Biofilm Control and Thoughts for the Future



Biofilms affect many industries and our daily lives. Their formation and growth processes have common essential factors, but some of their components differ from one environment to another. Biofilms have a negative side in that they cause many problems. However, on a positive note, they provide benefits if used properly and effectively. Therefore, it is very important to be able to control biofilm formation and growth. In this chapter, we describe future trends for the research and applications of biofilms and the types of results that we can expect.


  1. 1.
    Xiao, Y., & Zhao, F. (2017). Electrochemical roles of extracellular polymeric substances in biofilms. Current Opinion in Electrochemistry, 4(1), 206–211.CrossRefGoogle Scholar
  2. 2.
    Dheilly, A., Linossier, I., Darchen, A., Hadjiev, D., Corbel, C., & Alonso, V. (2008). Monitoring of microbial adhesion and biofilm growth using electrochemical impedancemetry. Applied Microbiology and Biotechnology, 79(1), 157–164.PubMedCrossRefGoogle Scholar
  3. 3.
    Chen, S., Jing, X., Tang, J., Fang, Y., & Zhou, S. (2017). Quorum sensing signals enhance the electrochemical activity and energy recovery of mixed-culture electroactive biofilms. Biosensors and Bioelectronics, 97, 369–376.PubMedCrossRefGoogle Scholar
  4. 4.
    Bressel, A., Schultze, J. W., Khan, W., Wolfaardt, G. M., Rohns, H. P., Irmscher, R., et al. (2003). High resolution gravimetric, optical and electrochemical investigations of microbial biofilm formation in aqueous systems. Electrochimica Acta, 48(20–22), 3363–3372.CrossRefGoogle Scholar
  5. 5.
    Dong, Z. H., Shi, W., Ruan, H. M., & Zhang, G. A. (2011). Heterogeneous corrosion of mild steel under SRB-biofilm characterised by electrochemical mapping technique. Corrosion Science, 53(9), 2978–2987.CrossRefGoogle Scholar
  6. 6.
    Beech, I. B., & Sunner, J. (2004). Biocorrosion: Towards understanding interactions between biofilms and metals. Current Opinion in Biotechnology, 15(3), 181–186.PubMedCrossRefGoogle Scholar
  7. 7.
    Cordas, C. M., Guerra, L. T., Xavier, C., & Moura, J. J. (2008). Electroactive biofilms of sulphate reducing bacteria. Electrochimica Acta, 54(1), 29–34.CrossRefGoogle Scholar
  8. 8.
    Gamby, J., Pailleret, A., Clodic, C. B., Pradier, C. M., & Tribollet, B. (2008). In situ detection and characterization of potable water biofilms on materials by microscopic, spectroscopic and electrochemistry methods. Electrochimica Acta, 54(1), 66–73.CrossRefGoogle Scholar
  9. 9.
    Tian, M., Kanavillil, N., Davey, L., Leung, K. T., Schraft, H., & Chen, A. (2007). Direct growth of biofilms on an electrode surface and its application in electrochemical biosensoring. Journal of Electroanalytical Chemistry, 611(1–2), 133–139.CrossRefGoogle Scholar
  10. 10.
    Hu, Z., Jin, J., Abruña, H. D., Houston, P. L., Hay, A. G., Ghiorse, W. C., et al. (2007). Spatial distributions of copper in microbial biofilms by scanning electrochemical microscopy. Environmental Science and Technology, 41(3), 936–941.PubMedCrossRefGoogle Scholar
  11. 11.
    Liu, B. H., Li, K. L., Kang, K. L., Huang, W. K., & Liao, J. D. (2013). In situ biosensing of the nanomechanical property and electrochemical spectroscopy of Streptococcus mutans-containing biofilms. Journal of Physics. D. Applied Physics, 46(27), 275401.CrossRefGoogle Scholar
  12. 12.
    Kim, T., Kang, J., Lee, J. H., & Yoon, J. (2011). Influence of attached bacteria and biofilm on double-layer capacitance during biofilm monitoring by electrochemical impedance spectroscopy. Water Research, 45(15), 4615–4622.PubMedCrossRefGoogle Scholar
  13. 13.
