Skip to main content

M-UNet: Modified U-Net Segmentation Framework with Satellite Imagery

  • Conference paper
  • First Online:
Proceedings of the Global AI Congress 2019

Abstract

In recent years, convolution neural network (CNN) has emerged as a dominant paradigm in machine learning for image processing application. In remote sensing, image segmentation is a very challenging task, and CNN has shown its worth over traditional image segmentation methods. U-Net structure is one of the simplified architectures used for image segmentation. However, it cannot extract promising spatial information from satellite data due to insufficient numbers of layers. In this study, a modified U-Net architecture has designed and proposed. This new architecture is deep enough to extract contextual information from satellite imagery. The study has formulated the downsampling part by introducing the DenseNet architecture, encourages the use of repetitive feature map, and reinforces the information propagation throughout the network. The long-range skip connections implemented between downsampling and upsampling. The quantitative comparison has performed using intersection over union (IOU) and overall accuracy (OA). The proposed architecture has shown 73.02% and 96.02% IOU and OA, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lillesand, T.M., Kiefer, R.W.: Remote Sensing and Image Interpretation (1999)

    Google Scholar 

  2. Maggiori, E., Tarabalka, Y., Charpiat, G., Alliez, P.: Convolutional Neural Networks for Large-Scale Remote-Sensing Image Classification. IEEE Trans. Geosci. Remote Sens. 55, 645–657 (2017)

    Article  Google Scholar 

  3. Civco, D.L.: Artificial neural networks for land-cover classification and mapping. Int. J. Geogr. Inf. Syst. 7, 173–186 (1993)

    Article  Google Scholar 

  4. Pal, M., Mather, P.M.: Support vector machines for classification in remote sensing. Int. J. Remote Sens. 26, 1007–1011 (2005)

    Article  Google Scholar 

  5. Zheng, J., Cui, Z., Liu, A., Jia, Y.: A K-means remote sensing image classification method based on AdaBoost. In: 2008 Fourth International Conference on Natural Computation, pp. 27–32 (2008)

    Google Scholar 

  6. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Proceedings of 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2001, vol. 1, pp. I-511–I-518 (2001)

    Google Scholar 

  7. Yue, J., Zhao, W., Mao, S., Liu, H.: Spectral-spatial classification of hyperspectral images using deep convolutional neural networks. Remote Sens. Lett. 6, 468–477 (2015)

    Article  Google Scholar 

  8. Li, B.-Q., Li, B.: Building pattern classifiers using convolutional neural networks. In: Proceedings of International Joint Conference on Neural Networks, IJCNN’99, vol. 5 (Cat. No. 99CH36339) (1999)

    Google Scholar 

  9. Lee, S., Zhang, H., Crandall, D.J.: Predicting geo-informative attributes in large-scale image collections using convolutional neural networks. In: 2015 IEEE Winter Conference on Applications of Computer Vision, pp. 550–557 (2015)

    Google Scholar 

  10. Sermanet, P., Chintala, S., LeCun, Y.: Convolutional neural networks applied to house numbers digit classification, pp. 3288–3291 (2012)

    Google Scholar 

  11. Wang, J., Luo, C., Huang, H., Zhao, H., Wang, S.: Transferring pre-trained deep CNNs for remote scene classification with general features learned from linear PCA network. Remote Sens. 9 (2017)

    Google Scholar 

  12. Attarchi, S., Gloaguen, R.: Classifying complex mountainous forests with L-Band SAR and landsat data integration: a comparison among different machine learning methods in the Hyrcanian forest. Remote Sens. 6, 3624–3647 (2014)

    Article  Google Scholar 

  13. Fukushima, K., Miyake, S.: Neocognitron: a self-organizing neural network model for a mechanism of visual pattern recognition (1982)

    Google Scholar 

  14. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Intell. Signal Process. 86, 306–351 (2001)

    Google Scholar 

  15. Lin, G., Shen, C., Hengel, A., van dan Reid, I.: Efficient piecewise training of deep structured models for semantic segmentation, pp. 3194–3203 (2015)

    Google Scholar 

  16. Long, J., Shelhamer, E., Darrell, T., Long, J., Darrell, T.: Fully convolutional networks for semantic segmentation, vol. 39, pp. 640–651 (2017)

    Google Scholar 

  17. Zhu, X.X., Tuia, D., Mou, L., Xia, G.-S., Zhang, L., Xu, F., Fraundorfer, F.: Deep learning in remote sensing: a review, pp. 1–60 (2017)

