Skip to main content

Abstract

Changes in the climate have dramatically increased the incidence of abiotic stress in plants, thus limiting their optimum growth, production, and metabolism. Plants have numerous adaptive tolerance or resistant mechanisms to acclimatize with the changes in the environment like drought, salinity, heat, flood, cold/freeze, ultraviolet (UV), and heavy metal stress. Plant adaptation to stress is strictly attributed to a paragon of biochemical and molecular crossroads. Moreover, it mainly relies on molecular stress signaling network involving stress perception, signal transduction, modulation of stress-related gene expression, and change in the metabolite profile. Adaptive stress tolerance mechanisms involve adjustment of hormonal balance, synthesis of stress proteins, activation of antioxidant defense mechanism, reconfiguration of the metabolite accumulation, and restructuring of cellular membrane. Apart from innate adaptive responses, several advance strategies including breeding and bioengineering are being used to combat abiotic stresses in the plants. In the given chapter, plant molecular and biochemical responses have been reviewed and discussed with respect to various crop plants to impart better understanding of tolerance mechanisms under abiotic stress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ABA:

Abscisic acid

ABRE:

ABA-responsive elements

ADC:

Arginine decarboxylase

AP2:

Apetala 2

APX:

Ascorbate peroxidase

AREB/ABFs:

ABRE-binding protein/ABRE-binding factors

Arg:

Arginine

AsA:

Ascorbic acid

AsA-GSH cycle:

Ascorbate-glutathione cycle

BADH:

Betaine aldehyde dehydrogenase

bHLH:

Basic helix-loop-helix

bZIP:

Basic leucine zipper

C2H2 ZF:

Cys2Hizinc fingers

Ca2+:

Calcium ions

CaMs:

Calmodulins

CAT:

Catalase

CBF:

C-repeat/DRE-binding factor

CBL:

Calcineurin B-like proteins

CcaMKs:

Calmodulin-dependent protein kinases

CDPKs:

Ca2+-dependent protein kinases

CMO:

Choline monooxygenase

COR:

Cold responsive

Cys:

Cysteine

dcSAM:

Decarboxylated S-adenosylmethionine

DHAR:

Dehydroascorbate reductase

DRE/CRT:

Dehydration-responsive element/C-repeat

DREB 2:

DRE-/CRT-binding protein 2

ER:

Endoplasmic reticulum

ET:

Ethylene

GB:

Glycine betaine

GHR:

Guard cell hydrogen peroxidase resistant

gi-3:

Gigantea

GLR:

Glutamate-like receptor

GPX:

Guaiacol peroxidase

GR:

Glutathione reductase

GRF7:

Growth-regulating factor 7

GSH:

Glutathione

GSTs:

Glutathione S-transferases

H2O2:

Hydrogen peroxide

ICE1:

Inducer of CBF expression 1

JA:

Jasmonic acid

M6PR:

Mannose-6P reductase

MAPKs:

Mitogen-activated protein kinases

MDA:

Malonyldialdehyde

MDHA:

Monodehydroascorbate

MDHAR:

Monodehydroascorbate reductase

mtlD:

Mannitol-1P dehydrogenase

MYB:

Myeloblastosis oncogene regulon

NADPH:

Nicotinamide adenine dinucleotide phosphate hydrogen

O2•−:

Superoxide radical

OAT:

Orn-δ-aminotransferase

ODC:

Ornithine decarboxylase

OH:

Hydroxyl radical

Orn:

Ornithine

OSCA1 :

Reduced hyperosmolality-induced calcium increase 1

OST1:

SnRK2 open stomata 1

P5CDH:

P5C dehydrogenase

P5CR:

Pyrroline-5-carboxylate reductase

P5CS:

Pyrroline-5-carboxylate synthase

PA:

Polyamines

PDH:

Proline dehydrogenase

PEG:

Polyethylene glycol

POD:

Peroxidases

PP2Cs:

Protein phosphatase 2Cs

Put:

Putrescine

RbohF:

Respiratory burst oxidase protein

RLKs:

Receptor-like kinases

ROS:

Reactive oxygen species

R-SOH:

Sulfenic form

SA:

Salicylic acid

SnRK2:

SNF1-related kinase 2

SOD:

Superoxide dismutase

SOS:

Salt overly sensitive

Spd:

Triaminespermidine

SPDS:

Spd synthase

Spm:

Tetraminespermine

SPMS:

Spm synthase

TFs:

Transcription factors

UV:

Ultraviolet

References

  • Abebe T, Guenzi AC, Martin B, Cushman JC (2003) Tolerance of mannitol-accumulating transgenic wheat to water stress and salinity. Plant Physiol 131(4):1748–1755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • AbuQamar S, Luo H, Laluk K, Mickelbart MV, Mengiste T (2009) Crosstalk between biotic and abiotic stress responses in tomato is mediated by the AIM1 transcription factor. Plant J 58(2):347–360

    Article  CAS  PubMed  Google Scholar 

  • Agarwal PK, Shukla PS, Gupta K, Jha B (2013) Bioengineering for salinity tolerance in plants: state of the art. Mol Biotechnol 54(1):102–123

    Article  CAS  PubMed  Google Scholar 

  • Agati G, Matteini P, Goti A, Tattini M (2007) Chloroplast-located flavonoids can scavenge singlet oxygen. New Phytol 174(1):77–89

    Article  CAS  PubMed  Google Scholar 

  • Ahmad R, Kim MD, Back K-H, Kim H-S, Lee H-S, Kwon S-Y, Murata N, Chung W-I, Kwak S-S (2008) Stress-induced expression of Choline oxidase in potato plant chloroplasts confers enhanced tolerance to oxidative, salt, and drought stresses. Plant Cell Rep 27(4):687–698

    Article  CAS  PubMed  Google Scholar 

  • Alcázar R, Planas J, Saxena T, Zarza X, Bortolotti C, Cuevas J, Bitrián M, Tiburcio AF, Altabella T (2010) Putrescine accumulation confers drought tolerance in transgenic Arabidopsis plants over-expressing the homologous Arginine decarboxylase 2 gene. Plant Physiol Biochem 48(7):547–552

    Article  PubMed  CAS  Google Scholar 

  • Altabella T, Tiburcio A, Ferrando A (2009) Plant with resistance to low temperature and method of production thereof. Spanish Patent Application WO2010/004070

    Google Scholar 

  • Al-Taweel K, Iwaki T, Yabuta Y, Shigeoka S, Murata N, Wadano A (2007) A bacterial transgene for catalase protects translation of D1 protein during exposure of salt-stressed tobacco leaves to strong light. Plant Physiol 145(1):258–265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Al-Whaibi MH (2011) Plant heat-shock proteins: a mini review. J King Saud Univ 23(2):139–150

    Article  Google Scholar 

  • Anjum SA, Xie X-Y, Wang L-C, Saleem MF, Man C, Lei W (2011) Morphological, physiological and biochemical responses of plants to drought stress. Afr J Agric Res 6(9):2026–2032

    Google Scholar 

  • Asano T, Hayashi N, Kobayashi M, Aoki N, Miyao A, Mitsuhara I, Ichikawa H, Komatsu S, Hirochika H, Kikuchi S (2012) A rice calcium-dependent protein kinase OsCPK12 oppositely modulates salt-stress tolerance and blast disease resistance. Plant J 69(1):26–36

    Article  CAS  PubMed  Google Scholar 

  • Ashraf M, Foolad MR (2013) Crop breeding for salt tolerance in the era of molecular markers and marker-assisted selection. Mol Breed 132(1):10–20

    Google Scholar 

  • Ayala A, Muñoz MF, Argüelles S (2014) Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxidative Med Cell Longev 2014:360438

    Article  CAS  Google Scholar 

  • Badawi GH, Kawano N, Yamauchi Y, Shimada E, Sasaki R, Kubo A, Tanaka K (2004) Over-expression of Ascorbate peroxidase in tobacco chloroplasts enhances the tolerance to salt stress and water deficit. Physiol Plant 121(2):231–238

    Article  CAS  PubMed  Google Scholar 

  • Bahieldin A, Mahfouz HT, Eissa HF, Saleh OM, Ramadan AM, Ahmed IA, Dyer WE, El-Itriby HA, Madkour MA (2005) Field evaluation of transgenic wheat plants stably expressing the HVA1 gene for drought tolerance. Physiol Plant 123(4):421–427

    Article  CAS  Google Scholar 

  • Bailey PC, Martin C, Toledo-Ortiz G, Quail PH, Huq E, Heim MA, Jakoby M, Werber M, Weisshaar B (2003) Update on the basic helix-loop-helix transcription factor gene family in Arabidopsis thaliana. Plant Cell 15(11):2497–2502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balfagón D, Zandalinas SI, Gómez-Cadenas A (2019) High temperatures change the perspective: integrating hormonal responses in citrus plants under co-occurring abiotic stress conditions. Physiol Plant 165(2):183–197

    Article  PubMed  CAS  Google Scholar 

  • Bartwal A, Mall R, Lohani P, Guru S, Arora S (2013) Role of secondary metabolites and brassinosteroids in plant defense against environmental stresses. J Plant Growth Regul 32(1):216–232

    Article  CAS  Google Scholar 

  • Bechtold U, Field B (2018) Molecular mechanisms controlling plant growth during abiotic stress. Oxford University Press, Oxford, UK

    Book  Google Scholar 

  • Behelgardy MF, Motamed N, Jazii FR (2012) Expression of the P5CS gene in transgenic versus nontransgenic olive (Olea europaea) under salinity stress. World Appl Sci J 18(4):580–583

    CAS  Google Scholar 

  • Bela K, Horváth E, Gallé Á, Szabados L, Tari I, Csiszár J (2015) Plant glutathione peroxidases: emerging role of the antioxidant enzymes in plant development and stress responses. J Plant Physiol 176:192–201

    Article  CAS  PubMed  Google Scholar 

  • Bhatnagar-Mathur P, Devi MJ, Reddy DS, Lavanya M, Vadez V, Serraj R, Yamaguchi-Shinozaki K, Sharma KK (2007) Stress-inducible expression of At DREB1A in transgenic peanut (Arachis hypogaea L.) increases transpiration efficiency under water-limiting conditions. Plant Cell Rep 26(12):2071–2082

