Skip to main content
  • 648 Accesses

Abstract

Biofilms form at the interface between different phases as a result of bacterial activities. They cause many problems for industry and our daily lives. Biofilms have negative problems to solve, but also provide us with benefits if we use them properly and effectively. In this chapter, we outline a world filled with biofilms and their impact on industries and our daily lives. Also we mention why we were compelled to write this important book.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kanematsu, H., & Barry, D. M. (2015). Biofilm and materials science. New York, USA: Springer.

    Google Scholar 

  2. Kanematsu, H., & Barry, D. M. (2016). Corrosion control and surface finishing. Springer.

    Google Scholar 

  3. Zuo, R. (2007). Biofilms: Strategies for metal corrosion inhibition employing microorganisms. Applied Microbiology and Biotechnology, 76(6), 1245–1253.

    Article  CAS  PubMed  Google Scholar 

  4. Little, B., & Ray, R. (2002). A perspective on corrosion inhibition by biofilms. Corrosion, 58(5), 424–428.

    Article  CAS  Google Scholar 

  5. Beech, I. B. (2004). Corrosion of technical materials in the presence of biofilms: Current understanding and state-of-the art methods of study. International Biodeterioration and Biodegradation, 53(3), 177–183.

    Article  CAS  Google Scholar 

  6. Dexter, S. C., & Gao, G. Y. (1988). Effect of seawater biofilms on corrosion potential and oxygen reduction of stainless steel. Corrosion, 44(10), 717–723.

    Article  CAS  Google Scholar 

  7. Little, B. J., Lee, J. S., & Ray, R. I. (2008). The influence of marine biofilms on corrosion: A concise review. Electrochimica Acta, 54(1), 2–7.

    Article  CAS  Google Scholar 

  8. Jayaraman, A., Earthman, J. C., & Wood, T. K. (1997). Corrosion inhibition by aerobic biofilms on SAE 1018 steel. Applied Microbiology and Biotechnology, 47(1), 62–68.

    Article  CAS  Google Scholar 

  9. Zuo, R., Kus, E., Mansfeld, F., & Wood, T. K. (2005). The importance of live biofilms in corrosion protection. Corrosion Science, 47(2), 279–287.

    Article  CAS  Google Scholar 

  10. Beech, I. B. (2003). Sulfate-reducing bacteria in biofilms on metallic materials and corrosion. Microbiology Today, 30(8), 115–117.

    Google Scholar 

  11. Dexter, S. C., & LaFontaine, J. P. (1998). Effect of natural marine biofilms on galvanic corrosion. Corrosion, 54(11), 851–861.

    Article  CAS  Google Scholar 

  12. Jayaraman, A., Cheng, E. T., Earthman, J. C., & Wood, T. K. (1997). Axenic aerobic biofilms inhibit corrosion of SAE 1018 steel through oxygen depletion. Applied Microbiology and Biotechnology, 48(1), 11–17.

    Article  CAS  PubMed  Google Scholar 

  13. Örnek, D., Wood, T. K., Hsu, C. H., & Mansfeld, F. (2002). Corrosion control using regenerative biofilms (CCURB) on brass in different media. Corrosion Science, 44(10), 2291–2302.

    Article  Google Scholar 

  14. Souza, J. C. M., Henriques, M., Oliveira, R., Teughels, W., Celis, J. P., & Rocha, L. A. (2010). Do oral biofilms influence the wear and corrosion behavior of titanium? Biofouling, 26(4), 471–478.

    Article  CAS  PubMed  Google Scholar 

  15. Phipps, P. B. P., & Rice, D. W. (1979). The role of water in atmospheric corrosion. ACS Symposium Series, 89, 235–261.

    Article  CAS  Google Scholar 

  16. Leygraf, C., Wallinder, I. O., Tidblad, J., & Graedel, T. (2016). Atmospheric corrosion. Wiley.

    Google Scholar 

  17. Li, X., Wang, H., Hu, C., Yang, M., Hu, H., & Niu, J. (2015). Characteristics of biofilms and iron corrosion scales with ground and surface waters in drinking water distribution systems. Corrosion Science, 90, 331–339.

    Article  CAS  Google Scholar 

  18. McNeill, L. S., & Edwards, M. (2001). Iron pipe corrosion in distribution systems. Journal of American Water Works Association, 93(7), 88–100.