    Grooters, M., Harneit, K., Wöllbrink, M., Sand, W., Stadler, R., & Fürbeth, W. (2007). Novel steel corrosion protection by microbial extracellular polymeric substances (EPS)–biofilm-induced corrosion inhibition. Advanced Materials Research, 20, 375–378. Trans Tech Publications.Google Scholar
  14. 14.
    Kurissery, S. R., Kanavillil, N., Leung, K. T., Chen, A., Davey, L., & Schraft, H. (2010). Electrochemical and microbiological characterization of paper mill biofilms. Biofouling, 26(7), 799–808.PubMedCrossRefGoogle Scholar
  15. 15.
    Kitayama, M., Koga, R., Kasai, T., Kouzuma, A., & Watanabe, K. (2017). Structures, compositions, and activities of live Shewanella biofilms formed on graphite electrodes in electrochemical flow cells. Applied and Environmental Microbiology, 83(17), e00903–17.Google Scholar
  16. 16.
    Beech, I. B. (2004). Corrosion of technical materials in the presence of biofilms: Current understanding and state-of-the art methods of study. International Biodeterioration and Biodegradation, 53(3), 177–183.CrossRefGoogle Scholar
  17. 17.
    Fang, H. H., Xu, L. C., & Chan, K. Y. (2002). Effects of toxic metals and chemicals on biofilm and biocorrosion. Water Research, 36(19), 4709–4716.PubMedCrossRefGoogle Scholar
  18. 18.
    Cao, B., Shi, L., Brown, R. N., Xiong, Y., Fredrickson, J. K., Romine, M. F., et al. (2011). Extracellular polymeric substances from Shewanella sp. HRCR1 biofilms: Characterization by infrared spectroscopy and proteomics. Environmental Microbiology, 13(4), 1018–1031.PubMedCrossRefGoogle Scholar
  19. 19.
    Dong, Z. H., Liu, T., & Liu, H. F. (2011). Influence of EPS isolated from thermophilic sulphate-reducing bacteria on carbon steel corrosion. Biofouling, 27(5), 487–495.PubMedCrossRefGoogle Scholar
  20. 20.
    Chen, S., Wang, P., & Zhang, D. (2014). Corrosion behavior of copper under biofilm of sulfate-reducing bacteria. Corrosion Science, 87, 407–415.CrossRefGoogle Scholar
  21. 21.
    Jang, A., Kim, S. M., Kim, S. Y., Lee, S. G., & Kim, I. S. (2001). Effect of heavy metals (Cu, Pb, and Ni) on the compositions of EPS in biofilms. Water Science and Technology, 43(6), 41–48.PubMedCrossRefGoogle Scholar
  22. 22.
    Flemming, H.-C. (1995). Sorption sites in biofilms. Water Science and Technology, 32(8), 27–33.CrossRefGoogle Scholar
  23. 23.
    Neu, T. R., & Lawrence, J. R. (1999). In Situ characterization of extracellular polymeric substances (EPS) in biofilm systems. In J. Wingender, T. R. Neu, & H. C. Flemming (Eds.), Microbial extracellular polymeric substances. Berlin, Heidelberg: Springer.Google Scholar
  24. 24.
    McLamore, E. S., Porterfield, D. M., & Banks, M. K. (2009). Non-invasive self- referencing electrochemical sensors for quantifying real-time biofilm analyte flux. Biotechnology and Bioengineering, 102(3), 791–799.PubMedCrossRefGoogle Scholar
  25. 25.
    Waszczuk, K., Gula, G., Swiatkowski, M., Olszewski, J., Herwich, W., Drulis-Kawa, Z., et al. (2012). Evaluation of Pseudomonas aeruginosa biofilm formation using piezoelectric tuning fork mass sensors. Sensors and Actuators B: Chemical, 170, 7–12.CrossRefGoogle Scholar
  26. 26.