    Article  CAS  PubMed  Google Scholar 

  • Bhatnagar-Mathur P, Vadez V, Sharma KK (2008) Transgenic approaches for abiotic stress tolerance in plants: retrospect and prospects. Plant Cell Rep 27(3):411–424

    Article  CAS  PubMed  Google Scholar 

  • Bolwell GP, Bindschedler LV, Blee KA, Butt VS, Davies DR, Gardner SL, Gerrish C, Minibayeva F (2002) The apoplastic oxidative burst in response to biotic stress in plants: a three-component system. J Exp Bot 53(372):1367–1376

    CAS  PubMed  Google Scholar 

  • Bose J, Pottosin I, Shabala SSS, Palmgren MG, Shabala S (2011) Calcium efflux systems in stress signaling and adaptation in plants. Front Plant Sci 2:85

    Article  PubMed  PubMed Central  Google Scholar 

  • Brini F, Masmoudi K (2012) Ion transporters and abiotic stress tolerance in plants. ISRN Mol Biol 2012:927436

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cao S, Jiang S, Zhang R (2006) The role of GIGANTEA gene in mediating the oxidative stress response and in Arabidopsis. Plant Growth Regul 48(3):261–270

    Article  CAS  Google Scholar 

  • Capell T, Bassie L, Christou P (2004) Modulation of the polyamine biosynthetic pathway in transgenic rice confers tolerance to drought stress. Proc Natl Acad Sci U S A 101(26):9909–9914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caverzan A, Passaia G, Rosa SB, Ribeiro CW, Lazzarotto F, Margis-Pinheiro M (2012) Plant responses to stresses: role of Ascorbate peroxidase in the antioxidant protection. Genet Mol Biol 35(4):1011–1019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chan Z, Grumet R, Loescher W (2011) Global gene expression analysis of transgenic, mannitol-producing, and salt-tolerant Arabidopsis thaliana indicates widespread changes in abiotic and biotic stress-related genes. J Exp Bot 62(14):4787–4803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang CC, Ślesak I, Jordá L, Sotnikov A, Melzer M, Miszalski Z, Mullineaux PM, Parker JE, Karpińska B, Karpiński S (2009) Arabidopsis chloroplastic glutathione peroxidases play a role in cross talk between photooxidative stress and immune responses. Plant Physiol 150(2):670–683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaouch S, Queval G, Vanderauwera S, Mhamdi A, Vandorpe M, Langlois-Meurinne M, Van Breusegem F, Saindrenan P, Noctor G (2010) Peroxisomal hydrogen peroxide is coupled to biotic defense responses by Isochorismate synthase 1 in a daylength-related manner. Plant Physiol 153(4):1692–1705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chatzidimitriadou K, Nianiou-Obeidat I, Madesis P, Perl-Treves R, Tsaftaris A (2009) Expression of SOD transgene in pepper confer stress tolerance and improve shoot regeneration. Electron J Biotechnol 12(4):7–8

    Google Scholar 

  • Checker VG, Chhibbar AK, Khurana P (2012) Stress-inducible expression of barley Hva1 gene in transgenic mulberry displays enhanced tolerance against drought, salinity and cold stress. Transgenic Res 21(5):939–957

    Article  CAS  PubMed  Google Scholar 

  • Chen TH, Murata N (2002) Enhancement of tolerance of abiotic stress by metabolic engineering of betaines and other compatible solutes. Curr Opin Plant Biol 5(3):250–257

    Article  CAS  PubMed  Google Scholar 

  • Chen TH, Murata N (2008) Glycinebetaine: an effective protectant against abiotic stress in plants. Trends Plant Sci 13(9):499–505

    Article  CAS  PubMed  Google Scholar 

  • Chen TH, Murata N (2011) Glycinebetaine protects plants against abiotic stress: mechanisms and biotechnological applications. Plant Cell Environ 34(1):1–20

    Article  PubMed  CAS  Google Scholar 

  • Chen JB, Jing RL, Mao XG, Wang SM (2008) A response of transgenic tobacco with common bean PvP5CS2 gene to drought stress [J]. J Plant Gen Res 9:186e189

    Google Scholar 

  • Chen J, Zhao L, Mao X, Wang S, Jing R (2010) Response of PvP5CS1 transgenic Arabidopsis plants to drought-and salt-stress. Acta Cardiol Sin 36(1):147–153

    Google Scholar 

  • Cheng L, Zou Y, Ding S, Zhang J, Yu X, Cao J, Lu G (2009) Polyamine accumulation in transgenic tomato enhances the tolerance to high temperature stress. J Integr Plant Biol 51(5):489–499

    Article  CAS  PubMed  Google Scholar 

  • Cheng M-C, Hsieh E-J, Chen J-H, Chen H-Y, Lin T-P (2012) Arabidopsis RGLG2, functioning as a RING E3 ligase, interacts with AtERF53 and negatively regulates the plant drought stress response. Plant Physiol 158(1):363–375

    Article  CAS  PubMed  Google Scholar 

  • Cheng M-C, Ko K, Chang W-L, Kuo W-C, Chen G-H, Lin T-P (2015) Increased glutathione contributes to stress tolerance and global translational changes in Arabidopsis. Plant J 83(5):926–939

    Article  CAS  PubMed  Google Scholar 

  • Cobbett CS (2000) Phytochelatin biosynthesis and function in heavy-metal detoxification. Curr Opin Plant Biol 3(3):211–216

    Article  CAS  PubMed  Google Scholar 

  • Colcombet J, Hirt H (2008) Arabidopsis MAPKs: a complex signalling network involved in multiple biological processes. Biochem J 413(2):217–226

    Article  CAS  PubMed  Google Scholar 

  • Conde A, Chaves MM, Gerós H (2011) Membrane transport, sensing and signaling in plant adaptation to environmental stress. Plant Cell Physiol 52(9):1583–1602

    Article  CAS  PubMed  Google Scholar 

  • Cooper M, Fukai S, Wade L (1999) How can breeding contribute to more productive and sustainable rainfed lowland rice systems? Field Crops Res 64(1–2):199–209

    Article  Google Scholar 

  • Corpas FJ, Gupta DK, Palma JM (2015) Production sites of reactive oxygen species (ROS) in organelles from plant cells. In: Reactive oxygen species and oxidative damage in plants under stress. Springer, pp 1–22

    Google Scholar 

  • Cortina C, Culiáñez-Macià FA (2005) Tomato abiotic stress enhanced tolerance by trehalose biosynthesis. Plant Sci 169(1):75–82

    Article  CAS  Google Scholar 

  • Czarnocka W, Karpiński S (2018) Friend or foe? Reactive oxygen species production, scavenging and signaling in plant response to environmental stresses. Free Radic Biol Med 122:4–20

    Article  CAS  PubMed  Google Scholar 

  • Dai X, Xu Y, Ma Q, Xu W, Wang T, Xue Y, Chong K (2007) Overexpression of an R1R2R3 MYB gene, OsMYB3R-2, increases tolerance to freezing, drought, and salt stress in transgenic Arabidopsis. Plant Physiol 143(4):1739–1751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Das K, Roychoudhury A (2014) Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front Environ Sci 2:53

    Article  Google Scholar 

  • Datta R, Kumar D, Sultana A, Hazra S, Bhattacharyya D, Chattopadhyay S (2015) Glutathione regulates 1-aminocyclopropane-1-carboxylate synthase transcription via WRKY33 and 1-aminocyclopropane-1-carboxylate oxidase by modulating messenger RNA stability to induce ethylene synthesis during stress. Plant Physiol 169(4):2963–2981

    CAS  PubMed  PubMed Central  Google Scholar 

  • De Ronde J, Cress W, Krüger G, Strasser R, Van Staden J (2004) Photosynthetic response of transgenic soybean plants, containing an Arabidopsis P5CR gene, during heat and drought stress. J Plant Physiol 161(11):1211–1224

    Article  PubMed  CAS  Google Scholar 

  • Delauney AJ, Verma DPS (1993) Proline biosynthesis and osmoregulation in plants. Plant J 4(2):215–223

    Article  CAS  Google Scholar 

  • Deng X, Hu W, Wei S, Zhou S, Zhang F, Han J, Chen L, Li Y, Feng J, Fang B (2013) TaCIPK29, a CBL-interacting protein kinase gene from wheat, confers salt stress tolerance in transgenic tobacco. PLoS One 8(7):e69881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diédhiou CJ, Popova OV, Dietz K-J, Golldack D (2008) The SNF1-type serine-threonine protein kinase SAPK4 regulates stress-responsive gene expression in rice. BMC Plant Biol 8(1):49

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dixon DP, Skipsey M, Edwards R (2010) Roles for glutathione transferases in plant secondary metabolism. Phytochemistry 71(4):338–350

    Article  CAS  PubMed  Google Scholar 

  • Dobrota C (2006) Energy dependant plant stress acclimation. In: Life in extreme environments. Springer, pp 277–285

    Google Scholar 

  • Dodd AN, Kudla J, Sanders D (2010) The language of calcium signaling. Annu Rev Plant Biol 61:593–620

    Article  CAS  PubMed  Google Scholar 

  • Du W, Lin H, Chen S, Wu Y, Zhang J, Fuglsang AT, Palmgren MG, Wu W, Guo Y (2011) Phosphorylation of SOS3-like calcium-binding proteins by their interacting SOS2-like protein kinases is a common regulatory mechanism in Arabidopsis. Plant Physiol 156(4):2235–2243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eckardt NA (2008) Oxylipin signaling in plant stress responses. Am Soc Plant Biol 20(3):495–497

    CAS  Google Scholar 

  • Eltayeb AE, Kawano N, Badawi GH, Kaminaka H, Sanekata T, Shibahara T, Inanaga S, Tanaka K (2007) Overexpression of Monodehydroascorbate reductase in transgenic tobacco confers enhanced tolerance to ozone, salt and polyethylene glycol stresses. Planta 225(5):1255–1264