    Article  CAS  Google Scholar 

  19. Lu, C., Biswas, P., & Clark, R. M. (1995). Simultaneous transport of substrates, disinfectants and microorganisms in water pipes. Water Research, 29(3), 881–894.

    Article  CAS  Google Scholar 

  20. Walker, J. T., Wagner, D., Fischer, W., & Keevil, C. W. (1994). Rapid detection of biofilm on corroded copper pipes. Biofouling, 8(1), 55–63.

    Article  CAS  Google Scholar 

  21. Makris, K. C., Andra, S. S., & Botsaris, G. (2014). Pipe scales and biofilms in drinking-water distribution systems: undermining finished water quality. Critical Reviews in Environmental Science and Technology, 44(13), 1477–1523.

    Article  CAS  Google Scholar 

  22. Cerrato, J. M., Falkinham, J. O., & Dietrich, A. M. (2006, October). Manganese scales and biofilms in drinking water distribution systems. In Water Science and Technology Symposium (p. 60).

    Google Scholar 

  23. Ellison, D. (2003). Investigation of pipe cleaning methods. American Water Works Association.

    Google Scholar 

  24. Camper, A. K. (1993). Coliform regrowth and biofilm accumulation in drinking water systems: A review. In Biofouling and biocorrosion in industrial water systems (pp. 91–105).

    Google Scholar 

  25. Characklis, W. G. (1980). Biofilm development and destruction (No. EPRI-CS-1554). Rice University, Houston, TX, USA.

    Google Scholar 

  26. Lutterbach, M. T. S., & De Franca, F. P. (1996). Biofilm formation in water cooling systems. World Journal of Microbiology & Biotechnology, 12(4), 391–394.

    Article  CAS  Google Scholar 

  27. Bott, T. R. (1998). Techniques for reducing the amount of biocide necessary to counteract the effects of biofilm growth in cooling water systems. Applied Thermal Engineering, 18(11), 1059–1066.

    Article  CAS  Google Scholar 

  28. Viera, M. R., Guiamet, P. S., De Mele, M. F. L., & Videla, H. A. (1999). Use of dissolved ozone for controlling planktonic and sessile bacteria in industrial cooling systems. International Biodeterioration and Biodegradation, 44(4), 201–207.

    Article  CAS  Google Scholar 

  29. Meesters, K. P. H., Van Groenestijn, J. W., & Gerritse, J. (2003). Biofouling reduction in recirculating cooling systems through biofiltration of process water. Water Research, 37(3), 525–532.

    Article  CAS  PubMed  Google Scholar 

  30. Türetgen, I., & Cotuk, A. (2007). Monitoring of biofilm-associated Legionella pneumophila on different substrata in model cooling tower system. Environmental Monitoring and Assessment, 125(1–3), 271–279.

    Article  PubMed  CAS  Google Scholar 

  31. Shi, X., & Zhu, X. (2009). Biofilm formation and food safety in food industries. Trends in Food Science & Technology, 20(9), 407–413.

    Article  CAS  Google Scholar 

  32. Srey, S., Jahid, I. K., & Ha, S. D. (2013). Biofilm formation in food industries: A food safety concern. Food Control, 31(2), 572–585.

    Article  Google Scholar 

  33. Wirtanen, G., Saarela, M. A. R. I. A., & Mattila-Sandholm, T. I. I. N. A. (2000). Biofilms: Impact on hygiene in food industries. In Biofilms II: Process analysis and applications (pp. 327–372).

    Google Scholar 

  34. Poulsen, L. V. (1999). Microbial biofilm in food processing. LWT-Food Science and Technology, 32(6), 321–326.

    Article  CAS  Google Scholar 

  35. Fratamico, P. M., Annous, B. A., & Guenther, N. W. (Eds.). (2009). Biofilms in the food and beverage industries. Elsevier.

    Google Scholar 

  36. Gibson, H., Taylor, J. H., Hall, K. E., & Holah, J. T. (1999). Effectiveness of cleaning techniques used in the food industry in terms of the removal of bacterial biofilms. Journal of Applied Microbiology, 87(1), 41–48.

    Article  CAS  PubMed  Google Scholar 

  37. Holah, J. T., & Kearney, L. R. (1992). Introduction to biofilms in the food industry. In Biofilms—Science and technology (pp. 35–41). Dordrecht: Springer.