    Sahoo, P. K., Janissen, R., Monteiro, M. P., Cavalli, A., Murillo, D. M., Merfa, M. V., et al. (2016). Nanowire arrays as cell force sensors to investigate adhesin- enhanced holdfast of single cell bacteria and biofilm stability. Nano Letters, 16(7), 4656–4664.PubMedCrossRefGoogle Scholar
  27. 27.
    Zheng, L. Y., Congdon, R. B., Sadik, O. A., Marques, C. N., Davies, D. G., Sammakia, B. G., et al. (2013). Electrochemical measurements of biofilm development using polypyrrole enhanced flexible sensors. Sensors and Actuators B: Chemical, 182, 725–732.CrossRefGoogle Scholar
  28. 28.
    Mollica, A., & Cristiani, P. (2003). On-line biofilm monitoring by BIOX electrochemical probe. Water Science and Technology, 47(5), 45–49.PubMedCrossRefGoogle Scholar
  29. 29.
    Liu, J., & Mattiasson, B. (2002). Microbial BOD sensors for wastewater analysis. Water Research, 36(15), 3786–3802.PubMedCrossRefGoogle Scholar
  30. 30.
    Marcus, I. M., Herzberg, M., Walker, S. L., & Freger, V. (2012). Pseudomonas aeruginosa attachment on QCM-D sensors: The role of cell and surface hydrophobicities. Langmuir, 28(15), 6396–6402.PubMedCrossRefGoogle Scholar
  31. 31.
    Tribollet, B. (2003). Electrochemical sensors for biofilm and biocorrosion. Materials and Corrosion, 54(7), 527–534.CrossRefGoogle Scholar
  32. 32.
    Piasecki, T., Guła, G., Nitsch, K., Waszczuk, K., Drulis-Kawa, Z., & Gotszalk, T. (2013). Evaluation of Pseudomonas aeruginosa biofilm formation using quartz tuning forks as impedance sensors. Sensors and Actuators B: Chemical, 189, 60–65.CrossRefGoogle Scholar
  33. 33.
    Waszczuk, K., Gula, G., Swiatkowski, M., Olszewski, J., Drulis-Kawa, Z., Gutowicz, J., et al. (2010). Evaluation of Pseudomonas aeruginosa biofilm formation using piezoelectric tuning forks mass sensors. Procedia Engineering, 5, 820–823.CrossRefGoogle Scholar
  34. 34.
    Lewandowski, Z., & Beyenal, H. (2014). Fundamentals of biofilm research (2nd ed.). Boca Raton, London, New York: CRC Press.Google Scholar
  35. 35.
    Beyenal, H., & Babauta, J. T. (Eds.). (2015). Biofilms in bioelectrochemical systems. Hoboken, New Jersey: Wiley.Google Scholar
  36. 36.
    Pringault, O., Epping, E., Guyoneaud, R., Khalili, A., & KuÈhl, M. (1999). Dynamics of anoxygenic photosynthesis in an experimental green sulphur bacteria biofilm. Environmental Microbiology, 1(4), 295–305.PubMedCrossRefGoogle Scholar
  37. 37.
    Lee, J. H., Myers, R. R., Jang, A., Bhadri, P., Beyette, F., Timmons, W. & Papaurh:tsky, I. (October, 2004). Potentiometric microelectrode sensors for in situ environmental monitoring. In SENSORS, 2004 IEEE (pp. 361–364). IEEE.Google Scholar
  38. 38.
    Atta, N. F., Galal, A., Mark, H. B., Jr., Yu, T., & Bishop, P. L. (1998). Conducting polymer ion sensor electrodes–III. Potentiometric sulfide ion selective electrode. Talanta, 47(4), 987–999.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Vonau, W., Gabel, J., & Jahn, H. (2005). Potentiometric all solid-state pH glass sensors. Electrochimica Acta, 50(25–26), 4981–4987.CrossRefGoogle Scholar
  40. 40.