    Article  CAS  PubMed  Google Scholar 

  • Fujii H, Zhu J-K (2009) Arabidopsis mutant deficient in 3 abscisic acid-activated protein kinases reveals critical roles in growth, reproduction, and stress. Proc Natl Acad Sci U S A 106(20):8380–8385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujii H, Verslues PE, Zhu J-K (2011) Arabidopsis decuple mutant reveals the importance of SnRK2 kinases in osmotic stress responses in vivo. Proc Natl Acad Sci U S A 108(4):1717–1722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujita Y, Nakashima K, Yoshida T, Katagiri T, Kidokoro S, Kanamori N, Umezawa T, Fujita M, Maruyama K, Ishiyama K (2009) Three SnRK2 protein kinases are the main positive regulators of abscisic acid signaling in response to water stress in Arabidopsis. Plant Cell Physiol 50(12):2123–2132

    Article  CAS  PubMed  Google Scholar 

  • Gao S-Q, Chen M, Xia L-Q, Xiu H-J, Xu Z-S, Li L-C, Zhao C-P, Cheng X-G, Ma Y-Z (2009) A cotton (Gossypium hirsutum) DRE-binding transcription factor gene, GhDREB, confers enhanced tolerance to drought, high salt, and freezing stresses in transgenic wheat. Plant Cell Rep 28(2):301–311

    Article  CAS  PubMed  Google Scholar 

  • Gao S-Q, Chen M, Xu Z-S, Zhao C-P, Li L, Xu H-J, Tang Y-M, Zhao X, Ma Y-Z (2011) The soybean GmbZIP1 transcription factor enhances multiple abiotic stress tolerances in transgenic plants. Plant Mol Biol 75(6):537–553

    Article  CAS  PubMed  Google Scholar 

  • Garg AK, Kim J-K, Owens TG, Ranwala AP, Do Choi Y, Kochian LV, Wu RJ (2002) Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Proc Natl Acad Sci U S A 99(25):15898–15903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geiger D, Scherzer S, Mumm P, Stange A, Marten I, Bauer H, Ache P, Matschi S, Liese A, Al-Rasheid KA (2009) Activity of guard cell anion channel SLAC1 is controlled by drought-stress signaling kinase-phosphatase pair. Proc Natl Acad Sci U S A 106(50):21425–21430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghanti SKK, Sujata K, Kumar BV, Karba NN, Janardhan Reddy K, Rao MS, Kishor PK (2011) Heterologous expression of P5CS gene in chickpea enhances salt tolerance without affecting yield. Biol Plant 55(4):634

    CAS  Google Scholar 

  • Gharib F, Hegazi A (2010) Salicylic acid ameliorates germination, seedling growth, phytohormone and enzymes activity in bean (Phaseolus vulgaris L.) under cold stress. Am J Sci 6(10):675–683

    Google Scholar 

  • Gill SS, Anjum NA, Gill R, Yadav S, Hasanuzzaman M, Fujita M, Mishra P, Sabat SC, Tuteja N (2015) Superoxide dismutase-mentor of abiotic stress tolerance in crop plants. Environ Sci Pollut Res 22(14):10375–10394

    Article  CAS  Google Scholar 

  • Gilroy S, Białasek M, Suzuki N, Górecka M, Devireddy AR, Karpiński S, Mittler R (2016) ROS, calcium, and electric signals: key mediators of rapid systemic signaling in plants. Plant Physiol 171(3):1606–1615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goddijn OJ, Verwoerd TC, Voogd E, Krutwagen RW, De Graff P, Poels J, van Dun K, Ponstein AS, Damm B, Pen J (1997) Inhibition of trehalase activity enhances trehalose accumulation in transgenic plants. Plant Physiol 113(1):181–190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goel D, Singh AK, Yadav V, Babbar SB, Murata N, Bansal KC (2011) Transformation of tomato with a bacterial codA gene enhances tolerance to salt and water stresses. J Plant Physiol 168(11):1286–1294

    Article  CAS  PubMed  Google Scholar 

  • Golldack D, Li C, Mohan H, Probst N (2014) Tolerance to drought and salt stress in plants: unraveling the signaling networks. Front Plant Sci 5:151

    Article  PubMed  PubMed Central  Google Scholar 

  • Gómez-Cadenas A, Vives V, I Zandalinas S, Manzi M, M Sanchez-Perez A, M Perez-Clemente R, Arbona V (2015) Abscisic acid: a versatile phytohormone in plant signaling and beyond. Curr Protein Pept Sci 16(5):413–434

    Article  PubMed  CAS  Google Scholar 

  • Gong H, Jiao Y, Hu W-W, Pua E-C (2005) Expression of Glutathione-S-transferase and its role in plant growth and development in vivo and shoot morphogenesis in vitro. Plant Mol Biol 57(1):53–66

    Article  CAS  PubMed  Google Scholar 

  • Graf A, Schlereth A, Stitt M, Smith AM (2010) Circadian control of carbohydrate availability for growth in Arabidopsis plants at night. Proc Natl Acad Sci U S A 107(20):9458–9463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grondin A, Rodrigues O, Verdoucq L, Merlot S, Leonhardt N, Maurel C (2015) Aquaporins contribute to ABA-triggered stomatal closure through OST1-mediated phosphorylation. Plant Cell 27(7):1945–1954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Groppa M, Benavides M (2008) Polyamines and abiotic stress: recent advances. Amino Acids 34(1):35

    Article  CAS  PubMed  Google Scholar 

  • Gupta B, Rajam M (2013) Marker-free transgenic tomato with engineered mannitol accumulation confers tolerance to multiple abiotic stresses. Cell Dev Biol 2:113

    Google Scholar 

  • Gupta AS, Webb RP, Holaday AS, Allen RD (1993) Overexpression of Superoxide dismutase protects plants from oxidative stress (induction of Ascorbate peroxidase in Superoxide dismutase-overexpressing plants). Plant Physiol 103(4):1067–1073

    Article  PubMed  PubMed Central  Google Scholar 

  • Gururani MA, Venkatesh J, Tran LSP (2015) Regulation of photosynthesis during abiotic stress-induced photoinhibition. Mol Plant 8(9):1304–1320

    Article  CAS  PubMed  Google Scholar 

  • Halford NG, Hey S, Jhurreea D, Laurie S, McKibbin RS, Paul M, Zhang Y (2003) Metabolic signalling and carbon partitioning: role of Snf1-related (SnRK1) protein kinase. J Exp Bot 54(382):467–475

    Article  CAS  PubMed  Google Scholar 

  • Hamilton ES, Jensen GS, Maksaev G, Katims A, Sherp AM, Haswell ES (2015) Mechanosensitive channel MSL8 regulates osmotic forces during pollen hydration and germination. Science 350(6259):438–441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han KH, Hwang CH (2003) Molecular biology/gene transformation; salt tolerance enhanced by transformation of a P5CS gene in carrot. Plant Biotechnol J 5(3):157–161

    Google Scholar 

  • Han Y, Mhamdi A, Chaouch S, Noctor G (2013) Regulation of basal and oxidative stress-triggered jasmonic acid-related gene expression by glutathione. Plant Cell Environ 36(6):1135–1146

    Article  CAS  PubMed  Google Scholar 

  • Hara M, Terashima S, Fukaya T, Kuboi T (2003) Enhancement of cold tolerance and inhibition of lipid peroxidation by citrus dehydrin in transgenic tobacco. Planta 217(2):290–298

    Article  CAS  PubMed  Google Scholar 

  • Hasanuzzaman M, Nahar K, Anee TI, Fujita M (2017) Glutathione in plants: biosynthesis and physiological role in environmental stress tolerance. Physiol Mol Biol Plants 23(2):249–268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hasanuzzaman M, Fujita M, Oku H, Islam MT (2019) Plant tolerance to environmental stress: role of phytoprotectants. CRC Press, Boca Raton, FL

    Book  Google Scholar 

  • Hasthanasombut S, Ntui V, Supaibulwatana K, Mii M, Nakamura I (2010) Expression of Indica rice OsBADH1 gene under salinity stress in transgenic tobacco. Plant Biotechnol Rep 4(1):75–83

    Article  Google Scholar 

  • Havaux M, Eymery F, Porfirova S, Rey P, Dörmann P (2005) Vitamin E protects against photoinhibition and photooxidative stress in Arabidopsis thaliana. Plant Cell 17(12):3451–3469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayashi H, Sakamoto A, Nonaka H, Chen TH, Murata N (1998) Enhanced germination under high-salt conditions of seeds of transgenic Arabidopsis with a bacterial gene (codA) for Choline oxidase. J Plant Res 111(2):357

    Article  CAS  Google Scholar 

  • Hedrich R (2012) Ion channels in plants. Physiol Res 92(4):1777–1811

    CAS  Google Scholar 

  • Hirayama T, Shinozaki K (2010) Research on plant abiotic stress responses in the post-genome era: past, present and future. Plant J 61(6):1041–1052

    Article  CAS  PubMed  Google Scholar 

  • Hmida-Sayari A, Gargouri-Bouzid R, Bidani A, Jaoua L, Savouré A, Jaoua S (2005) Overexpression of Δ1-pyrroline-5-carboxylate synthetase increases proline production and confers salt tolerance in transgenic potato plants. Plant Sci 169(4):746–752

    Article  CAS  Google Scholar 

  • Holmström KO, Somersalo S, Mandal A, Palva TE, Welin B (2000) Improved tolerance to salinity and low temperature in transgenic tobacco producing glycine betaine. J Exp Bot 51(343):177–185

    Article  PubMed  Google Scholar 

  • Hou Q, Ufer G, Bartels D (2016) Lipid signalling in plant responses to abiotic stress. Plant Cell Environ 39(5):1029–1048

    Article  CAS  PubMed  Google Scholar 

  • Houde M, Dallaire S, N’Dong D, Sarhan F (2004) Overexpression of the acidic dehydrin WCOR410 improves freezing tolerance in transgenic strawberry leaves. Plant Biotechnol J 2(5):381–387

    Article  CAS  PubMed  Google Scholar 

  • Hrabak EM, Chan CW, Gribskov M, Harper JF, Choi JH, Halford N, Kudla J, Luan S, Nimmo HG, Sussman MR (2003) The Arabidopsis CDPK-SnRK superfamily of protein kinases. Plant Physiol 132(2):666–680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu L, Lu H, Liu Q, Chen X, Jiang X (2005) Overexpression of mtl D gene in transgenic Populus tomentosa improves salt tolerance through accumulation of mannitol. Tree Physiol 25(10):1273–1281

    Article  CAS  PubMed  Google Scholar 

  • Hu H, You J, Fang Y, Zhu X, Qi Z, Xiong L (2008) Characterization of transcription factor gene SNAC2 conferring cold and salt tolerance in rice. Plant Mol Biol 67(1–2):169–181

    Article  CAS  PubMed  Google Scholar 

  • Hua D, Wang C, He J, Liao H, Duan Y, Zhu Z, Guo Y, Chen Z, Gong Z (2012) A plasma membrane receptor kinase, GHR1, mediates abscisic acid-and hydrogen peroxide-regulated stomatal movement in Arabidopsis. Plant Cell 24(6):2546–2561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang J, Hirji R, Adam L, Rozwadowski KL, Hammerlindl JK, Keller WA, Selvaraj G (2000) Genetic engineering of glycinebetaine production toward enhancing stress tolerance in plants: metabolic limitations. Plant Physiol 122(3):747–756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang X-Y, Chao D-Y, Gao J-P, Zhu M-Z, Shi M, Lin H-X (2009) A previously unknown zinc finger protein, DST, regulates drought and salt tolerance in rice via stomatal aperture control. Genes Dev 23(15):1805–1817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huq E, Tepperman JM, Quail PH (2000) Gigantea is a nuclear protein involved in phytochrome signaling in Arabidopsis. Proc Natl Acad Sci U S A 97(17):9789–9794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hur J, Jung K-H, Lee C-H, An G (2004) Stress-inducible OsP5CS2 gene is essential for salt and cold tolerance in rice. Plant Sci 167(3):417–426

    Article  CAS  Google Scholar 

  • Hussain Wani S, Brajendra Singh N, Haribhushan A, Iqbal Mir J (2013) Compatible solute engineering in plants for abiotic stress tolerance-role of glycine betaine. Curr Genomics 14(3):157–165

    Article  Google Scholar 

  • Ito Y, Katsura K, Maruyama K, Taji T, Kobayashi M, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2006) Functional analysis of rice DREB1/CBF-type transcription factors involved in cold-responsive gene expression in transgenic rice. Plant Cell Physiol 47(1):141–153

    Article  CAS  PubMed  Google Scholar 

  • Jacques S, Ghesquière B, Van Breusegem F, Gevaert K (2013) Plant proteins under oxidative attack. Proteomics 13(6):932–940

    Article  CAS  PubMed  Google Scholar 

  • Jiang Y, Deyholos MK (2009) Functional characterization of Arabidopsis NaCl-inducible WRKY25 and WRKY33 transcription factors in abiotic stresses. Plant Mol Biol 69(1–2):91–105

    Article  CAS  PubMed  Google Scholar 

  • Jiang C-J, Aono M, Tamaoki M, Maeda S, Sugano S, Mori M, Takatsuji H (2008) SAZ, a new Superman-like protein, negatively regulates a subset of ABA-responsive genes in Arabidopsis. Mol Gen Genomics 279(2):183–192

    Article  CAS  Google Scholar 

  • Jung C, Shim JS, Seo JS, Lee HY, Kim CH, Do Choi Y, Cheong J-J (2010) Non-specific phytohormonal induction of AtMYB44 and suppression of jasmonate-responsive gene activation in Arabidopsis thaliana. Mol Cells 29(1):71–76

    Article  CAS  PubMed  Google Scholar 

  • Kangasjärvi S, Neukermans J, Li S, Aro E-M, Noctor G (2012) Photosynthesis, photorespiration, and light signalling in defence responses. J Exp Bot 63(4):1619–1636

    Article  PubMed  CAS  Google Scholar 

  • Karakas B, Ozias-Akins P, Stushnoff C, Suefferheld M, Rieger M (1997) Salinity and drought tolerance of mannitol accumulating transgenic tobacco. Plant Cell Environ 20(5):609–616

    Article  Google Scholar 

  • Karim S, Aronsson H, Ericson H, Pirhonen M, Leyman B, Welin B, Mäntylä E, Palva ET, Van Dijck P, Holmström K-O (2007) Improved drought tolerance without undesired side effects in transgenic plants producing trehalose. Plant Mol Biol 64(4):371–386

    Article  CAS  PubMed  Google Scholar 

  • Karthikeyan A, Pandian SK, Ramesh M (2011) Transgenic indica rice cv. ADT 43 expressing a Δ 1-pyrroline-5-carboxylate synthetase (P5CS) gene from Vigna aconitifolia demonstrates salt tolerance. Plant Cell Tissue Organ Cult 107(3):383–395

    Article  CAS  Google Scholar 

  • Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1999) Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotechnol 17(3):287

    Article  CAS  PubMed  Google Scholar 

  • Kasuga M, Miura S, Shinozaki K, Yamaguchi-Shinozaki K (2004) A combination of the Arabidopsis DREB1A gene and stress-inducible rd29A promoter improved drought-and low-temperature stress tolerance in tobacco by gene transfer. Plant Cell Physiol 45(3):346–350

    Article  CAS  PubMed  Google Scholar 

  • Kasukabe Y, He L, Nada K, Misawa S, Ihara I, Tachibana S (2004) Overexpression of Spermidine synthase enhances tolerance to multiple environmental stresses and up-regulates the expression of various stress-regulated genes in transgenic Arabidopsis thaliana. Plant Cell Physiol 45(6):712–722

    Article  CAS  PubMed  Google Scholar 

  • Kasukabe Y, He L, Watakabe Y, Otani M, Shimada T, Tachibana S (2006) Improvement of environmental stress tolerance of sweet potato by introduction of genes for Spermidine synthase. Plant Biotechnol 23(1):75–83

    Article  CAS  Google Scholar 

  • Kathuria H, Giri J, Nataraja KN, Murata N, Udayakumar M, Tyagi AK (2009) Glycinebetaine-induced water-stress tolerance in codA expressing transgenic indica rice is associated with up-regulation of several stress responsive genes. Plant Biotechnol J 7(6):512–526

    Article  CAS  PubMed  Google Scholar 

  • Kaur G, Asthir B (2015) Proline: a key player in plant abiotic stress tolerance. Biol Plant 59(4):609–619

    Article  CAS  Google Scholar 

  • Kavi Kishor PB, Sreenivasulu N (2014) Is proline accumulation per se correlated with stress tolerance or is proline homeostasis a more critical issue? Plant Cell Environ 37(2):300–311

    Article  CAS  PubMed  Google Scholar 

  • Kazan K, Manners JM (2013) MYC2: the master in action. MoPlant 6(3):686–703

    CAS  Google Scholar 

  • Khan MIR, Khan NA (2017) Reactive oxygen species and antioxidant systems in plants: role and regulation under abiotic stress. Springer, New York

    Google Scholar 

  • Kim S, Kang J-Y, Cho D-I, Park JH, Kim SY (2004) ABF2, an ABRE-binding bZIP factor, is an essential component of glucose signaling and its overexpression affects multiple stress tolerance. Plant J 40(1):75–87

    Article  CAS  PubMed  Google Scholar 

  • Kim S-H, Woo D-H, Kim J-M, Lee S-Y, Chung WS, Moon Y-H (2011) Arabidopsis MKK4 mediates osmotic-stress response via its regulation of MPK3 activity. Biochem Biophys Res Commun 412(1):150–154

    Article  CAS  PubMed  Google Scholar 

  • Kim J-M, Woo D-H, Kim S-H, Lee S-Y, Park H-Y, Seok H-Y, Chung WS, Moon Y-H (2012a) Arabidopsis MKKK20 is involved in osmotic stress response via regulation of MPK6 activity. Plant Cell Rep 31(1):217–224

    Article  CAS  PubMed  Google Scholar 

  • Kim J-S, Mizoi J, Kidokoro S, Maruyama K, Nakajima J, Nakashima K, Mitsuda N, Takiguchi Y, Ohme-Takagi M, Kondou Y (2012b) Arabidopsis growth-regulating factor 7 functions as a transcriptional repressor of abscisic acid- and osmotic stress-responsive genes, including DREB2A. Plant Cell 24(8):3393–3405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim Y, Kim I, Shin S, Park T, Park H, Kim Y, Lee G, Kang H, Lee S, Yoon H (2014) Overexpression of Dehydroascorbate reductase confers enhanced tolerance to salt stress in rice plants (Oryza sativa L. japonica). J Agron Crop Sci 200(6):444–456

    Article  CAS  Google Scholar 

  • Kishor PK, Hong Z, Miao G-H, Hu C-AA, Verma DPS (1995) Overexpression of [delta]-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiol 108(4):1387–1394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kissoudis C, van de Wiel C, Visser RG, van der Linden G (2014) Enhancing crop resilience to combined abiotic and biotic stress through the dissection of physiological and molecular crosstalk. Front Plant Sci 5:207

    Article  PubMed  PubMed Central  Google Scholar 

  • Kocsy G, Laurie R, Szalai G, Szilágyi V, Simon-Sarkadi L, Galiba G, De Ronde JA (2005) Genetic manipulation of proline levels affects antioxidants in soybean subjected to simultaneous drought and heat stresses. Physiol Plant 124(2):227–235

    Article  CAS  Google Scholar 

  • Kodaira K-S, Qin F, Tran L-SP, Maruyama K, Kidokoro S, Fujita Y, Shinozaki K, Yamaguchi-Shinozaki K (2011) Arabidopsis Cys2/His2 zinc-finger proteins AZF1 and AZF2 negatively regulate abscisic acid-repressive and auxin-inducible genes under abiotic stress conditions. Plant Physiol 157(2):742–756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kolaksazov M, Laporte F, Ananieva K, Dobrev P, Herzog M, Ananiev E (2013) Effect of chilling and freezing stresses on jasmonate content in Arabis alpina. Bulg J Agric Sci 19:15–17

    Google Scholar 

  • Kolodyazhnaya YS, Titov S, Kochetov A, Trifonova E, Romanova A, Komarova M, Koval V, Shumny V (2007) Tobacco transformants expressing antisense sequence of Proline dehydrogenase gene possess tolerance to heavy metals. Russ J Genet 43(7):825–828

    Article  CAS  Google Scholar 

  • Konstantinova T, Parvanova D, Atanassov A, Djilianov D (2002) Freezing tolerant tobacco, transformed to accumulate osmoprotectants. Plant Sci 163(1):157–164