    Google Scholar 

  38. Dosti, B., Guzel-Seydim, Z. E. Y. N. E. P., & Greene, A. K. (2005). Effectiveness of ozone, heat and chlorine for destroying common food spoilage bacteria in synthetic media and biofilms. International Journal of Dairy Technology, 58(1), 19–24.

    Google Scholar 

  39. Faille, C., Bénézech, T., Midelet-Bourdin, G., Lequette, Y., Clarisse, M., Ronse, G., et al. (2014). Sporulation of Bacillus spp. within biofilms: A potential source of contamination in food processing environments. Food Microbiology, 40 64–74.

    Article  CAS  PubMed  Google Scholar 

  40. Lindsay, D., & von Holy, A. (2006). What food safety professionals should know about bacterial biofilms. British Food Journal, 108(1), 27–37.

    Article  Google Scholar 

  41. Brooks, J. D., & Flint, S. H. (2008). Biofilms in the food industry: Problems and potential solutions. International Journal of Food Science & Technology, 43(12), 2163–2176.

    Article  CAS  Google Scholar 

  42. Gutiérrez, D., Rodríguez-Rubio, L., Martínez, B., Rodríguez, A., & García, P. (2016). Bacteriophages as weapons against bacterial biofilms in the food industry. Frontiers in microbiology, 7, 825.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Abdallah, M., Benoliel, C., Drider, D., Dhulster, P., & Chihib, N. E. (2014). Biofilm formation and persistence on abiotic surfaces in the context of food and medical environments. Archives of Microbiology, 196(7), 453–472.

    Article  CAS  PubMed  Google Scholar 

  44. Chorianopoulos, N. G., Tsoukleris, D. S., Panagou, E. Z., Falaras, P., & Nychas, G. J. (2011). Use of titanium dioxide (TiO2) photocatalysts as alternative means for Listeria monocytogenes biofilm disinfection in food processing. Food Microbiology, 28(1), 164–170.

    Article  CAS  PubMed  Google Scholar 

  45. Joseph, B., Otta, S. K., Karunasagar, I., & Karunasagar, I. (2001). Biofilm formation by Salmonella spp. on food contact surfaces and their sensitivity to sanitizers. International Journal of Food Microbiology, 64(3), 367–372.

    Google Scholar 

  46. Wolcott, R. D., & Ehrlich, G. D. (2008). Biofilms and chronic infections. JAMA, 299(22), 2682–2684.

    Article  CAS  PubMed  Google Scholar 

  47. Costerton, W., Veeh, R., Shirtliff, M., Pasmore, M., Post, C., & Ehrlich, G. (2003). The application of biofilm science to the study and control of chronic bacterial infections. The Journal of Clinical Investigation, 112(10), 1466–1477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Costerton, J. W. (1999). Introduction to biofilm. International Journal of Antimicrobial Agents, 11(3–4), 217–221.

    Article  CAS  PubMed  Google Scholar 

  49. Sanderson, A. R., Leid, J. G., & Hunsaker, D. (2006). Bacterial biofilms on the sinus mucosa of human subjects with chronic rhinosinusitis. The Laryngoscope, 116(7), 1121–1126.

    Article  PubMed  Google Scholar 

  50. Kilty, S. J., & Desrosiers, M. Y. (2008). The role of bacterial biofilms and the pathophysiology of chronic rhinosinusitis. Current Allergy and Asthma Reports, 8(3), 227–233.

    Article  CAS  PubMed  Google Scholar 

  51. Hall-Stoodley, L., Hu, F. Z., Gieseke, A., Nistico, L., Nguyen, D., Hayes, J., et al. (2006). Direct detection of bacterial biofilms on the middle-ear mucosa of children with chronic otitis media. JAMA, 296(2), 202–211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Parsek, M. R., & Singh, P. K. (2003). Bacterial biofilms: an emerging link to disease pathogenesis. Annual Reviews in Microbiology, 57(1), 677–701.

    Article  CAS  Google Scholar 

  53. Brady, R. A., Leid, J. G., Calhoun, J. H., Costerton, J. W., & Shirtliff, M. E. (2008). Osteomyelitis and the role of biofilms in chronic infection. FEMS Immunology and Medical Microbiology, 52(1), 13–22.

    Article  CAS  PubMed  Google Scholar 

  54. Barbeau, J., Gauthier, C., & Payment, P. (1998). Biofilms, infectious agents, and dental unit waterlines: A review. Canadian Journal of Microbiology, 44(11), 1019–1028.