    Gieseke, A. R. M. I. N., & de Beer, D. I. R. K. (2004). Use of microelectrodes to measure in situ microbial activities in biofilms, sediments, and microbial mats. Molecular Microbial Ecology Manual, 2, 1581–1612.Google Scholar
  41. 41.
    Pires, L., Sachsenheimer, K., Kleintschek, T., Waldbaur, A., Schwartz, T., & Rapp, B. E. (2013). Online monitoring of biofilm growth and activity using a combined multi-channel impedimetric and amperometric sensor. Biosensors and Bioelectronics, 47, 157–163.PubMedCrossRefGoogle Scholar
  42. 42.
    Quintana, J. C., Idrissi, L., Palleschi, G., Albertano, P., Amine, A., El Rhazi, M., et al. (2004). Investigation of amperometric detection of phosphate: Application in seawater and cyanobacterial biofilm samples. Talanta, 63(3), 567–574.PubMedCrossRefGoogle Scholar
  43. 43.
    Loret, J. F., Robert, S., Thomas, V., Levi, Y., Cooper, A. J., & McCoy, W. F. (2005). Comparison of disinfectants for biofilm, protozoa and Legionella control. Journal of Water and Health, 3(4), 423–433.PubMedCrossRefGoogle Scholar
  44. 44.
    Dulon, S., Parot, S., Delia, M. L., & Bergel, A. (2007). Electroactive biofilms: New means for electrochemistry. Journal of applied electrochemistry, 37(1), 173–179.CrossRefGoogle Scholar
  45. 45.
    Commault, A. S., Lear, G., Bouvier, S., Feiler, L., Karacs, J., & Weld, R. J. (2016). Geobacter-dominated biofilms used as amperometric BOD sensors. Biochemical Engineering Journal, 109, 88–95.CrossRefGoogle Scholar
  46. 46.
    Paredes, J., Becerro, S., Arizti, F., Aguinaga, A., Del Pozo, J. L., & Arana, S. (2012). Real time monitoring of the impedance characteristics of Staphylococcal bacterial biofilm cultures with a modified CDC reactor system. Biosensors and Bioelectronics, 38(1), 226–232.PubMedCrossRefGoogle Scholar
  47. 47.
    Muñoz-Berbel, X., Muñoz, F. J., Vigués, N., & Mas, J. (2006). On-chip impedance measurements to monitor biofilm formation in the drinking water distribution network. Sensors and Actuators B: Chemical, 118(1–2), 129–134.CrossRefGoogle Scholar
  48. 48.
    Paredes, J., Becerro, S., Arizti, F., Aguinaga, A., Del Pozo, J. L., & Arana, S. (2013). Interdigitated microelectrode biosensor for bacterial biofilm growth monitoring by impedance spectroscopy technique in 96-well microtiter plates. Sensors and Actuators B: Chemical, 178, 663–670.CrossRefGoogle Scholar
  49. 49.
    Zikmund, A., Ripka, P., Krasny, L., Judl, T., & Jahoda, D. (October, 2010). Biofilm detection by the impedance method. In 2010 3rd International Conference on Biomedical Engineering and Informatics (Vol. 4, pp. 1432–1434). IEEE.Google Scholar
  50. 50.
    Chabowski, K., Junka, A. F., Szymczyk, P., Piasecki, T., Sierakowski, A., Mączyńska, B. E. A. T. A., et al. (2015). The Application of impedance microsensors for real-time analysis of Pseudomonas aeruginosa biofilm formation. Polish Journal of Microbiology, 64, 115–120.PubMedCrossRefGoogle Scholar
  51. 51.
    Paredes, J., Becerro, S., & Arana, S. (2014). Label-free interdigitated microelectrode based biosensors for bacterial biofilm growth monitoring using Petri dishes. Journal of Microbiological Methods, 100, 77–83.PubMedCrossRefGoogle Scholar
  52. 52.
    Kanematsu, H., Satoh, M., Shindo, K., Barry, D. M., Hirai, N., Ogawa, A., et al. (2017). Biofilm formation behaviors on graphene by E. coli and S. epidermidis. ECS Transactions, 80(10), 1167–1175. Scholar
  53. 53.