    Article  CAS  Google Scholar 

  • Krieger-Liszkay A, Fufezan C, Trebst A (2008) Singlet oxygen production in photosystem II and related protection mechanism. Photosynth Res 98(1–3):551–564

    Article  CAS  PubMed  Google Scholar 

  • Kudla J, Batistič O, Hashimoto K (2010) Calcium signals: the lead currency of plant information processing. Plant Cell 22(3):541–563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar K, Sinha AK (2013) Overexpression of constitutively active mitogen activated protein kinase kinase 6 enhances tolerance to salt stress in rice. Rice 6(1):25

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Dhingra A, Daniell H (2004) Plastid-expressed betaine Aldehyde dehydrogenase gene in carrot cultured cells, roots, and leaves confers enhanced salt tolerance. Plant Physiol 136(1):2843–2854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumria R, Rajam MV (2002) Ornithine decarboxylase transgene in tobacco affects polyamines, in vitro-morphogenesis and response to salt stress. J Plant Physiol 159(9):983–990

    Article  CAS  Google Scholar 

  • Kurepa J, Smalle J, Va M, Montagu N, Inzé D (1998) Oxidative stress tolerance and longevity in Arabidopsis: the late-flowering mutant gigantea is tolerant to paraquat. Plant J 14(6):759–764

    Article  CAS  PubMed  Google Scholar 

  • Larcher W (1987) Stress bei pflanzen. Naturwissenschaften 74(4):158–167

    Article  CAS  Google Scholar 

  • Lata C, Jha S, Dixit V, Sreenivasulu N, Prasad M (2011) Differential antioxidative responses to dehydration-induced oxidative stress in core set of foxtail millet cultivars [Setaria italica (L.)]. Protoplasma 248(4):817–828

    Article  CAS  PubMed  Google Scholar 

  • Le Gall H, Philippe F, Domon J-M, Gillet F, Pelloux J, Rayon C (2015) Cell wall metabolism in response to abiotic stress. Plan Theory 4(1):112–166

    Google Scholar 

  • Lee JT, Prasad V, Yang PT, Wu JF, David Ho TH, Charng YY, Chan MT (2003) Expression of Arabidopsis CBF1 regulated by an ABA/stress inducible promoter in transgenic tomato confers stress tolerance without affecting yield. Plant Cell Environ 26(7):1181–1190

    Article  CAS  Google Scholar 

  • Lee Y-P, Kim S-H, Bang J-W, Lee H-S, Kwak S-S, Kwon S-Y (2007) Enhanced tolerance to oxidative stress in transgenic tobacco plants expressing three antioxidant enzymes in chloroplasts. Plant Cell Rep 26(5):591–598

    Article  CAS  PubMed  Google Scholar 

  • Li D, Xia X, Yin W, Zhang H (2013) Two poplar calcineurin B-like proteins confer enhanced tolerance to abiotic stresses in transgenic Arabidopsis thaliana. Biol Plant 57(1):70–78

    Article  CAS  Google Scholar 

  • Liang J, Zhou M, Zhou X, Jin Y, Xu M, Lin J (2013) JcLEA, a novel LEA-like protein from Jatropha curcas, confers a high level of tolerance to dehydration and salinity in Arabidopsis thaliana. PLoS One 8(12):e83056

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lichtenthaler HK (1998) The stress concept in plants: an introduction. Ann N Y Acad Sci 851(1):187–198

    Article  CAS  PubMed  Google Scholar 

  • Lindemose S, O’Shea C, Jensen M, Skriver K (2013) Structure, function and networks of transcription factors involved in abiotic stress responses. Int J Mol Sci 14(3):5842–5878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Q-L, Xu K-D, Zhao L-J, Pan Y-Z, Jiang B-B, Zhang H-Q, Liu G-L (2011a) Overexpression of a novel chrysanthemum NAC transcription factor gene enhances salt tolerance in tobacco. Biotechnol Lett 33(10):2073

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Hong L, Li X-Y, Yao Y, Hu B, Li L (2011b) Improved drought and salt tolerance in transgenic Arabidopsis overexpressing a NAC transcriptional factor from Arachis hypogaea. Biosci Biotechnol Biochem 75(3):443–450

    Article  CAS  PubMed  Google Scholar 

  • Lorenzo O, Solano R (2005) Molecular players regulating the jasmonate signalling network. Curr Opin Plant Biol 8(5):532–540

    Article  CAS  PubMed  Google Scholar 

  • Lu Z, Liu D, Liu S (2007) Two rice cytosolic Ascorbate peroxidases differentially improve salt tolerance in transgenic Arabidopsis. Plant Cell Rep 26(10):1909–1917

    Article  CAS  PubMed  Google Scholar 

  • Lu W, Chu X, Li Y, Wang C, Guo X (2013) Cotton GhMKK1 induces the tolerance of salt and drought stress, and mediates defence responses to pathogen infection in transgenic Nicotiana benthamiana. PLoS One 8(7):e68503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lv S, Yang A, Zhang K, Wang L, Zhang J (2007) Increase of glycinebetaine synthesis improves drought tolerance in cotton. Mol Breed 20(3):233–248

    Article  CAS  Google Scholar 

  • Ma S-Y, Wu W-H (2007) AtCPK23 functions in Arabidopsis responses to drought and salt stresses. Plant Mol Biol 65(4):511–518

    Article  CAS  PubMed  Google Scholar 

  • Ma L, Zhou E, Gao L, Mao X, Zhou R, Jia J (2008) Isolation, expression analysis and chromosomal location of P5CR gene in common wheat (Triticum aestivum L.). S Afr J Bot 74(4):705–712

    Article  CAS  Google Scholar 

  • Ma Y, Dai X, Xu Y, Luo W, Zheng X, Zeng D, Pan Y, Lin X, Liu H, Zhang D (2015) COLD1 confers chilling tolerance in rice. Cell 160(6):1209–1221

    Article  CAS  PubMed  Google Scholar 

  • Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 444(2):139–158

    Article  CAS  PubMed  Google Scholar 

  • Maqbool A, Abbas W, Rao AQ, Irfan M, Zahur M, Bakhsh A, Riazuddin S, Husnain T (2010) Gossypium arboreum GHSP26 enhances drought tolerance in Gossypium hirsutum. Biotechnol Prog 26(1):21–25

    CAS  PubMed  Google Scholar 

  • Marco F, Alcazar R, Tiburcio AF, Carrasco P (2011) Interactions between polyamines and abiotic stress pathway responses unraveled by transcriptome analysis of polyamine overproducers. OMICS 15(11):775–781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marco F, Bitrián M, Carrasco P, Rajam MV, Alcázar R, Tiburcio AF (2015) Genetic engineering strategies for abiotic stress tolerance in plants. In: Plant biology and biotechnology. Springer, pp 579–609

    Google Scholar 

  • Martin GM, Austad SN, Johnson TE (1996) Genetic analysis of ageing: role of oxidative damage and environmental stresses. Nat Genet 13(1):25

    Article  CAS  PubMed  Google Scholar 

  • Meena H, Bainsla NK, Yadav D (2016) Breeding for abiotic stress tolerance in crop plants. Daya Publishing House, New Delhi

    Google Scholar 

  • Mekonnen DW, Flügge U-I, Ludewig F (2016) Gamma-aminobutyric acid depletion affects stomata closure and drought tolerance of Arabidopsis thaliana. Plant Sci 245:25–34

    Article  CAS  PubMed  Google Scholar 

  • Mhamdi A, Hager J, Chaouch S, Queval G, Han Y, Taconnat L, Saindrenan P, Gouia H, Issakidis-Bourguet E, Renou J-P (2010a) Arabidopsis Glutathione reductase plays a crucial role in leaf responses to intracellular hydrogen peroxide and in ensuring appropriate gene expression through both salicylic acid and jasmonic acid signaling pathways. Plant Physiol 153(3):1144–1160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mhamdi A, Queval G, Chaouch S, Vanderauwera S, Van Breusegem F, Noctor G (2010b) Catalase function in plants: a focus on Arabidopsis mutants as stress-mimic models. J Exp Bot 61(15):4197–4220

    Article  CAS  PubMed  Google Scholar 

  • Mickelbart MV, Hasegawa PM, Bailey-Serres J (2015) Genetic mechanisms of abiotic stress tolerance that translate to crop yield stability. Nat Rev Genet 16(4):237

    Article  CAS  PubMed  Google Scholar 

  • Mignolet-Spruyt L, Xu E, Idänheimo N, Hoeberichts FA, Mühlenbock P, Brosché M, Van Breusegem F, Kangasjärvi J (2016) Spreading the news: subcellular and organellar reactive oxygen species production and signalling. J Exp Bot 67(13):3831–3844

    Article  CAS  PubMed  Google Scholar 

  • Miller G, Schlauch K, Tam R, Cortes D, Torres MA, Shulaev V, Dangl JL, Mittler R (2009) The plant NADPH oxidase RBOHD mediates rapid systemic signaling in response to diverse stimuli. Sci Signal 2(84):ra45

    Article  PubMed  Google Scholar 

  • Miranda JA, Avonce N, Suárez R, Thevelein JM, Van Dijck P, Iturriaga G (2007) A bifunctional TPS–TPP enzyme from yeast confers tolerance to multiple and extreme abiotic-stress conditions in transgenic Arabidopsis. Planta 226(6):1411–1421

    Article  CAS  PubMed  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7(9):405–410

    Article  CAS  PubMed  Google Scholar 

  • Mittler R (2006) Abiotic stress, the field environment and stress combination. Trends Plant Sci 11(1):15–19

    Article  CAS  PubMed  Google Scholar 

  • Mittler R (2017) ROS are good. Trends Plant Sci 22(1):11–19

    Article  CAS  PubMed  Google Scholar 

  • Mizoi J, Yamaguchi-Shinozaki K (2013) Molecular approaches to improve rice abiotic stress tolerance. In: Rice protocols. Springer, pp 269–283

    Google Scholar 

  • Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2012) AP2/ERF family transcription factors in plant abiotic stress responses. BBA Gene Regul Mech 1819(2):86–96

