Skip to main content

Power Consumption Optimization for the Industrial Load Plant Using Improved ANFIS-Based Accelerated PSO Technique

  • Chapter
  • First Online:
Practical Examples of Energy Optimization Models

Part of the book series: SpringerBriefs in Energy ((BRIEFSENERGY))

Abstract

In recent times, energy saving has become the focus and an interesting topic for engineers and researchers. About 40–44% of the total energy is used for cooling of buildings. As cooling demand increases, the electricity consumption increases proportionally. There are numerous intelligent techniques adopted to evaluate energy usage. This chapter proposes a prediction technique to evaluate energy consumption using improved adaptive neuro-fuzzy inference system (ANFIS) model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shaikh PH, Nor NBM, Nallagownden P, Elamvazuthi I, Ibrahim TJR, Reviews SE (2014) A review on optimized control systems for building energy and comfort management of smart sustainable buildings. Renew Sustain Energy Rev 34:409–429

    Article  Google Scholar 

  2. Khosravani HR, Castilla MDM, Berenguel M, Ruano AE, Ferreira PMJE (2016) A comparison of energy consumption prediction models based on neural networks of a bioclimatic building. Energies 9(1):57

    Article  Google Scholar 

  3. Suganthi L, Samuel AAJR (2012) Energy models for demand forecasting—a review. Renew Sustain Energy Rev 16(2):1223–1240

    Article  Google Scholar 

  4. Huang S, Zuo W, Sohn MDJAE (2016) Amelioration of the cooling load based chiller sequencing control. Appl Energy 168:204–215

    Article  Google Scholar 

  5. Shaikh PH, Nor NBM, Sahito AA, Nallagownden P, Elamvazuthi I, Shaikh M (2017) Building energy for sustainable development in Malaysia: a review. Renew Sustain Energy Rev 75:1392–1403

    Article  Google Scholar 

  6. Patterson MK (2008) The effect of data center temperature on energy efficiency. In: Proceeding of 2008 IEEE 11th intersociety conference in thermal and thermomechanical phenomena in electronic systems (ITHERM), 28–31 May 2008, 2111 NE 25th Avenue Hillsboro, Oregon, pp 1167–1174

    Google Scholar 

  7. Yi-Ling H, Hai-Zhen M, Guang-Tao D, Jun S (2014) Influences of urban temperature on the electricity consumption of Shanghai. Adv Clim Res 5(2):74–80

    Article  Google Scholar 

  8. Chong C, Ni W, Ma L, Liu P, Li Z (2015) The use of energy in Malaysia: tracing energy flows from primary source to end use. Energies 8(4):2828–2866

    Article  Google Scholar 

  9. Wang SK (2001) Handbook of air conditioning and refrigeration. ASHRAE Handbook HVAC Applications

    Google Scholar 

  10. Avery G (2001) Improving the efficiency of chilled water plants. ASHRAE J 43(5):14

    Google Scholar 

  11. Lu L, Cai W, Soh YC, Xie L, Li S (2004) HVAC system optimization—condenser water loop. Energy Convers Manag 45(4):613–630

    Article  Google Scholar 

  12. Browne M, Bansal P (1998) Steady-state model of centrifugal liquid chillers: Modèle pour des refroidisseurs de liquide centrifuges en régime permanent. Int J Refrig 21(5):343–358

    Article  Google Scholar 

  13. Lu L, Cai W (2001) Application of genetic algorithms for optimization of condenser water loop in HVAC systems. World-wide-web, Nanyang Technological University Nayang Press Avenue

    Google Scholar 

  14. Beghi A, Cecchinato L, Cosi G, Rampazzo M (2010) Two-layer control of multi-chiller systems. In: Proceeding of 2010 IEEE international conference on control applications (CCA), 8–10 Sept 2010, Yokohama, Japan, pp 1892–1897

    Google Scholar 

  15. Beghi A, Cecchinato L, Cosi G, Rampazzo M (2012) A PSO-based algorithm for optimal multiple chiller systems operation. Appl Therm Eng 32:31–40

    Article  Google Scholar 

  16. Wei X, Xu G, Kusiak A (2014) Modeling and optimization of a chiller plant. Energy 73:898–907

    Article  Google Scholar 

  17. Xu Y, Ji K, Lu Y, Yu Y, Liu W (2013) Optimal building energy management using intelligent optimization. In: Proceeding of IEEE international conference on automation science and engineering (CASE), 17–20 Aug 2013, Madison, WI, USA, pp 95–99