    Google Scholar 

  18. Wang, J., Song, J., Chen, M., Yang, Z.: Road network extraction: a neural-dynamic framework based on deep learning and a finite state machine. Int. J. Remote Sens. 36, 3144–3169 (2015)

    Article  Google Scholar 

  19. Sevo, I., Avramovi, A.: Convolutional neural network based automatic object detection on aerial images. IEEE Geosci. Remote Sens. Lett. 13, 740–744 (2016)

    Article  Google Scholar 

  20. Havaei, M., Davy, A., Warde-Farley, D., Biard, A., Courville, A., Bengio, Y., Pal, C., Jodoin, P.M., Larochelle, H.: Brain tumor segmentation with deep neural networks. Med. Image Anal. 35, 18–31 (2017)

    Article  Google Scholar 

  21. Ronneberger, O., Fischer, P., Brox, T.: U-Net: Convolutional networks for biomedical image segmentation, pp. 1–8 (2015)

    Google Scholar 

  22. Prasoon, A., et al.: Deep feature learning for knee cartilage segmentation using a triplanar convolution neural network. Lecture Notes Computer Science (including its subseries Lecture Notes in Artificial Intelligence (LNAI) and Lecture Notes in Bioinformatics (LNBI)), vol. 8150, pp. 599–606 (2013)

    Google Scholar 

  23. Mocsari, E., Stone, S.S.: Colostral IgA, IgG, and IgM-IgA fractions as fluorescent antibody for the detection of the coronavirus of transmissible gastroenteritis. Am. J. Vet. Res. 39, 1442–1446 (1978)

    Google Scholar 

  24. Li, X., Chen, H., Qi, X., Dou, Q., Fu, C.-W., Heng, P.A.: H-DenseU-Net: hybrid densely connected U-Net for liver and liver tumor segmentation from CT volumes, pp. 1–10 (2017)

    Google Scholar 

  25. Goodfellow, I.J., Bulatov, Y., Ibarz, J., Arnoud, S., Shet, V.: Multi-digit Number Recognition from Street View Imagery using Deep Convolutional Neural Networks. CoRR. abs/1312.6, 1–13 (2013)

    Google Scholar 

  26. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: IEEE Conference on Computer Vision and Pattern Recognition (2017)

    Google Scholar 

  27. Chollet, F., et al.: Keras (2015)

    Google Scholar 

  28. Bonnin, R.: Building Machine Learning Projects with TensorFlow (2016)

    Google Scholar 

  29. Tarabalka, Y., Fauvel, M., Chanussot, J., Benediktsson, J.A.: SVM- and MRF-based method for accurate classification of hyperspectral images. IEEE Geosci. Remote Sens. Lett. 7, 736–740 (2010)

    Article  Google Scholar 

  30. Scott, G.J., England, M.R., Starms, W.A., Marcum, R.A., Davis, C.H.: Training deep convolutional neural networks for land-cover classification of high-resolution imagery. IEEE Geosci. Remote Sens. Lett. 14, 549–553 (2017)

    Article  Google Scholar 

  31. Tajbakhsh, N., Shin, J.Y., Gurudu, S.R., Hurst, R.T., Kendall, C.B., Gotway, M.B., Liang, J.: Convolutional neural networks for medical image analysis: full training or fine tuning? IEEE Trans. Med. Imaging 35, 1299–1312 (2016)

    Article  Google Scholar 

  32. Maggiori, E., Tarabalka, Y., Charpiat, G., Alliez, P.: Can semantic labeling methods generalize to any city? The Inria aerial image labeling benchmark to cite this version, pp. 3226–3229 (2017)

    Google Scholar 

  33. Zhong, Y., Fei, F., Liu, Y., Zhao, B., Jiao, H., Zhang, L.: SatCNN: satellite image dataset classification using agile convolutional neural networks. Remote Sens. Lett. 8, 136–145 (2017)

    Article  Google Scholar 

  34. Yann, L.: Efficient backprop. In: Neural Networks: Tricks of the Trade, vol. 53, pp. 1689–1699 (1998)

    Google Scholar 

  35. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Proceedings of 25th International Conference on Neural Information Processing Systems, vol. 1, pp. 1097–1105 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashish Soni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Soni, A., Koner, R., Villuri, V.G.K. (2020). M-UNet: Modified U-Net Segmentation Framework with Satellite Imagery. In: Mandal, J., Mukhopadhyay, S. (eds) Proceedings of the Global AI Congress 2019. Advances in Intelligent Systems and Computing, vol 1112. Springer, Singapore. https://doi.org/10.1007/978-981-15-2188-1_4

Download citation

Publish with us

Policies and ethics