    CAS  Google Scholar 

  • Molinari HBC, Marur CJ, Daros E, De Campos MKF, De Carvalho JFRP, Filho JCB, Pereira LFP, Vieira LGE (2007) Evaluation of the stress-inducible production of proline in transgenic sugarcane (Saccharum spp.): osmotic adjustment, chlorophyll fluorescence and oxidative stress. Physiol Plant 130(2):218–229

    Article  CAS  Google Scholar 

  • Moon H, Lee B, Choi G, Shin D, Prasad DT, Lee O, Kwak S-S, Kim DH, Nam J, Bahk J (2003) NDP kinase 2 interacts with two oxidative stress-activated MAPKs to regulate cellular redox state and enhances multiple stress tolerance in transgenic plants. Proc Natl Acad Sci U S A 100(1):358–363

    Article  CAS  PubMed  Google Scholar 

  • Moore JP, Nguema-Ona E, Fangel JU, Willats WG, Hugo A, Vivier MA (2014) Profiling the main cell wall polysaccharides of grapevine leaves using high-throughput and fractionation methods. Carbohydr Polym 99:190–198

    Article  CAS  PubMed  Google Scholar 

  • Morran S, Eini O, Pyvovarenko T, Parent B, Singh R, Ismagul A, Eliby S, Shirley N, Langridge P, Lopato S (2011) Improvement of stress tolerance of wheat and barley by modulation of expression of DREB/CBF factors. Plant Biotechnol J 9(2):230–249

    Article  CAS  PubMed  Google Scholar 

  • Muchate NS, Nikalje GC, Rajurkar NS, Suprasanna P, Nikam TD (2016) Plant salt stress: adaptive responses, tolerance mechanism and bioengineering for salt tolerance. Bot Rev 82(4):371–406

    Article  Google Scholar 

  • Murakami S, Johnson TE (1996) A genetic pathway conferring life extension and resistance to UV stress in Caenorhabditis elegans. Genetics 143(3):1207–1218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murata N, Ishizaki-Nishizawa O, Higashi S, Hayashi H, Tasaka Y, Nishida I (1992) Genetically engineered alteration in the chilling sensitivity of plants. Nature 356(6371):710

    Article  CAS  Google Scholar 

  • Nanjo T, Kobayashi M, Yoshiba Y, Kakubari Y, Yamaguchi-Shinozaki K, Shinozaki K (1999) Antisense suppression of proline degradation improves tolerance to freezing and salinity in Arabidopsis thaliana. FEBS Lett 461(3):205–210

    Article  CAS  PubMed  Google Scholar 

  • Nisar N, Li L, Lu S, Khin NC, Pogson BJ (2015) Carotenoid metabolism in plants. Mol Plant 8(1):68–82

    Article  CAS  PubMed  Google Scholar 

  • Noctor G, Reichheld J-P, Foyer CH (2018) ROS-related redox regulation and signaling in plants. Semin Cell Dev Biol 80:3–12

    Article  CAS  PubMed  Google Scholar 

  • Nookaraju A, Pandey SK, Upadhyaya CP, Heung JJ, Kim HS, Chun SC, Kim DH, Park SW (2012) Role of Ca 2+−mediated signaling in potato tuberization: an overview. Bot Stud 53(2)

    Google Scholar 

  • Nuruzzaman M, Sharoni AM, Kikuchi S (2013) Roles of NAC transcription factors in the regulation of biotic and abiotic stress responses in plants. Front Microbiol 4:248

    Article  PubMed  PubMed Central  Google Scholar 

  • Onaga G, Wydra K (2016) Advances in plant tolerance to abiotic stresses. In: Plant genomics. IntechOpen

    Google Scholar 

  • Park S-Y, Fung P, Nishimura N, Jensen DR, Fujii H, Zhao Y, Lumba S, Santiago J, Rodrigues A, Tsz-fung FC (2009) Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science 324(5930):1068–1071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peleg Z, Blumwald E (2011) Hormone balance and abiotic stress tolerance in crop plants. Curr Opin Plant Biol 14(3):290–295

    Article  CAS  PubMed  Google Scholar 

  • Pilon-Smits EA, Terry N, Sears T, Kim H, Zayed A, Hwang S, van Dun K, Voogd E, Verwoerd TC, Krutwagen RW (1998) Trehalose-producing transgenic tobacco plants show improved growth performance under drought stress. J Plant Physiol 152(4–5):525–532

    Article  CAS  Google Scholar 

  • Poiroux-Gonord F, Santini J, Fanciullino A-L, Lopez-Lauri F, Giannettini J, Sallanon H, Berti L, Urban L (2013) Metabolism in orange fruits is driven by photooxidative stress in the leaves. Physiol Plant 149(2):175–187

    Article  CAS  PubMed  Google Scholar 

  • Prabhavathi V, Yadav J, Kumar P, Rajam M (2002) Abiotic stress tolerance in transgenic eggplant (Solanum melongena L.) by introduction of bacterial Mannitol phosphodehydrogenase gene. Mol Breed 9(2):137–147

    Article  CAS  Google Scholar 

  • Prashanth S, Sadhasivam V, Parida A (2008) Overexpression of cytosolic copper/zinc superoxide dismutase from a mangrove plant Avicennia marina in indica rice var Pusa Basmati-1 confers abiotic stress tolerance. Transgenic Res 17(2):281–291

    Article  CAS  PubMed  Google Scholar 

  • Pujni D, Chaudhary A, Rajam M (2007) Increased tolerance to salinity and drought in transgenic indica rice by mannitol accumulation. J Plant Biochem Biotechnol 16(1):1–7

    Article  CAS  Google Scholar 

  • Puniran-Hartley N, Hartley J, Shabala L, Shabala S (2014) Salinity-induced accumulation of organic osmolytes in barley and wheat leaves correlates with increased oxidative stress tolerance: in planta evidence for cross-tolerance. Plant Physiol Biochem 83:32–39

    Article  CAS  PubMed  Google Scholar 

  • Puthur JT (2016) Antioxidants and cellular antioxidation mechanism in plants. South Ind J Biol Sci 2(1):14–17

    Google Scholar 

  • Qi Y, Liu W, Qiu L, Zhang S, Ma L, Zhang H (2010) Overexpression of glutathione S-transferase gene increases salt tolerance of Arabidopsis. Russ J Plant Physiol 57(2):233–240

    Article  CAS  Google Scholar 

  • Qiu Y, Yu D (2009) Over-expression of the stress-induced OsWRKY45 enhances disease resistance and drought tolerance in Arabidopsis. Environ Exp Bot 65(1):35–47

    Article  CAS  Google Scholar 

  • Quan R, Shang M, Zhang H, Zhao Y, Zhang J (2004) Engineering of enhanced glycine betaine synthesis improves drought tolerance in maize. Plant Biotechnol J 2(6):477–486

    Article  CAS  PubMed  Google Scholar 

  • Rao KM, Raghavendra A, Reddy KJ (2006) Physiology and molecular biology of stress tolerance in plants. Springer Science & Business Media, Dordrecht

    Google Scholar 

  • Razavizadeh R, Ehsanpour A (2009) Effects of salt stress on proline content, expression of delta-1-pyrroline-5-carboxylate synthetase, and activities of catalase and Ascorbate peroxidase in transgenic tobacco plants. Biol Lett 46(2):63–75

    Article  CAS  Google Scholar 

  • Reddy AS, Ali GS, Celesnik H, Day IS (2011) Coping with stresses: roles of calcium-and calcium/calmodulin-regulated gene expression. Plant Cell 23(6):2010–2032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Redillas MC, Park S-H, Lee JW, Kim YS, Jeong JS, Jung H, Bang SW, Hahn T-R, Kim J-K (2012) Accumulation of trehalose increases soluble sugar contents in rice plants conferring tolerance to drought and salt stress. Plant Biotechnol Rep 6(1):89–96

    Article  Google Scholar 

  • Reumann S, Corpas FJ (2010) The peroxisomal ascorbate–glutathione pathway: molecular identification and insights into its essential role under environmental stress conditions. In: Ascorbate-glutathione pathway and stress tolerance in plants. Springer, pp 387–404

    Google Scholar 

  • Rodriguez L, Gonzalez-Guzman M, Diaz M, Rodrigues A, Izquierdo-Garcia AC, Peirats-Llobet M, Fernandez MA, Antoni R, Fernandez D, Marquez JA (2014) C2-domain abscisic acid-related proteins mediate the interaction of PYR/PYL/RCAR abscisic acid receptors with the plasma membrane and regulate abscisic acid sensitivity in Arabidopsis. Plant Cell 26(12):4802–4820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rohila JS, Jain RK, Wu R (2002) Genetic improvement of Basmati rice for salt and drought tolerance by regulated expression of a barley Hva1 cDNA. Plant Sci 163(3):525–532

    Article  CAS  Google Scholar 

  • Roosens NH, Al Bitar F, Loenders K, Angenon G, Jacobs M (2002) Overexpression of ornithine-δ-aminotransferase increases proline biosynthesis and confers osmotolerance in transgenic plants. Mol Breed 9(2):73–80

    Article  CAS  Google Scholar 

  • Roxas VP, Smith RK Jr, Allen ER, Allen RD (1997) Overexpression of glutathione S-transferase/glutathioneperoxidase enhances the growth of transgenic tobacco seedlings during stress. Nat Biotechnol 15(10):988

    Article  CAS  PubMed  Google Scholar 

  • Roy M, Wu R (2001) Arginine decarboxylase transgene expression and analysis of environmental stress tolerance in transgenic rice. Plant Sci 160(5):869–875

    Article  CAS  PubMed  Google Scholar 

  • Roy M, Wu R (2002) Overexpression of S-adenosylmethionine decarboxylase gene in rice increases polyamine level and enhances sodium chloride-stress tolerance. Plant Sci 163(5):987–992

    Article  CAS  Google Scholar 

  • Saito S, Uozumi N (2019) Guard cell membrane anion transport systems and their regulatory components: an elaborate mechanism controlling stress-induced stomatal closure. Plan Theory 8(1):9

    CAS  Google Scholar 

  • Sakuma Y, Liu Q, Dubouzet JG, Abe H, Shinozaki K, Yamaguchi-Shinozaki K (2002) DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration-and cold-inducible gene expression. Biochem Biophys Res Commun 290(3):998–1009