    Article  CAS  PubMed  Google Scholar 

  55. Biddle, C. (2009). Semmelweis revisited: Hand hygiene and nosocomial disease transmission in the anesthesia workstation. AANA Journal, 77(3).

    Google Scholar 

  56. De Silva, G. D. I., Kantzanou, M., Justice, A., Massey, R. C., Wilkinson, A. R., Day, N. P. J., et al. (2002). The ica operon and biofilm production in coagulase-negative staphylococci associated with carriage and disease in a neonatal intensive care unit. Journal of Clinical Microbiology, 40(2), 382–388.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Mukherjee, P. K., & Chandra, J. (2004). Candida biofilm resistance. Drug Resistance Updates, 7(4–5), 301–309.

    Article  CAS  PubMed  Google Scholar 

  58. Kuroki, R., Kawakami, K., Qin, L., Kaji, C., Watanabe, K., Kimura, Y., et al. (2009). Nosocomial bacteremia caused by biofilm-forming Bacillus cereus and Bacillus thuringiensis. Internal Medicine, 48(10), 791–796.

    Article  PubMed  Google Scholar 

  59. Frank, D. N., Wilson, S. S., Amand, A. L. S., & Pace, N. R. (2009). Culture-independent microbiological analysis of foley urinary catheter biofilms. PLoS One, 4(11), e7811.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Hunter, P. R., Colford, J. M., LeChevallier, M. W., Binder, S., & Berger, P. S. (2001). Waterborne diseases. Emerging Infectious Diseases, 7(3 Suppl.), 544.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Souza, C. D., Faria, Y. V., Sant’Anna, L. D. O., Viana, V. G., Seabra, S. H., Souza, M. C. D., et al. (2015). Biofilm production by multiresistant Corynebacterium striatum associated with nosocomial outbreak. Memorias do Instituto Oswaldo Cruz, 110(2), 242–248.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Tamilvanan, S., Venkateshan, N., & Ludwig, A. (2008). The potential of lipid-and polymer-based drug delivery carriers for eradicating biofilm consortia on device-related nosocomial infections. Journal of Controlled Release, 128(1), 2–22.

    Article  CAS  PubMed  Google Scholar 

  63. Shearer, B. G. (1996). Biofilm and the dental office. The Journal of the American Dental Association, 127(2), 181–184.

    Article  CAS  PubMed  Google Scholar 

  64. Esteban, J., Martín-de-Hijas, N. Z., Kinnari, T. J., Ayala, G., Fernández-Roblas, R., & Gadea, I. (2008). Biofilm development by potentially pathogenic non-pigmented rapidly growing mycobacteria. BMC Microbiology, 8(1), 184.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Rodríguez-Baño, J., Marti, S., Soto, S., Fernández-Cuenca, F., Cisneros, J. M., Pachón, J., et al. (2008). Biofilm formation in Acinetobacter baumannii: Associated features and clinical implications. Clinical Microbiology and Infection, 14(3), 276–278.

    Article  PubMed  Google Scholar 

  66. Shikuma, N. J., & Hadfield, M. G. (2010). Marine biofilms on submerged surfaces are a reservoir for Escherichia coli and Vibrio cholerae. Biofouling, 26(1), 39–46.

    Article  CAS  PubMed  Google Scholar 

  67. Salta, M., Wharton, J. A., Blache, Y., Stokes, K. R., & Briand, J. F. (2013). Marine biofilms on artificial surfaces: Structure and dynamics. Environmental Microbiology, 15(11), 2879–2893.

    PubMed  Google Scholar 

  68. Dhanasekaran, D., Thajuddin, N., Rashmi, M., Deepika, T. L., & Gunasekaran, M. (2009). Screening of biofouling activity in marine bacterial isolate from ship hull. International Journal of Environmental Science and Technology, 6(2), 197–202.

    Article  CAS  Google Scholar 

  69. Hellio, C., & Yebra, D. (Eds.). (2009). Advances in marine antifouling coatings and technologies. Elsevier.

    Google Scholar 

  70. Leary, D. H., Li, R. W., Hamdan, L. J., Hervey, W. J., IV, Lebedev, N., Wang, Z., et al. (2014). Integrated metagenomic and metaproteomic analyses of marine biofilm communities. Biofouling, 30(10), 1211–1223.