    Kanematsu, H., Shindo, K., Barry, D. M., Hirai, N., Ogawa, A., Kuroda, D., et al. (2018). Electrochemical responses of graphene with biofilm formation on various metallic substrates by using laboratory biofilm reactors. ECS Transactions, 85(13), 491–498. Scholar
  54. 54.
    Kanematsu, H., Nakagawa, R., Barry, D. M., Sano, K., Ishihara, M., Ban, M., Kuroda, D. (2019). Interaction between graphene surfaces and extracellular polymeric substances of biofilms. Paper presented at the Contributed Papers from Materials Science and Technology 2019 (MS and T19).Google Scholar
  55. 55.
    Kanematsu, H., Nakagawa, R., Sano, K., Barry, D. M., Ogawa, A., Hira, N., et al. (2019). Graphene dispersed silane compound used as a coating to sense immunity from biofilm formatiom. Medical Devices and Sensors, 1, 1–16. Scholar
  56. 56.
    Connell, J. L., Kim, J., Shear, J. B., Bard, A. J., & Whiteley, M. (2014). Real-time monitoring of quorum sensing in 3D-printed bacterial aggregates using scanning electrochemical microscopy. Proceedings of the National Academy of Sciences, 111(51), 18255–18260.CrossRefGoogle Scholar
  57. 57.
    Bellin, D. L., Sakhtah, H., Rosenstein, J. K., Levine, P. M., Thimot, J., Emmett, K., et al. (2014). Integrated circuit-based electrochemical sensor for spatially resolved detection of redox-active metabolites in biofilms. Nature Communications, 5, 3256.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Hassan, R. Y., El-Attar, R. O., Hassan, H. N., Ahmed, M. A., & Khaled, E. (2017). Carbon nanotube-based electrochemical biosensors for determination of Candida albicans’s quorum sensing molecule. Sensors and Actuators B: Chemical, 244, 565–570.CrossRefGoogle Scholar
  59. 59.
    Lear, G., & Lewis, G. D. (Eds.) (2012). Microbial biofilms: Current research and applications. Horizon Scientific Press.Google Scholar
  60. 60.
    Dietrich, L. E., Price-Whelan, A., Petersen, A., Whiteley, M., & Newman, D. K. (2006). The phenazine pyocyanin is a terminal signaling factor in the quorum sensing network of Pseudomonas aeruginosa. Molecular Microbiology, 61(5), 1308–1321.PubMedCrossRefGoogle Scholar
  61. 61.
    Bellin, D. L., Sakhtah, H., Zhang, Y., Price-Whelan, A., Dietrich, L. E., & Shepard, K. L. (2016). Electrochemical camera chip for simultaneous imaging of multiple metabolites in biofilms. Nature Communications, 7, 10535.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Bukelman, O., Amara, N., Mashiach, R., Krief, P., Meijler, M. M., & Alfonta, L. (2009). Electrochemical analysis of quorum sensing inhibition. Chemical Communications, 20, 2836–2838.CrossRefGoogle Scholar
  63. 63.
    Bodelón, G., Montes-García, V., López-Puente, V., Hill, E. H., Hamon, C., Sanz- Ortiz, M. N., et al. (2016). Detection and imaging of quorum sensing in Pseudomonas aeruginosa biofilm communities by surface-enhanced resonance Raman scattering. Nature Materials, 15(11), 1203.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Geske, G. D., Wezeman, R. J., Siegel, A. P., & Blackwell, H. E. (2005). Small molecule inhibitors of bacterial quorum sensing and biofilm formation. Journal of the American Chemical Society, 127(37), 12762–12763.PubMedCrossRefGoogle Scholar
  65. 65.
    De Kievit, T. R. (2009). Quorum sensing in Pseudomonas aeruginosa biofilms. Environmental Microbiology, 11(2), 279–288.PubMedCrossRefGoogle Scholar
  66. 66.