    Article  CAS  PubMed  Google Scholar 

  • Sakuma Y, Maruyama K, Qin F, Osakabe Y, Shinozaki K, Yamaguchi-Shinozaki K (2006) Dual function of an Arabidopsis transcription factor DREB2A in water-stress-responsive and heat-stress-responsive gene expression. Proc Natl Acad Sci U S A 103(49):18822–18827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sánchez-Vallet A, López G, Ramos B, Delgado-Cerezo M, Riviere M-P, Llorente F, Fernández PV, Miedes E, Estevez JM, Grant M (2012) Disruption of abscisic acid signaling constitutively activates Arabidopsis resistance to the necrotrophic fungus Plectosphaerella cucumerina. Plant Physiol 160(4):2109–2124

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sangwan V, Örvar BL, Beyerly J, Hirt H, Dhindsa RS (2002) Opposite changes in membrane fluidity mimic cold and heat stress activation of distinct plant MAP kinase pathways. Plant J 31(5):629–638

    Article  CAS  PubMed  Google Scholar 

  • Sasidharan R, Voesenek LA, Pierik R (2011) Cell wall modifying proteins mediate plant acclimatization to biotic and abiotic stresses. CRC Crit Rev Plant Sci 30(6):548–562

    Article  CAS  Google Scholar 

  • Sato Y, Yokoya S (2008) Enhanced tolerance to drought stress in transgenic rice plants overexpressing a small heat-shock protein, sHSP17. 7. Plant Cell Rep 27(2):329–334

    Article  CAS  PubMed  Google Scholar 

  • Sawahel WA, Hassan AH (2002) Generation of transgenic wheat plants producing high levels of the osmoprotectant proline. Biotechnol Lett 24(9):721–725

    Article  CAS  Google Scholar 

  • Scharf K-D, Berberich T, Ebersberger I, Nover L (2012) The plant heat stress transcription factor (Hsf) family: structure, function and evolution. BBA Gene Regul Mech 1819(2):104–119

    CAS  Google Scholar 

  • Schat H, Llugany M, Vooijs R, Hartley-Whitaker J, Bleeker PM (2002) The role of phytochelatins in constitutive and adaptive heavy metal tolerances in hyperaccumulator and non-hyperaccumulator metallophytes. J Exp Bot 53(379):2381–2392

    Article  CAS  PubMed  Google Scholar 

  • Schopfer P, Plachy C, Frahry G (2001) Release of reactive oxygen intermediates (superoxide radicals, hydrogen peroxide, and hydroxyl radicals) and peroxidase in germinating radish seeds controlled by light, gibberellin, and abscisic acid. Plant Physiol 125(4):1591–1602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seo PJ, Xiang F, Qiao M, Park J-Y, Lee YN, Kim S-G, Lee Y-H, Park WJ, Park C-M (2009) The MYB96 transcription factor mediates abscisic acid signaling during drought stress response in Arabidopsis. Plant Physiol 151(1):275–289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sevilla F, Camejo D, Ortiz-Espín A, Calderón A, Lázaro J, Jiménez A (2015) The thioredoxin/peroxiredoxin/sulfiredoxin system: current overview on its redox function in plants and regulation by reactive oxygen and nitrogen species. J Exp Bot 66(10):2945–2955

    Article  CAS  PubMed  Google Scholar 

  • Sharma K (2014) Pollen development under cold stress: a molecular perspective. Austin J Genet Genomic Res 1(1):4

    Google Scholar 

  • Sharma S, Villamor JG, Verslues PE (2011) Essential role of tissue-specific proline synthesis and catabolism in growth and redox balance at low water potential. Plant Physiol 157(1):292–304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot 2012:217037

    Google Scholar 

  • Shitamichi N, Matsuoka D, Sasayama D, Furuya T, Nanmori T (2013) Over-expression of MAP 3Kδ4, an ABA-inducible Raf-like MAP 3K that confers salt tolerance in Arabidopsis. Plant Biotechnol 30(2):111–118

    Article  CAS  Google Scholar 

  • Shou H, Bordallo P, Wang K (2004) Expression of the Nicotiana protein kinase (NPK1) enhanced drought tolerance in transgenic maize. J Exp Bot 55(399):1013–1019

    Article  CAS  PubMed  Google Scholar 

  • Signorelli S (2016) The fermentation analogy: a point of view for understanding the intriguing role of proline accumulation in stressed plants. Front Plant Sci 7:1339

    Article  PubMed  PubMed Central  Google Scholar 

  • Signorelli S, Tarkowski ŁP, Van den Ende W, Bassham DC (2019) Linking autophagy to abiotic and biotic stress responses. Trends Plant Sci 24(5):413–430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simon-Sarkadi L, Kocsy G, Várhegyi Á, Galiba G, De Ronde JA (2005) Genetic manipulation of proline accumulation influences the concentrations of other amino acids in soybean subjected to simultaneous drought and heat stress. J Agric Food Chem 53(19):7512–7517

    Article  CAS  PubMed  Google Scholar 

  • Sirichandra C, Gu D, Hu H-C, Davanture M, Lee S, Djaoui M, Valot B, Zivy M, Leung J, Merlot S (2009) Phosphorylation of the Arabidopsis AtrbohF NADPH oxidase by OST1 protein kinase. FEBS Lett 583(18):2982–2986

    Article  CAS  PubMed  Google Scholar 

  • Su J, Wu R (2004) Stress-inducible synthesis of proline in transgenic rice confers faster growth under stress conditions than that with constitutive synthesis. Plant Sci 166(4):941–948

    Article  CAS  Google Scholar 

  • Su J, Hirji R, Zhang L, He C, Selvaraj G, Wu R (2006) Evaluation of the stress-inducible production of Choline oxidase in transgenic rice as a strategy for producing the stress-protectant glycine betaine. J Exp Bot 57(5):1129–1135

    Article  CAS  PubMed  Google Scholar 

  • Sun S, Zhou J (2018) Molecular mechanisms underlying stress response and adaptation. Thorac Cancer 9(2):218–227

    Article  PubMed  Google Scholar 

  • Sun W, Bernard C, Van De Cotte B, Van Montagu M, Verbruggen N (2001) AtHSP17.6A, encoding a small heat shock protein in Arabidopsis, can enhance osmotolerance upon overexpression. Plant J 27(5):407–415

    Article  CAS  PubMed  Google Scholar 

  • Swarbreck SM, Colaço R, Davies JM (2013) Plant calcium-permeable channels. Plant Physiol 163(2):514–522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szabados L, Savoure A (2010) Proline: a multifunctional amino acid. Trends Plant Sci 15(2):89–97

    Article  CAS  PubMed  Google Scholar 

  • Szoke A, Miao G-H, Hong Z, Verma DPS (1992) Subcellular location of δ1-pyrroline-5-carboxylate reductase in root/nodule and leaf of soybean. Plant Physiol 99(4):1642–1649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takabe T, Rai V, Hibino T (2006) Metabolic engineering of glycinebetaine. In: Abiotic stress tolerance in plants. Springer, pp 137–151

    Google Scholar 

  • Tang W, Peng X, Newton RJ (2005) Enhanced tolerance to salt stress in transgenic loblolly pine simultaneously expressing two genes encoding Mannitol-1-phosphate dehydrogenase and Glucitol-6-phosphate dehydrogenase. Plant Physiol Biochem 43(2):139–146

    Article  CAS  PubMed  Google Scholar 

  • Tarkowski ŁP, Van den Ende W (2015) Cold tolerance triggered by soluble sugars: a multifaceted countermeasure. Front Plant Sci 6:203

    Article  PubMed  PubMed Central  Google Scholar 

  • Tenhaken R (2015) Cell wall remodeling under abiotic stress. Front Plant Sci 5:771

    Article  PubMed  PubMed Central  Google Scholar 

  • Thomashow MF (2010) Molecular basis of plant cold acclimation: insights gained from studying the CBF cold response pathway. Plant Physiol 154(2):571–577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Traber MG, Stevens JF (2011) Vitamins C and E: beneficial effects from a mechanistic perspective. Free Radic Biol Med 51(5):1000–1013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Triantaphylides C, Krischke M, Hoeberichts FA, Ksas B, Gresser G, Havaux M, Van Breusegem F, Mueller MJ (2008) Singlet oxygen is the major reactive oxygen species involved in photooxidative damage to plants. Plant Physiol 148(2):960–968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tuteja N (2007) Abscisic acid and abiotic stress signaling. Plant Signal Behav 2(3):135–138

    Article  PubMed  PubMed Central  Google Scholar 

  • Umezawa T, Yoshida R, Maruyama K, Yamaguchi-Shinozaki K, Shinozaki K (2004) SRK2C, a SNF1-related protein kinase 2, improves drought tolerance by controlling stress-responsive gene expression in Arabidopsis thaliana. Proc Natl Acad Sci U S A 101(49):17306–17311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uno Y, Furihata T, Abe H, Yoshida R, Shinozaki K, Yamaguchi-Shinozaki K (2000) Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions. Proc Natl Acad Sci U S A 97(21):11632–11637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ushimaru T, Nakagawa T, Fujioka Y, Daicho K, Naito M, Yamauchi Y, Nonaka H, Amako K, Yamawaki K, Murata N (2006) Transgenic Arabidopsis plants expressing the rice Dehydroascorbate reductase gene are resistant to salt stress. J Plant Physiol 163(11):1179–1184

    Article  CAS  PubMed  Google Scholar 

  • Vanderauwera S, Suzuki N, Miller G, Van De Cotte B, Morsa S, Ravanat J-L, Hegie A, Triantaphylidès C, Shulaev V, Van Montagu MC (2011) Extranuclear protection of chromosomal DNA from oxidative stress. Proc Natl Acad Sci U S A 108(4):1711–1716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vendruscolo ECG, Schuster I, Pileggi M, Scapim CA, Molinari HBC, Marur CJ, Vieira LGE (2007) Stress-induced synthesis of proline confers tolerance to water deficit in transgenic wheat. J Plant Physiol 164(10):1367–1376

    Article  CAS  PubMed  Google Scholar 

  • Verbruggen N, Hermans C (2008) Proline accumulation in plants: a review. Amino Acids 35(4):753–759