    Article  CAS  PubMed  Google Scholar 

  71. Wigglesworth-Cooksey, B., & Cooksey, K. E. (2005). Use of fluorophore-conjugated lectins to study cell-cell interactions in model marine biofilms. Applied and Environment Microbiology, 71(1), 428–435.

    Article  CAS  Google Scholar 

  72. Inbakandan, D., Sriyutha Murthy, P., Venkatesan, R., & Ajmal Khan, S. (2010). 16S rDNA sequence analysis of culturable marine biofilm forming bacteria from a ship’s hull. Biofouling, 26(8), 893–899.

    Article  CAS  PubMed  Google Scholar 

  73. Drake, L. A., Doblin, M. A., & Dobbs, F. C. (2007). Potential microbial bioinvasions via ships’ ballast water, sediment, and biofilm. Marine Pollution Bulletin, 55(7–9), 333–341.

    Article  CAS  PubMed  Google Scholar 

  74. Briand, J. F., Djeridi, I., Jamet, D., Coupé, S., Bressy, C., Molmeret, M., et al. (2012). Pioneer marine biofilms on artificial surfaces including antifouling coatings immersed in two contrasting French Mediterranean coast sites. Biofouling, 28(5), 453–463.

    Article  CAS  PubMed  Google Scholar 

  75. Biranjia-Hurdoyal, S., & Latouche, M. C. (2016). Factors affecting microbial load and profile of potential pathogens and food spoilage bacteria from household kitchen tables. Canadian Journal of Infectious Diseases and Medical Microbiology, 2016.

    Google Scholar 

  76. Powers, E. M. (1992). Towellette sanitation system for mobile kitchen trailers (No. NATICK/TR-93/012). Army Natick Research Development and Engineering Center, MA.

    Google Scholar 

  77. Lamas, A., Regal, P., Vázquez, B., Miranda, J. M., Cepeda, A., & Franco, C. M. (2018). Salmonella and Campylobacter biofilm formation: A comparative assessment from farm to fork. Journal of the Science of Food and Agriculture, 98(11), 4014–4032.

    Article  CAS  PubMed  Google Scholar 

  78. Okpala, C. O. R., & Ifeoma, M. E. (2019). Food hygiene/microbiological safety in the typical household kitchen: Some basic ‘Must Knows’ for the general public. Journal of Pure and Applied Microbiology, 13(2).

    Google Scholar 

  79. Lakshmanan, C., & Schaffner, D. W. (2006). Understanding and controlling microbiological contamination of beverage dispensers in university foodservice operations. Food Protection Trends, 26(1), 27–31.

    Google Scholar 

  80. Pitts, B., Willse, A., McFeters, G. A., Hamilton, M. A., Zelver, N., & Stewart, P. S. (2001). A repeatable laboratory method for testing the efficacy of biocides against toilet bowl biofilms. Journal of Applied Microbiology, 91(1), 110–117.

    Article  CAS  PubMed  Google Scholar 

  81. Pitts, B., Stewart, P. S., Mcfeters, G. A., Hamilton, M. A., Willse, A., & Zelver, N. (1998). Bacterial characterization of toilet bowl biofilm. Biofouling, 13(1), 19–30.

    Article  Google Scholar 

  82. Mori, M., Gomi, M., Matsumune, N., Niizeki, K., & Sakagami, Y. (2013). Biofilm- forming activity of bacteria isolated from toilet bowl biofilms and the bactericidal activity of disinfectants against the isolates. Biocontrol Science, 18(3), 129–135.

    Article  CAS  PubMed  Google Scholar 

  83. Nobile, C. J., & Mitchell, A. P. (2007). Microbial biofilms: e pluribus unum. Current Biology, 17(10), R349–R353.

    Article  CAS  PubMed  Google Scholar 

  84. Mori, M., Nagata, Y., Niizeki, K., Gomi, M., & Sakagami, Y. (2014). Characterization of microorganisms isolated from the black dirt of toilet bowls and componential analysis of the black dirt. Biocontrol Science, 19(4), 173–179.

    Article  CAS  PubMed  Google Scholar 

  85. Feazel, L. M., Baumgartner, L. K., Peterson, K. L., Frank, D. N., Harris, J. K., & Pace, N. R. (2009). Opportunistic pathogens enriched in showerhead biofilms. Proceedings of the National Academy of Sciences, 106(38), 16393–16399.