    Virdis, B., Harnisch, F., Batstone, D. J., Rabaey, K., & Donose, B. C. (2012). Non-invasive characterization of electrochemically active microbial biofilms using confocal Raman microscopy. Energy and Environmental Science, 5(5), 7017–7024.CrossRefGoogle Scholar
  67. 67.
    Liu, X., Ramsey, M. M., Chen, X., Koley, D., Whiteley, M., & Bard, A. J. (2011). Real-time mapping of a hydrogen peroxide concentration profile across a polymicrobial bacterial biofilm using scanning electrochemical microscopy. Proceedings of the National Academy of Sciences, 108(7), 2668–2673.CrossRefGoogle Scholar
  68. 68.
    Abucayon, E., Ke, N., Cornut, R., Patelunas, A., Miller, D., Nishiguchi, M. K., et al. (2013). Investigating catalase activity through hydrogen peroxide decomposition by bacteria biofilms in real time using scanning electrochemical microscopy. Analytical Chemistry, 86(1), 498–505.PubMedCrossRefGoogle Scholar
  69. 69.
    Torres, C. I., Krajmalnik-Brown, R., Parameswaran, P., Marcus, A. K., Wanger, G., Gorby, Y. A., et al. (2009). Selecting anode-respiring bacteria based on anode potential: Phylogenetic, electrochemical, and microscopic characterization. Environmental Science and Technology, 43(24), 9519–9524.PubMedCrossRefGoogle Scholar
  70. 70.
    Xia, F., Beyenal, H., & Lewandowski, Z. (1998). An electrochemical technique to measure local flow velocity in biofilms. Water Research, 32(12), 3631–3636.CrossRefGoogle Scholar
  71. 71.
    Khan, M. M., Ansari, S. A., Lee, J. H., Lee, J., & Cho, M. H. (2013). Mixed culture electrochemically active biofilms and their microscopic and spectroelectrochemical studies. ACS Sustainable Chemistry and Engineering, 2(3), 423–432.CrossRefGoogle Scholar
  72. 72.
    Kanematsu, H., Umeki, S., Hirai, N., Miura, Y., Wada, N., Kogo, T., et al. (2016). Verification of effect of alternative electromagnetic treatment on control of biofilm and scale formation by a new laboratory biofilm reactor. Ceramic Transactions, 259, 199–212. Scholar
  73. 73.
    Kanematsu, H., Umeki, S., Ogawa, A., Hirai, N., Kogo, T., & Tohji, K. (2016). The cleaning effect on metallic materials under a weak alternating electromagnetic field and biofilm. Paper presented at the Ninth Pacific Rim International Conference on Advanced Materials and Processing (PRICM9), Kyoto, Japan.Google Scholar
  74. 74.
    Kanematsu, H., Katsuragawa, T., Barry, D. M., Yokoi, K., Umeki, S., Miura, H., et al. (2019). Biofilm formation behaviors formed by E.coli under weak alternating electromagnetic fields. Ceramic Transactions (Advances in Ceramics for Environmental, Functional Structural, and Energy Applications II), 266, 195–208.Google Scholar
  75. 75.
    Kanematsu, H., Miura, H., Barry, D. M., & Zimmermann, S. (2019). Effect of alternating electromagnetic field on extracellular polymeric substances derived from biofilms and its mechanism. Paper presented at the Contributed Papers from Materials Science and Technology 2019 (MS&T19), Oregon Convention Center in Portland, Oregon, USA.Google Scholar
  76. 76.
    McLeod, B. R., Fortun, S., Costerton, J. W., & Stewart, P. S. (1999). [49] Enhanced bacterial biofilm control using electromagnetic fields in combination with antibiotics. In Methods in enzymology (Vol. 310, pp. 656–670). Academic Press.Google Scholar
  77. 77.
    Pickering, S. A. W., Bayston, R., & Scammell, B. E. (2003). Electromagnetic augmentation of antibiotic efficacy in infection of orthopaedic implants. The Journal of Bone and Joint Surgery. British Volume, 85(4), 588–593.PubMedCrossRefGoogle Scholar
  78. 78.