    Article  CAS  PubMed  Google Scholar 

  • Vishwakarma K, Upadhyay N, Kumar N, Yadav G, Singh J, Mishra RK, Kumar V, Verma R, Upadhyay R, Pandey M (2017) Abscisic acid signaling and abiotic stress tolerance in plants: a review on current knowledge and future prospects. Front Plant Sci 8:161

    PubMed  PubMed Central  Google Scholar 

  • Waie B, Rajam MV (2003) Effect of increased polyamine biosynthesis on stress responses in transgenic tobacco by introduction of human S-adenosylmethionine gene. Plant Sci 164(5):727–734

    Article  CAS  Google Scholar 

  • Walter P, Ron D (2011) The unfolded protein response: from stress pathway to homeostatic regulation. Science 334(6059):1081–1086

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Ying Y, Chen J, Wang X (2004) Transgenic Arabidopsis overexpressing Mn-SOD enhanced salt-tolerance. Plant Sci 167(4):671–677

    Article  CAS  Google Scholar 

  • Wang Q-B, Xu W, Xue Q-Z, Su W-A (2010) Transgenic Brassica chinensis plants expressing a bacterial codA gene exhibit enhanced tolerance to extreme temperature and high salinity. J Zhejiang Univ Sci B 11(11):851–861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang R-K, Li L-L, Cao Z-H, Zhao Q, Li M, Zhang L-Y, Hao Y-J (2012) Molecular cloning and functional characterization of a novel apple MdCIPK6L gene reveals its involvement in multiple abiotic stress tolerance in transgenic plants. Plant Mol Biol 79(1–2):123–135

    Article  CAS  PubMed  Google Scholar 

  • Wani SH, Sah SK, Hossain MA, Kumar V, Balachandran SM (2016) Transgenic approaches for abiotic stress tolerance in crop plants. In: Advances in plant breeding strategies: agronomic, abiotic and biotic stress traits. Springer, pp 345–396

    Google Scholar 

  • Waterer D, Benning NT, Wu G, Luo X, Liu X, Gusta M, McHughen A, Gusta LV (2010) Evaluation of abiotic stress tolerance of genetically modified potatoes (Solanum tuberosum cv. Desiree). Mol Breed 25(3):527–540

    Article  CAS  Google Scholar 

  • Wen X-P, Ban Y, Inoue H, Matsuda N, Moriguchi T (2010) Spermidine levels are implicated in heavy metal tolerance in a spermidine synthase overexpressing transgenic European pear by exerting antioxidant activities. Transgenic Res 19(1):91–103

    Article  CAS  PubMed  Google Scholar 

  • Wi SJ, Park KY (2002) Antisense expression of carnation cDNA encoding ACC synthase or ACC oxidase enhances polyamine content and abiotic stress tolerance in transgenic tobacco plants. Mol Cells 13(2):209–220

    CAS  PubMed  Google Scholar 

  • Wi SJ, Kim WT, Park KY (2006) Overexpression of carnation S-adenosylmethionine decarboxylase gene generates a broad-spectrum tolerance to abiotic stresses in transgenic tobacco plants. Plant Cell Rep 25(10):1111–1121

    Article  CAS  PubMed  Google Scholar 

  • Wilkins KA, Matthus E, Swarbreck SM, Davies JM (2016) Calcium-mediated abiotic stress signaling in roots. Front Plant Sci 7:1296

    Article  PubMed  PubMed Central  Google Scholar 

  • Wrzaczek M, Brosché M, Kangasjärvi J (2013) ROS signaling loops-production, perception, regulation. Curr Opin Plant Biol 16(5):575–582

    Article  CAS  PubMed  Google Scholar 

  • Wu L, Fan Z, Guo L, Li Y, Zhang W, Qu L-J, Chen Z (2003) Over-expression of an Arabidopsis δ-OAT gene enhances salt and drought tolerance in transgenic rice. Chin Sci Bull 48(23):2594–2600

    Article  CAS  Google Scholar 

  • Xiang Y, Huang Y, Xiong L (2007) Characterization of stress-responsive CIPK genes in rice for stress tolerance improvement. Plant Physiol 144(3):1416–1428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xing Y, Jia W, Zhang J (2008) AtMKK1 mediates ABA-induced CAT1 expression and H2O2 production via AtMPK6-coupled signaling in Arabidopsis. Plant J 54(3):440–451

    Article  CAS  PubMed  Google Scholar 

  • Xue G-P, Way HM, Richardson T, Drenth J, Joyce PA, McIntyre CL (2011) Overexpression of TaNAC69 leads to enhanced transcript levels of stress up-regulated genes and dehydration tolerance in bread wheat. Mol Plant 4(4):697–712

    Article  CAS  PubMed  Google Scholar 

  • Yamada M, Morishita H, Urano K, Shiozaki N, Yamaguchi-Shinozaki K, Shinozaki K, Yoshiba Y (2005) Effects of free proline accumulation in petunias under drought stress. J Exp Bot 56(417):1975–1981

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (2006) Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol 57:781–803

    Article  CAS  PubMed  Google Scholar 

  • Yamchi A, Jazii FR, Mousavi A, Karkhane A (2007) Proline accumulation in transgenic tobacco as a result of expression of Arabidopsis Δ 1-pyrroline-5-carboxylate synthetase (P5CS) during osmotic stress. J Plant Biochem Biotechnol 16(1):9–15

    Article  CAS  Google Scholar 

  • Yang X, Wen X, Gong H, Lu Q, Yang Z, Tang Y, Liang Z, Lu C (2007) Genetic engineering of the biosynthesis of glycinebetaine enhances thermotolerance of photosystem II in tobacco plants. Planta 225(3):719–733

    Article  CAS  PubMed  Google Scholar 

  • Yin L, Wang S, Eltayeb AE, Uddin MI, Yamamoto Y, Tsuji W, Takeuchi Y, Tanaka K (2010) Overexpression of Dehydroascorbate reductase, but not Monodehydroascorbate reductase, confers tolerance to aluminum stress in transgenic tobacco. Planta 231(3):609–621

    Article  CAS  PubMed  Google Scholar 

  • Yoshida T, Mogami J, Yamaguchi-Shinozaki K (2014) ABA-dependent and ABA-independent signaling in response to osmotic stress in plants. Curr Opin Plant Biol 21:133–139

    Article  CAS  PubMed  Google Scholar 

  • Yoshimura K, Miyao K, Gaber A, Takeda T, Kanaboshi H, Miyasaka H, Shigeoka S (2004) Enhancement of stress tolerance in transgenic tobacco plants overexpressing Chlamydomonas Glutathione peroxidase in chloroplasts or cytosol. Plant J 37(1):21–33

    Article  CAS  PubMed  Google Scholar 

  • Yu L, Nie J, Cao C, Jin Y, Yan M, Wang F, Liu J, Xiao Y, Liang Y, Zhang W (2010) Phosphatidic acid mediates salt stress response by regulation of MPK6 in Arabidopsis thaliana. New Phytol 188(3):762–773

    Article  CAS  PubMed  Google Scholar 

  • Yuan F, Yang H, Xue Y, Kong D, Ye R, Li C, Zhang J, Theprungsirikul L, Shrift T, Krichilsky B (2014) OSCA1 mediates osmotic-stress-evoked Ca 2+ increases vital for osmosensing in Arabidopsis. Nature 514(7522):367

    Article  CAS  PubMed  Google Scholar 

  • Zabirnyk O, Liu W, Khalil S, Sharma A, Phang JM (2009) Oxidized low-density lipoproteins upregulate proline oxidase to initiate ROS-dependent autophagy. Carcinogenesis 31(3):446–454

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zandalinas SI, Mittler R, Balfagón D, Arbona V, Gómez-Cadenas A (2018) Plant adaptations to the combination of drought and high temperatures. Physiol Plant 162(1):2–12

    Article  CAS  PubMed  Google Scholar 

  • Zechmann B (2011) Subcellular distribution of ascorbate in plants. Plant Signal Behav 6(3):360–363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng H, Xu L, Singh A, Wang H, Du L, Poovaiah B (2015) Involvement of calmodulin and calmodulin-like proteins in plant responses to abiotic stresses. Front Plant Sci 6:600

    PubMed  PubMed Central  Google Scholar 

  • Zhang G, Chen M, Li L, Xu Z, Chen X, Guo J, Ma Y (2009) Overexpression of the soybean GmERF3 gene, an AP2/ERF type transcription factor for increased tolerances to salt, drought, and diseases in transgenic tobacco. J Exp Bot 60(13):3781–3796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang N, Si H-J, Wen G, Du H-H, Liu B-L, Wang D (2011) Enhanced drought and salinity tolerance in transgenic potato plants with a BADH gene from spinach. Plant Biotechnol Rep 5(1):71–77

    Article  Google Scholar 

  • Zhang Q, Li J, Zhang W, Yan S, Wang R, Zhao J, Li Y, Qi Z, Sun Z, Zhu Z (2012) The putative auxin efflux carrier OsPIN3t is involved in the drought stress response and drought tolerance. Plant J 72(5):805–816

    Article  CAS  PubMed  Google Scholar 

  • Zhao F, Zhang H (2006) Salt and paraquat stress tolerance results from co-expression of the Suaeda salsa glutathione S-transferase and catalase in transgenic rice. Plant Cell Tissue Organ Cult 86(3):349–358

    Article  CAS  Google Scholar 

  • Zhu J-K (2016) Abiotic stress signaling and responses in plants. Cell 167(2):313–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu B, Su J, Chang M, Verma DPS, Fan Y-L, Wu R (1998) Overexpression of a Δ1-pyrroline-5-carboxylate synthetase gene and analysis of tolerance to water-and salt-stress in transgenic rice. Plant Sci 139(1):41–48

    Article  CAS  Google Scholar 

  • Zinn KE, Tunc-Ozdemir M, Harper JF (2010) Temperature stress and plant sexual reproduction: uncovering the weakest links. J Exp Bot 61(7):1959–1968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rabia Amir .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khan, M., Jannat, A., Munir, F., Fatima, N., Amir, R. (2020). Biochemical and Molecular Mechanisms of Abiotic Stress Tolerance. In: Hasanuzzaman, M. (eds) Plant Ecophysiology and Adaptation under Climate Change: Mechanisms and Perspectives II. Springer, Singapore. https://doi.org/10.1007/978-981-15-2172-0_9

Download citation

Publish with us

Policies and ethics