    Google Scholar 

  18. Lee K-P, Cheng T-A (2012) A simulation–optimization approach for energy efficiency of chilled water system. Energy Build 54:290–296

    Article  Google Scholar 

  19. Chen C-L, Chang Y-C, Chan T-S (2014) Applying smart models for energy saving in optimal chiller loading. Energy Build 68:364–371

    Article  Google Scholar 

  20. Ardakani AJ, Ardakani FF, Hosseinian SH (2008) A novel approach for optimal chiller loading using particle swarm optimization. Energy Build 40(12):2177–2187

    Article  Google Scholar 

  21. Lee W-S, Lin L-C (2009) Optimal chiller loading by particle swarm algorithm for reducing energy consumption. Appl Therm Eng 29(8–9):1730–1734

    Article  Google Scholar 

  22. Kusiak A, Xu G, Tang FJE (2011) Optimization of an HVAC system with a strength multi-objective particle-swarm algorithm. Energy 36(10):5935–5943

    Article  Google Scholar 

  23. Karami M, Wang LJATE (2018) Particle Swarm optimization for control operation of an all-variable speed water-cooled chiller plant. Appl Therm Eng 130:962–978

    Article  Google Scholar 

  24. Lam JC, Wan KK, Cheung K (2009) An analysis of climatic influences on chiller plant electricity consumption. Appl Energy 86(6):933–940

    Article  Google Scholar 

  25. Deng K, Sun Y, Li S, Lu Y, Brouwer J, Mehta PG, Zhou MC, Chakraborty A (2015) Model predictive control of central chiller plant with thermal energy storage via dynamic programming and mixed-integer linear programming. IEEE Trans Autom Sci Eng 12(2):565–579

    Article  Google Scholar 

  26. Alonso S, Morán A, Prada MÁ, Reguera P, Fuertes JJ, Domínguez MJE (2019) A data-driven approach for enhancing the efficiency in chiller plants: a hospital case study. Enegies 12(5):827

    Google Scholar 

  27. Aktacir MA, Büyükalaca O, Bulut H, Yılmaz T (2008) Influence of different outdoor design conditions on design cooling load and design capacities of air conditioning equipments. Energy Convers Manag 49(6):1766–1773

    Article  Google Scholar 

  28. Chow T, Zhang G, Lin Z, Song C (2002) Global optimization of absorption chiller system by genetic algorithm and neural network. Energy Build 34(1):103–109

    Article  Google Scholar 

  29. Soyguder S, Alli H (2009) Predicting of fan speed for energy saving in HVAC system based on adaptive network based fuzzy inference system. Expert Syst Appl 36(4):8631–8638

    Article  Google Scholar 

  30. Hosoz M, Ertunc HM, Bulgurcu H (2011) An adaptive neuro-fuzzy inference system model for predicting the performance of a refrigeration system with a cooling tower. Expert Syst Appl 38(11):14148–14155

    Google Scholar 

  31. Ahmad MW, Mourshed M, Rezgui Y (2017) Trees vs Neurons: Comparison between random forest and ANN for high-resolution prediction of building energy consumption. Energy Build 147:77–89

    Article  Google Scholar 

  32. Lu L, Cai W, Li S, Xie L, Soh YC (2002) Application of ANFIS in chilled water distribution process for energy savings. In: Proceeding of 2002 IEEE international conference in control and automation (ICCA). The 2002 international conference on final program and book of abstracts, 2002, pp 98–98

    Google Scholar 

  33. Lee W-S, Lin L-C (2009) Optimal chiller loading by particle swarm algorithm for reducing energy consumption. Appl Therm Eng 29(8):1730–1734

    Article  Google Scholar 

  34. Hamid Abdalla EA, Nallagownden P, Mohd Nor NB, Romlie MF, Hassan SM (2018) An application of a novel technique for assessing the operating performance of existing cooling systems on a university campus. Energies 11(4):1–24

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Perumal Nallagownden .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nallagownden, P., Abdalla, E.A.H., Nor, N.M. (2020). Power Consumption Optimization for the Industrial Load Plant Using Improved ANFIS-Based Accelerated PSO Technique. In: Karim, S., Abdullah, M., Kannan, R. (eds) Practical Examples of Energy Optimization Models. SpringerBriefs in Energy. Springer, Singapore. https://doi.org/10.1007/978-981-15-2199-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-2199-7_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-2198-0

  • Online ISBN: 978-981-15-2199-7

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics