Advertisement

Fundamentals for Biofilms

Chapter
  • 367 Downloads

Abstract

This chapter includes the fundamentals for biofilms. It starts by introducing the topics of bacteria and biofilms. Then it discusses the formation, growth, collapse, and removal of biofilms, which are the result of bacterial activity. Biofilm constituents (which are predominantly water) and exopolymeric substances (EPS) are also presented. EPS, a sticky slime, is the main component of a biofilm’s three-dimensional structure and includes proteins, polysaccharides, lipids, and more. Quorum sensing, which is cell to cell chemical communication that allows bacteria to coordinate an activity, is described too. In addition, details are provided about biofilm involvement in a wide variety of infections.

References

  1. 1.
    Slonczewski, J. L., & Foster, J. W. (2013). Microbiology: An evolving science (Third Ed.) (p. 82). New York: W W Norton. ISBN 9780393123678.Google Scholar
  2. 2.
    Zifran, A. File: Prokaryote cell.svg. Date: October 12, 2015. License: Creative Commons Attribution-Share Alike, 4.0 International. https://commons.wikimedia.org/wiki/File:Prokaryote_cell.svg.
  3. 3.
    Yuval. File: Gram stain Anthrax.jpg. Date: November 25, 2005. This work is in the public domain. (It is a work of the Centers for Disease Control and Prevention, part of the United States Department of Health and Human Services, for the U.S. Federal government.) https://commons.wikimedia.org/wiki/File:Gram_Stain_Anthrax.jpg.
  4. 4.
    Lappin-Scott, H. M., Jass., J. & Costerton, J. W. (1993). Microbial biofilm formation and characterization. In Society for Applied Bacteriology technical series, Society for Applied Bacteriology Symposium (p. 30).Google Scholar
  5. 5.
    Costerton, J. W. (1999). Introduction to biofilm. International Journal of Antimicrobial Agents, 11, 217–221; discussion, pp. 237-239.CrossRefGoogle Scholar
  6. 6.
    Lappin-Scott, H. M. & Costerton, J. W. (1995). Microbial biofilms. Cambridge, New York: Cambridge University Press.Google Scholar
  7. 7.
    Dolan, R., & Carr, J. File: Staphylococcus aureus biofilm 01.jpg. Date: April 19, 2006. This work is in the public domain. (It is a work of the Centers for Disease Control and Prevention, part of the United States Department of Health and Human Services, for the U.S. Federal government.) https://commons.wikimedia.org/wiki/File:Staphylococcus_aureus_biofilm_01.jpg.
  8. 8.
    Chandki, R., Banthia, P., & Banthia, R. (2011). Biofilms: A microbial home. Journal of Indian Society of Periodontology, Apr–June, 15(2), 111–114.  https://doi.org/10.4103/0972-124x.84377.CrossRefGoogle Scholar
  9. 9.
    O’Toole, G., Kaplan, H. B., & Kolter, R. (2000). Biofilm formation as microbial development. Annual Review of Microbiology, 54, 49–79.  https://doi.org/10.1146/annurev.micro.54.1.49.ISSN0066-4227.PMID11018124.CrossRefPubMedGoogle Scholar
  10. 10.
    Davis, D. File: Biofilm.jpg. Date: November 13, 2007. License: Creative Commons Attribution 2.5 Generic. https://commons.wikimedia.org/wiki/File:Biofilm.jpg.
  11. 11.
    Garrett, T. R., Bhakoo, M., & Zhang, Z. (2008). Bacterial adhesion and biofilms on surfaces. Progress in Natural Science, 18(9), 1049–1056.  https://doi.org/10.1016/j.pnsc.2008.04.001.CrossRefGoogle Scholar
  12. 12.
    Sketch by Hideyuki Kanematsu.Google Scholar
  13. 13.
    Flemming, H.-C., Neu, T. R., & Wozniak, D. J. (2007). The EPS matrix: The house of biofilm cells. Journal of Bacteriology, 189(22), 7945–7947.  https://doi.org/10.1128/JB.00858-07.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Allonweiner. File: Bacillus subtilis.jpg. Date: January 18, 2007. This work is in the public domain. (It was taken by a Tecnai T-12 TEM.). https://commons.wikimedia.org/wiki/File:Bacillus_subtilis.jpg.
  15. 15.
    Mitchell, K., Zarnowski, R., & Andes, D. (2016). The extracellular matrix of fungal biofilms. In I. Christine (Ed.), Fungal biofilms and related infections (Vol. 3, pp. 21–24). Springer.Google Scholar
  16. 16.
    Roux, D., Cywes-Bentley, C., Zhang, Y. F., Pons, S., Konkol, M., Kearns, D. B., et al. (2015). Identification of Poly-N-acetylglucosamine as a major polysaccharide component of the Bacillus subtilis biofilm matrix. Journal of Biological Chemistry, 290(31), 19261–19272.  https://doi.org/10.1074/jbc.M115.648709.CrossRefPubMedGoogle Scholar
  17. 17.
    Mann, E. E., Wozniak, D. J. (2012). Pseudomonas biofilm matrix composition and niche biology. FEMS Microbiology Review, 36(4), 893–916.  https://doi.org/10.1111/j.1574-6976.2011.00322.xCrossRefGoogle Scholar
  18. 18.
    Colvin, K. M., Gordon, V. D., Murakami, K., Borlee, B. R., Wozniak, D. J., Wong, G. C., et al. (2011). The pel polysaccharide can serve a structural and protective role in the biofilm matrix of Pseudomonas aeruginosa. PLoS Pathogens, 7(1), e1001264.  https://doi.org/10.1371/journal.ppat.1001264.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Mulcahy, H., Charron-Mazenod, L., & Lewenza, S. (2008). Extracellular DNA chelates cations and induces anti-biotic resistance in Pseudomonas aeruginosa biofilms. PLoS Pathogens, 4(11), e1000213.  https://doi.org/10.1371/journal.ppat.1000213.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Yang, L., Hu, Y., Liu, Y., Zhang, J., Ulstrup, J., & Molin, S. (2011). Distinct roles of extracellular polymeric substances in Pseudomonas aeruginosa biofilm development. Environmental Microbiology, 13(7), 1705–1717.  https://doi.org/10.1111/j.1462-2920.2011.02503.x.CrossRefPubMedGoogle Scholar
  21. 21.
    Milo, R. (2013). What is the total number of protein molecules per cell volume? A call to rethink some published values. BioEssays, 35(12), 1050–1055.  https://doi.org/10.1002/bies.201300066.PMC3910158.PMID24114984.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Romero, D., Vlamakis, H., Losick, R., & Kolter, R. (2014). Functional analysis of the accessory protein TapA in Bacillus subtilis amyloid fiber assembly. Journal of Bacteriology, 196(8), 1505–1513.  https://doi.org/10.1128/JB.01363-13.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Toth, A. File: Myoglobin.png. Date: 2008. This work is in the public domain. https://commons.wikimedia.org/wiki/File:Myoglobin.png.
  24. 24.
    Chem. Grad. Student. File: Peptide-Figure-Revised.png. Date: September 5, 2011. License: Creative Commons Attribution—Share Alike 3.0 https://commons.wikimedia.org/wiki/File:Peptide-Figure-Revised.png.
  25. 25.
    Benjah-bmm27. File: Cellulose-Ibeta-from-xtal-2002-3D-balls.png. Date: April 24, 2009. This work is in the public domain. https://commons.wikimedia.org/wiki/File:Cellulose-Ibeta-from-xtal-2002-3D-balls.png.
  26. 26.
    Roux, D., Cywes-Bentley, C., Zhang, Y.-F., Pons, S., Konkol, M., Kearms, D., et al. (2015). Identification of Poly-N-acetyl Glucosamine as a major polysaccharide component of the Bacillus subtilis biofilm matrix. Journal of Biological Chemistry.  https://doi.org/10.1074/jbc.m115.648709.CrossRefGoogle Scholar
  27. 27.
    Yikrazuul. File: N-Acetylglucosamine.svg. Date: November 20, 2008. This work is in the public domain. https://commons.wikimedia.org/wiki/File:N-Acetylglucosamine.svg.
  28. 28.