    Article  CAS  Google Scholar 

  86. Yano, T., Kubota, H., Hanai, J., Hitomi, J., & Tokuda, H. (2012). Stress tolerance of Methylobacterium biofilms in bathrooms. Microbes and Environments, ME12146.

    Google Scholar 

  87. Eboigbodin, K. E., Seth, A., & Biggs, C. A. (2008). A review of biofilms in domestic plumbing. Journal of American Water Works Association, 100(10), 131–138.

    Article  CAS  Google Scholar 

  88. Redelman, C. V., Hawkins, M. A., Drumwright, F. R., Ransdell, B., Marrs, K., & Anderson, G. G. (2012). Inquiry-based examination of chemical disruption of bacterial biofilms. Biochemistry and Molecular Biology Education, 40(3), 191–197.

    Article  CAS  PubMed  Google Scholar 

  89. Görs, S., Schumann, R., Häubner, N., & Karsten, U. (2007). Fungal and algal biomass in biofilms on artificial surfaces quantified by ergosterol and chlorophyll a as biomarkers. International Biodeterioration and Biodegradation, 60(1), 50–59.

    Article  CAS  Google Scholar 

  90. Eguchi, H., Miyamoto, T., Kuwahara, T., Mitamura, S., & Mitamura, Y. (2013). Infectious conjunctivitis caused by Pseudomonas aeruginosa isolated from a bathroom. BMC Research Notes, 6(1), 245.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Eggert, A., Häubner, N., Klausch, S., Karsten, U., & Schumann, R. (2006). Quantification of algal biofilms colonising building materials: chlorophyll a measured by PAM-fluorometry as a biomass parameter. Biofouling, 22(02), 79–90.

    Article  CAS  PubMed  Google Scholar 

  92. Crispim, C. A., Gaylarde, P. M., & Gaylarde, C. C. (2003). Algal and cyanobacterial biofilms on calcareous historic buildings. Current Microbiology, 46(2), 0079–0082.

    Article  CAS  Google Scholar 

  93. Gaylarde, C. C., & Morton, L. G. (1999). Deteriogenic biofilms on buildings and their control: A review. Biofouling, 14(1), 59–74.

    Article  Google Scholar 

  94. Gaylarde, C. C., & Gaylarde, P. M. (2005). A comparative study of the major microbial biomass of biofilms on exteriors of buildings in Europe and Latin America. International Biodeterioration and Biodegradation, 55(2), 131–139.

    Article  Google Scholar 

  95. Simmons, R. B., Rose, L. J., Crow, S. A., & Ahearn, D. G. (1999). The occurrence and persistence of mixed biofilms in automobile air conditioning systems. Current Microbiology, 39(3), 141–145.

    Article  CAS  PubMed  Google Scholar 

  96. Rose, L. J., Simmons, R. B., Crow, S. A., & Ahearn, D. G. (2000). Volatile organic compounds associated with microbial growth in automobile air conditioning systems. Current Microbiology, 41(3), 206–209.

    Article  CAS  PubMed  Google Scholar 

  97. Gattlen, J., Amberg, C., Zinn, M., & Mauclaire, L. (2010). Biofilms isolated from washing machines from three continents and their tolerance to a standard detergent. Biofouling, 26(8), 873–882.

    Article  CAS  PubMed  Google Scholar 

  98. Bockmühl, D. P. (2017). Laundry hygiene: How to get more than clean. Journal of Applied Microbiology, 122(5), 1124–1133.

    Article  PubMed  Google Scholar 

  99. Wong, N. S., Luckman, J. A., Hardaway, A. H., & Vaidhyanathan, R. (2008). U.S. Patent Application No. 11/745,231.

    Google Scholar 

  100. Amberg, C., Fäh, D., & Frey, F. (2009, May). Composition of natural biofilms in household washing machines. In 44th International Detergency Conference, Düsseldorf, Germany.

    Google Scholar 

  101. Reguera, G., Nevin, K. P., Nicoll, J. S., Covalla, S. F., Woodard, T. L., & Lovley, D. R. (2006). Biofilm and nanowire production leads to increased current in Geobacter sulfurreducens fuel cells. Applied and Environment Microbiology, 72(11), 7345–7348.

    Article  CAS  Google Scholar 

  102. Picioreanu, C., Head, I. M., Katuri, K. P., van Loosdrecht, M. C., & Scott, K. (2007). A computational model for biofilm-based microbial fuel cells. Water Research, 41(13), 2921–2940.