    Di Campli, E., Di Bartolomeo, S., Grande, R., Di Giulio, M., & Cellini, L. (2010). Effects of extremely low-frequency electromagnetic fields on Helicobacter pylori biofilm. Current Microbiology, 60(6), 412–418.PubMedCrossRefGoogle Scholar
  79. 79.
    Caubet, R., Pedarros-Caubet, F., Chu, M., Freye, E., de Belem Rodrigues, M., Moreau, J. M., et al. (2004). A radio frequency electric current enhances antibiotic efficacy against bacterial biofilms. Antimicrobial Agents and Chemotherapy, 48(12), 4662–4664.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Ehrlich, G. D., Stoodley, P., Kathju, S., Zhao, Y., McLeod, B. R., Balaban, N., & Post, J. C. (2005). Engineering approaches for the detection and control of orthopedic biofilm infections. Clinical Orthopedics and Related Research, (437), 59.Google Scholar
  81. 81.
    Del Pozo, J. L., Rouse, M. S., & Patel, R. (2008). Bioelectric effect and bacterial biofilms. A systematic review. The International Journal of Artificial Organs, 31(9), 786–795.PubMedCrossRefGoogle Scholar
  82. 82.
    Torgomyan, H., & Trchounian, A. (2013). Bactericidal effects of low-intensity extremely high frequency electromagnetic field: An overview with phenomenon, mechanisms, targets and consequences. Critical Reviews in Microbiology, 39(1), 102–111.PubMedCrossRefGoogle Scholar
  83. 83.
    Obermeier, A., Matl, F. D., Friess, W., & Stemberger, A. (2009). Growth inhibition of Staphylococcus aureus induced by low frequency electric and electromagnetic fields. Bioelectromagnetics: Journal of the Bioelectromagnetics Society, The Society for Physical Regulation in Biology and Medicine, The European Bioelectromagnetics Association, 30(4), 270–279.CrossRefGoogle Scholar
  84. 84.
    Matl, F. D., Obermeier, A., Zlotnyk, J., Friess, W., Stemberger, A., & Burgkart, R. (2011). Augmentation of antibiotic activity by low-frequency electric and electromagnetic fields examining Staphylococcus aureus in broth media. Bioelectromagnetics, 32(5), 367–377.PubMedCrossRefGoogle Scholar
  85. 85.
    Sureshkumar, A., Sankar, R., Mandal, M., & Neogi, S. (2010). Effective bacterial inactivation using low temperature radio frequency plasma. International Journal of Pharmaceutics, 396(1–2), 17–22.PubMedCrossRefGoogle Scholar
  86. 86.
    Takashima, S., Gabriel, C., Sheppard, R. J., & Grant, E. H. (1984). Dielectric behavior of DNA solution at radio and microwave frequencies (at 20 °C). Biophysical Journal, 46(1), 29–34.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Wei, M. Q., Mengesha, A., Good, D., & Anné, J. (2008). Bacterial targeted tumour therapy-dawn of a new era. Cancer Letters, 259(1), 16–27.PubMedCrossRefGoogle Scholar
  88. 88.
    Privat-Maldonado, A., O’Connell, D., Welch, E., Vann, R., & Van Der Woude, M. W. (2016). Spatial dependence of DNA damage in bacteria due to low-temperature plasma application as assessed at the single cell level. Scientific Reports, 6, 35646.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Xie, T. D., & Tsong, T. Y. (1990). Study of mechanisms of electric field-induced DNA transfection. II. Transfection by low-amplitude, low-frequency alternating electric fields. Biophysical Journal, 58(4), 897–903.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Sansonetti, P., Boileau, C., & D’hauteville, H. (1989). U.S. Patent No. 4,816,389. Washington, DC: U.S. Patent and Trademark Office.Google Scholar
  91. 91.
    Belloni, F., Nassisi, V., Alifano, P., Monaco, C., Talà, A., Tredici, M., et al. (2005). A suitable plane transmission line at 900 MHz rf fields for E. coli DNA studies. Review of Scientific Instruments, 76(5), 054302.CrossRefGoogle Scholar
  92. 92.