    Ma, L., Lu, H., Sprinkle, A., Parsek, M., & Wozniak, D. (2007). Pseudomonas aeruginosa Psl is a galactose- and mannose-rich exopolysaccharide. Journal of Bacteriology, 189(22), 8353–8356.  https://doi.org/10.1128/JB.00620-07.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Dahm, R. (2008). Discovering DNA: Friedrich Miescher and the early years of nucleic acid research. Human Genetics, 122(6), 565–581.  https://doi.org/10.1007/s00439-007-0433-0.PMID17901982.CrossRefPubMedGoogle Scholar
  30. 30.
    Jurcisek, J., Brockman, K., Novotny, L., Goodman, S., & Bakaletz, L. (2017). Non typeable Haemophilus influenzae releases DNA and DNABll proteins via T4SS-like complex and ComE of the type IV pilus machinery. PNAS, 114(32), E6632–E6641.  https://doi.org/10.1073/pnas.1705508114.CrossRefPubMedGoogle Scholar
  31. 31.
    Schaefer, W. File: Fat triglyceride shorthand formula.png. Date: April 21, 2005. This work is in the public domain. https://commons.wikimedia.org/wiki/File:Fat_triglyceride_shorthand_formula.PNG.
  32. 32.
    Villarreal, M. R. File: Phospholipids aqueous solution structures. svg. Date: November 6, 2007. This work is in the public domain. https://commons.wikimedia.org/wiki/File:Phospholipids_aqueous_solution_structures.svg.
  33. 33.
    Desai, J. D., & Banat, I. M. (1997). Microbial production of surfactants and their commercial potential. Microbiology and Molecular Biology Reviews, 61(1), 47–64.CrossRefGoogle Scholar
  34. 34.
    Lang, S., & Wullbrandt, D. (1999). Rhamnose lipids–biosynthesis, microbial production and application potential. Applied Microbiology and Biotechnology, 51(1), 22–32.  https://doi.org/10.1007/s002530051358.PMID10077819.CrossRefPubMedGoogle Scholar
  35. 35.
    Soberón-Chávez, G., Aguirre-Ramírez, M., & Sánchez, R. (2005). The Pseudomonas aeruginosa RhlA enzyme is involved in rhamnolipid and polyhydroxyalkanoate production. Journal of Industrial Microbiology and Biotechnology, 32(11–12), 675–677.  https://doi.org/10.1007/s10295-005-0243-0.PMID15937697.CrossRefPubMedGoogle Scholar
  36. 36.
    Glick, R., Gilmour, C., Tremblay, J., Satanower, S., Avidan, O., Dézie, E., et al. (2010). Increase in rhamnolipid synthesis under iron-limiting conditions influences surface motility and biofilm formation in Pseudomonas aeruginosa. Journal of Bacteriology, 192(12), 2973–80.  https://doi.org/10.1128/JB.01601-09.PMC2901684.PMID20154129.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Davey, M. E., Caiazza, N. C., & O’Toole, G. A. (2003). Rhamnolipid surfactant production affects biofilm architecture in Pseudomonas aeruginosa PAO1. Journal of Bacteriology, 185(3), 1027–36.  https://doi.org/10.1128/jb.185.3.1027-1036.2003.PMC142794.PMID12533479.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Boghog. File: Rhamnolipid.tif. Date: November 20, 2011. This work is in the public domain. https://commons.wikimedia.org/wiki/File:Rhamnolipid.tif.
  39. 39.
    Gira, J. File: Gram Positive Bacteria Quorum Sensing.pdf. Date: December 19, 2016. License: Creative Commons Attribution-Share Alike 4.0 International https://en.wikipedia.org/wiki/File:Gram_Positive_Bacteria_Quorum_Sensing.pdf.
  40. 40.
    Miller, M. B., & Bassler, B. L. (2001). Quorum sensing in bacteria. Annual Review of Microbiology, 55, 165–199.CrossRefGoogle Scholar
  41. 41.
    Solano, C., Echeverz, M., & Lasa, I. (2014). Biofilm dispersion and quorum sensing. Current Opinion in Microbiology, 18, 96–104.Google Scholar
  42. 42.