    Article  CAS  PubMed  Google Scholar 

  103. Bergel, A., Féron, D., & Mollica, A. (2005). Catalysis of oxygen reduction in PEM fuel cell by seawater biofilm. Electrochemistry Communications, 7(9), 900–904.

    Article  CAS  Google Scholar 

  104. Nevin, K. P., Richter, H., Covalla, S. F., Johnson, J. P., Woodard, T. L., Orloff, A. L., et al. (2008). Power output and columbic efficiencies from biofilms of Geobacter sulfurreducens comparable to mixed community microbial fuel cells. Environmental Microbiology, 10(10), 2505–2514.

    Article  CAS  PubMed  Google Scholar 

  105. Franks, A. E., & Nevin, K. P. (2010). Microbial fuel cells, a current review. Energies, 3(5), 899–919.

    Article  CAS  Google Scholar 

  106. Nevin, K. P., Kim, B. C., Glaven, R. H., Johnson, J. P., Woodard, T. L., Methé, B. A., et al. (2009). Anode biofilm transcriptomics reveals outer surface components essential for high density current production in Geobacter sulfurreducens fuel cells. PLoS One, 4(5), e5628.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Biffinger, J. C., Pietron, J., Ray, R., Little, B., & Ringeisen, B. R. (2007). A biofilm enhanced miniature microbial fuel cell using Shewanella oneidensis DSP10 and oxygen reduction cathodes. Biosensors & Bioelectronics, 22(8), 1672–1679. https://doi.org/10.1016/j.bios.2006.07.027.

    Article  CAS  Google Scholar 

  108. Ishii, S., Shimoyama, T., Hotta, Y., & Watanabe, K. (2008). Characterization of a filamentous biofilm community established in a cellulose-fed microbial fuel cell. BMC Microbiology, 8, 6. https://doi.org/10.1186/1471-2180-8-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Picioreanu, C., van Loosdrecht, M. C., Katuri, K. P., Scott, K., & Head, I. M. (2008). Mathematical model for microbial fuel cells with anodic biofilms and anaerobic digestion. Water Science and Technology, 57(7), 965–971. https://doi.org/10.2166/wst.2008.095.

    Article  CAS  PubMed  Google Scholar 

  110. Beyenal, H., & Babauta, J. T. (Eds.). (2015). Biofilms in bioelectrochemical systems. Hoboken, New Jersey: Wiley.

    Google Scholar 

  111. Kanematsu, H., Kogo, T., Itoh, H., Wada, N., & Yoshitake, M. (2013). Fogged glass by biofilm formation and its evaluation. Paper presented at the Proceedings of MS & T’ 13, Montreal, Quebec, Canada.

    Google Scholar 

  112. Kanematsu, H., Hirai, N., Miura, Y., Itoh, H., Kuroda, D., & Umeki, S. (2013). Biofilm leading to corrosion on material surface and the moderation by alternative electro-magnetic field. Paper presented at the Materials Science and Technology (MS & T), Montreal, Quebec, Canada.

    Google Scholar 

  113. Kanematsu, H., Umeki, S., Hirai, N., Miura, Y., Wada, N., Kogo, T., et al. (2016). Verification of effect of alternative electromagnetic treatment on control of biofilm and scale formation by a new laboratory biofilm reactor. Ceramic Transactions, 259, 199–212. https://doi.org/10.1002/9781119323303.

    Article  CAS  Google Scholar 

  114. Kanematsu, H., Umeki, S., Ogawa, A., Hirai, N., Kogo, T., & Tohji, K. (2016). The cleaning effect on metallic materials under a weak alternating electromagnetic field and biofilm. Paper presented at The Ninth Pacific Rim International Conference on Advanced Materials and Processing (PRICM9), Kyoto, Japan.

    Google Scholar 

  115. Kanematsu, H., Maeda, S., Barry, D. M., Umeki, S., Tohji, K., Hirai, N., et al. (2018). Effects of elastic waves at several frequencies on biofilm formation in circulating types of laboratory biofilm reactors. In M. M. Mahmoud, K. Sridharan, H. Colorado, A. S. Bhalla, J. P. Singh, S. Gupta, J. Langhorn, A. Jitianu, & N. J. Manjooran (Eds.), Ceramic transactions—Advances in ceramics for environmental, functional, structural, and energy applications (Vol. 265, pp. 43–51). New York, United States: Wiley, Inc.