    Tyurin, M., Padda, R., Huang, K. X., Wardwell, S., Caprette, D., & Bennett, G. N. (2000). Electrotransformation of Clostridium acetobutylicum ATCC 824 using high- voltage radio frequency modulated square pulses. Journal of Applied Microbiology, 88(2), 220–227.PubMedCrossRefGoogle Scholar
  93. 93.
    Raffa, V., Vittorio, O., Costa, M., Ziaei, A., Nitodas, S., Riggio, C., et al. (2012). Multiwalled carbon nanotube antennas induce effective plasmid dna transfection of bacterial cells. Journal of Nanoneuroscience, 2(1), 56–62.CrossRefGoogle Scholar
  94. 94.
    Sharma, A., Pruden, A., Yu, Z., & Collins, G. J. (2005). Bacterial inactivation in open air by the afterglow plume emitted from a grounded hollow slot electrode. Environmental Science and Technology, 39(1), 339–344.PubMedCrossRefGoogle Scholar
  95. 95.
    De Ninno, Antonella, & Pregnolato, Massimo. (2017). Electromagnetic homeostasis and the role of low-amplitude electromagnetic fields on life organization. Electromagnetic Biology and Medicine, 36(2), 115–122.PubMedCrossRefGoogle Scholar
  96. 96.
    Trushin, M. V. (2003). The possible role of electromagnetic fields in bacterial communication. Journal of Microbiology, Immunology, and Infection, 36(3), 153–160.PubMedGoogle Scholar
  97. 97.
    Karaguler, T., Kahraman, H., & Tuter, M. (2017). Analyzing effects of ELF electromagnetic fields on removing bacterial biofilm. Biocybernetics and Biomedical Engineering, 37(2), 336–340.CrossRefGoogle Scholar
  98. 98.
    Brkovic, S., Postic, S., & Ilic, D. (2015). Influence of the magnetic field on microorganisms in the oral cavity. Journal of Applied Oral Science, 23(2), 179–186.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Lawrence, R. N., Dunn, W. R., Bycroft, B., Camara, M., Chhabra, S. R., Williams, P., et al. (1999). The Pseudomonas aeruginosa quorum-sensing signal molecule, N (3-oxododecanoyl)-l-homoserine lactone, inhibits porcine arterial smooth muscle contraction. British Journal of Pharmacology, 128(4), 845–848.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Zhang, L. H., & Dong, Y. H. (2004). Quorum sensing and signal interference: Diverse implications. Molecular Microbiology, 53(6), 1563–1571.PubMedCrossRefGoogle Scholar
  101. 101.
    Russo, G., & Slotine, J. J. E. (2010). Global convergence of quorum-sensing networks. Physical Review E, 82(4), 041919.CrossRefGoogle Scholar
  102. 102.
    Adey, W. R. (2003). Evidence for non-thermal electromagnetic bioeffects: Potential health risks in evolving low-frequency and microwave environments. Electromagnetic environments and health in buildings.Google Scholar
  103. 103.
    Del Pozo, J. L., & Patel, R. (2007). The challenge of treating biofilm-associated bacterial infections. Clinical Pharmacology and Therapeutics, 82(2), 204–209.PubMedCrossRefGoogle Scholar
  104. 104.
    Ehrlich, G. D., Stoodley, P., Kathju, S., Zhao, Y., McLeod, B. R., Balaban, N., et al. (2005). Engineering approaches for the detection and control of orthopedic biofilm infections. Clinical Orthopaedics and Related Research, 437, 59.CrossRefGoogle Scholar
  105. 105.
    Schnabel, W. (2014). Polymers and electromagnetic radiation—fundamentals and practical application. Weinheim, Germany: Wiley-VCH.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringNational Institute of Technology (KOSEN)Shiroko-cho, SuzukaJapan
  2. 2.Department of Electrical and Computer EngineeringClarkson UniversityPotsdamUSA

Personalised recommendations