    Ikegai, H. (2015). Genomics approach. In: Kanematsu, H., Barry, D. M. (Eds.), Biofilm and Materials Science. New York, The USA: Springer.Google Scholar
  43. 43.
    Whiteley, M., Diggle, S. P., & Greenberg, E. P. (2017). Progress in and promise of bacterial quorum sensing research. Nature, 551, 313–320.CrossRefGoogle Scholar
  44. 44.
    Li, Zhi, & Nair, Satish. (2012). Quorum sensing: How bacteria can coordinate activity and synchronize their response to external signals. Protein Science, 21(10), 1403–1417.  https://doi.org/10.1002/pro.2132.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Hbf878. File: N-Acyl Homoserine Lactone.svg. Date: December 24, 2017. License: Creative Commons CCO 1.0 Universal Public Domain https://commons.wikimedia.org/wiki/File:N-Acyl_Homoserine_Lactone.svg.
  46. 46.
    Nealson, K. H., Platt, T., & Hastings, J. W. (1970). Cellular control of the synthesis and activity of the bacterial luminescent system. Journal of Bacteriology, 104, 313–322.CrossRefGoogle Scholar
  47. 47.
    Chapman, J. (2015). Detachment of bacteria. In H. Kanematsu & D. M. Barry (Eds.), Biofilm and Materials Science. New York, The USA: Springer.Google Scholar
  48. 48.
    Kaplan, J. B. (2010). Biofilm dispersal: Mechanisms, clinical implications, and potential therapeutic uses. Journal of Dental Research, 89(3), 205–218.  https://doi.org/10.1177/0022034509359403.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Yirka, B. (2016). Enzymes found that can tear down bacterial biofilm walls Phys.org (report). https://phys.org/news/2016-05-enzymes-bacterial-biofilm-walls.html.
  50. 50.
    Novotny, Laura, et al. (2016). Monoclonal antibodies against DNA-binding tips of DNABll proteins disrupt biofilms in vitro and induce bacterial clearance in vivo. EBioMedicine.  https://doi.org/10.1016/j.ebiom.2016.06.022.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Molobela, P., Cloete, T. E., & Beukes, M. (2010). Protease and amylase enzymes for biofilm removal and degradation of extracellular polymeric substances (EPS) produced by Pseudomonas fluorescens bacteria. African Journal of Microbiology Research, 4(14), 1515–1524.Google Scholar
  52. 52.
    Sadaf, M. (2013). Calculation of pigging effectiveness for petroleum (product) pipelines. International Journal of Scientific and Research Publications, 3(9), 2123. ISSN 2250-3153.Google Scholar
  53. 53.
    Cloyde, C. (2011). Pig trap design and assessment consideration. Pipeline & Gas Journal, 36–42.Google Scholar
  54. 54.
    Barrison, H. File: Pipeline PIG.jpg. Date: February 24, 2009. License: Creative Commons Attribution-Share Alike 2.0 Generic. https://commons.wikimedia.org/wiki/File:PipelinePIG.jpg.
  55. 55.
    Ryan, D. L., Darby, M., Bauman, D., Tolle, S., & Naik, D. (2005). Effect of ultrasonic scaling and hand-activated scaling on tactile sensitivity in dental hygiene students. Journal of Dental Hygiene, 79(1), 1–13.Google Scholar
  56. 56.
    Tortora, G., Funke, B., & Case, C. (2016). Microbiology: An introduction (12th ed.) (pp. 156–157). U.S. Pearson.Google Scholar
  57. 57.
    Black, J. (Ed.). (2005). Biological performance of materials—Fundamental of biocompatibility. Boca Raton, FL: CRC Press-Taylor & Francis.Google Scholar
  58. 58.
    Kanematsu, H., Barry, D. M., Ikegai, H., Yoshitake, M., & Mizunoe, Y. (2017). Biofilm evaluation methods outside body to inside—Problem presentations for the future. Medical Research Archives, 5, 1–17.Google Scholar
  59. 59.
