PubMed  Google Scholar 

  132. Gilbert, P., Das, J., & Foley, I. (1997). Biofilm susceptibility to antimicrobials. Advances in Dental Research, 11(1), 160–167.

    Article  CAS  PubMed  Google Scholar 

  133. Drenkard, E. (2003). Antimicrobial resistance of Pseudomonas aeruginosa biofilms. Microbes and Infection, 5(13), 1213–1219.

    Article  CAS  PubMed  Google Scholar 

  134. Mah, T. F. (2012). Biofilm-specific antibiotic resistance. Future Microbiology, 7(9), 1061–1072.

    Article  CAS  PubMed  Google Scholar 

  135. Gilbert, P. E. T. E. R., Collier, P. J., & Brown, M. R. (1990). Influence of growth rate on susceptibility to antimicrobial agents: Biofilms, cell cycle, dormancy, and stringent response. Antimicrobial Agents and Chemotherapy, 34(10), 1865.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Lewis, K. (2008). Multidrug tolerance of biofilms and persister cells. In Bacterial biofilms (pp. 107–131). Berlin, Heidelberg: Springer.

    Google Scholar 

  137. Lewis, K. (2005). Persister cells and the riddle of biofilm survival. Biochemistry (Moscow), 70(2), 267–274.

    Article  CAS  Google Scholar 

  138. LaFleur, M. D., Kumamoto, C. A., & Lewis, K. (2006). Candida albicans biofilms produce antifungal-tolerant persister cells. Antimicrobial Agents and Chemotherapy, 50(11), 3839–3846.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Keren, I., Shah, D., Spoering, A., Kaldalu, N., & Lewis, K. (2004). Specialized persister cells and the mechanism of multidrug tolerance in Escherichia coli. Journal of Bacteriology, 186(24), 8172–8180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Lewis, K. (2007). Persister cells, dormancy and infectious disease. Nature Reviews Microbiology, 5(1), 48.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dana M. Barry .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kanematsu, H., Barry, D.M. (2020). Animate Substrata and Biofilms. In: Formation and Control of Biofilm in Various Environments. Springer, Singapore. https://doi.org/10.1007/978-981-15-2240-6_3

Download citation

Publish with us

Policies and ethics