    Google Scholar 

  116. Kanematsu, H., Sato, T., Kamijo, T., Honma, S., Oizumi, A., Umeki, S., et al. (2018). Biofilm formation behavior on polymer brush surfaces by E. coli and S. pidermidis. Paper presented at the 2018 TMS Annual Meeting & Exhibition, Phoenix, Arizona, USA.

    Google Scholar 

  117. Kanematsu, H., Sato, T., Kamijo, T., Honma, S., Oizumi, A., Umeki, S., et al. (2018, March 12). Biofilm formation behavior on polymer brush surfaces by E-coli and S. epidermidis. Paper presented at the TMS 2018 Annual Meeting, Phoenix, Arizona, USA.

    Google Scholar 

  118. Kanematsu, H., Katsuragawa, T., Barry, D. M., Yokoi, K., Umeki, S., Miura, H., et al. (2019). Biofilm formation behaviors formed by E. coli under weak alternating electromagnetic fields. In Ceramic transactions (Advances in ceramics for environmental, functional structural, and energy applications II) (Vol. 266, pp. 195–208).

    Google Scholar 

  119. Kanematsu, H., Hirai, N., Miura, Y., Tanaka, M., Kogo, T., & Itoh, H. (2013). Various metals from water by biofilm from ambient germs in a reaction container. Paper presented at the Materials Science and Technology Conference, Montreal, Quebec, Canada.

    Google Scholar 

  120. Singh, R., Paul, D., & Jain, R. K. (2006). Biofilms: Implications in bioremediation. Trends in Microbiology, 14(9), 389–397.

    Article  CAS  PubMed  Google Scholar 

  121. Peacock, A. D., Chang, Y. J., Istok, J. D., Krumholz, L., Geyer, R., Kinsall, B., et al. (2004). Utilization of microbial biofilms as monitors of bioremediation. Microbial Ecology, 47(3), 284–292.

    Article  CAS  PubMed  Google Scholar 

  122. Lear, G., & Lewis, G. D. (Eds.). (2012). Microbial biofilms: Current research and applications. Horizon Scientific Press.

    Google Scholar 

  123. Radwan, S. S., Al-Hasan, R. H., Salamah, S., & Al-Dabbous, S. (2002). Bioremediation of oily sea water by bacteria immobilized in biofilms coating macroalgae. International Biodeterioration and Biodegradation, 50(1), 55–59.

    Article  CAS  Google Scholar 

  124. Edwards, S. J., & Kjellerup, B. V. (2013). Applications of biofilms in bioremediation and biotransformation of persistent organic pollutants, pharmaceuticals/personal care products, and heavy metals. Applied Microbiology and Biotechnology, 97(23), 9909–9921.

    Article  CAS  PubMed  Google Scholar 

  125. Cao, W., Zhang, H., Wang, Y., & Pan, J. (2012). Bioremediation of polluted surface water by using biofilms on filamentous bamboo. Ecological Engineering, 42, 146–149.

    Article  Google Scholar 

  126. Schachter, B. (2003). Slimy business: The biotechnology of biofilms. Nature Biotechnology, 21(4), 361.

    Article  CAS  PubMed  Google Scholar 

  127. Sarró, M. I., García, A. M., & Moreno, D. A. (2005). Biofilm formation in spent nuclear fuel pools and bioremediation of radioactive water. International Microbiology, 8(3), 223–230.

    PubMed  Google Scholar 

  128. Von Canstein, H., Li, Y., Leonhäuser, J., Haase, E., Felske, A., Deckwer, W. D., et al. (2002). Spatially oscillating activity and microbial succession of mercury-reducing biofilms in a technical-scale bioremediation system. Applied and Environment Microbiology, 68(4), 1938–1946.

    Article  CAS  Google Scholar 

  129. Pal, A., & Paul, A. K. (2008). Microbial extracellular polymeric substances: central elements in heavy metal bioremediation. Indian Journal of Microbiology, 48(1), 49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Kanematsu, H. (2014, February). Biofilm/biofouling problems & CO2 reduction. In ICAT News Letter.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dana M. Barry .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kanematsu, H., Barry, D.M. (2020). Introduction. In: Formation and Control of Biofilm in Various Environments. Springer, Singapore. https://doi.org/10.1007/978-981-15-2240-6_1

Download citation

Publish with us

Policies and ethics