    Szczotka-Flynn, L., Imamura, Y., Chandra, J., Yu, C., Muherjee, P., Pearlman, E., et al. (2009). Increased resistance of contact lens related biofilms to antimicrobial activity of soft contact lens care solutions. Cornea, 28(8), 918–926.  https://doi.org/10.1097/ICO.0b013e3181a81835.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Blaus, B. File: Blausen 0181. Date: November 6, 2013. License: Creative Commons Attribution 3.0 https://commons.wikimedia.org/wiki/File:Blausen_0181_Catheter_CentralVenousAccessDevice _NonTunneled.png.
  61. 61.
    Garcia-Caballero, J., Heruzo-Cabrera, H., Vera-Cortes, M. L., Garcia de Lorenzo, A., Vazquez-Encinar, A., Garcia-Caballero, F., del Rey-Calero, J. (1985). The growth of micro-organisms in intravenous fluids. Journal of Hospital Infection, 6(2), 154–157.  https://doi.org/10.1016/S0195-6701(85)80092-X.CrossRefGoogle Scholar
  62. 62.
    Nicolle, Lindsay. (2014). Catheter associated urinary tract infections. Antimicrobial Resistance and Infection Control, 3, 23.  https://doi.org/10.1186/2047-2994-3-23.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Ivanovic, B., Trifunovic, D., Matic, S., Petrovic, J., Sacic, D., & Tadic, M. (2019). Prosthetic valve endocarditis—A trouble or a challenge? Journal of Cardiology, 73(2), 126–133.CrossRefGoogle Scholar
  64. 64.
    Nicholson, L. (2016). The immune system. Essays in Biochemistry, 60(3), 275–301.CrossRefGoogle Scholar
  65. 65.
    Hazmat2. File: T cell activation.svg. Date: January 28, 2012. License: This work is in the public domain. https://commons.wikimedia.org/wiki/File:T_cell_activation.svg.
  66. 66.
    Pereira, L. B. (2014). Impetigo-review. Anais Brasileiros de Dermatologia, 89(2), 293–299.CrossRefGoogle Scholar
  67. 67.
    Doring, G., Flume, P., Heijerman, H., & Elborn, S. (2012). Treatment of lung infection in patients with cystic fibrosis: Current and future strategies. Journal of Cystic Fibrosis, 11(6), 461–479.CrossRefGoogle Scholar
  68. 68.
    Wunderink, R., & Waterer, G. (2014). Community-acquired pneumonia. The New England Journal of Medicine.  https://doi.org/10.1056/NEJMcp1214869.CrossRefPubMedGoogle Scholar
  69. 69.
    Bamberger, D. (2010). Diagnosis, initial management and prevention of meningitis. American Family Physician, 15; 82(12), 1491–1498.Google Scholar
  70. 70.
    Borghi, L., Nouvernne, A., & Meschi, T. (2012). Nephrolithiasis and urinary tract infections: ‘The chicken or the egg’ dilemma? Nephrology, Dialysis, Transplantation, 27(11), 3982–3984.CrossRefGoogle Scholar
  71. 71.
    Ballinger, E., Mosior, J., Hartman, T., et al. (2019). Opposing reactions in coenzyme A metabolism sensitive Mycobacterium tuberculosis to enzyme inhibition. Science, 363(6426), eaau8959.  https://doi.org/10.1126/science.aau8959.CrossRefGoogle Scholar
  72. 72.
    Rawal, T., & Butani, S. (2016). Combating tuberculosis infection: A forbidding challenge. Indian Journal of Pharmaceutical Sciences, 78(1), 8–16.CrossRefGoogle Scholar
  73. 73.
    Calhoun, J., Manring, M. M., & Shirtliff, M. (2009). Osteomyelitis of the long bones. Seminars in Plastic Surgery, 23(2), 59–72.  https://doi.org/10.1055/S-0029-1214158.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Hatzenbuehler, J., & Pulling, T. J. (2011). Diagnosis and management of osteomyelitis. American Family Physician, 84(9), 1027–1033.PubMedGoogle Scholar
  75. 75.
    Hajishengallis, G. (2015). Periodontitis: From microbial immune subversion to systemic inflammation. Nature Reviews Immunology, 15(1), 30–44.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringNational Institute of Technology (KOSEN)Shiroko-cho, SuzukaJapan
  2. 2.Department of Electrical and Computer EngineeringClarkson UniversityPotsdamUSA

Personalised recommendations