Skip to main content

Abstract

Arsenic (As) which is a heavy metal is ubiquitously present in soil as well as in water. As has been ranked as a potent carcinogen and is found to be very harmful to all the living beings ranging from bacteria to plant to animals as well as humans. All the organisms possess various defense mechanisms to combat such types of stresses. However, if it remains detoxified in plants, it may lead to oxidative stress, misfolded proteins thus disrupting the functioning of the proteins, mutations in the genetic material which ultimately results in the inhibition of the growth, disruption of photosynthesis, and loss in crop yield. Plants are sessile creatures of nature so they are more vulnerable to any type of stress. However, they possess a very strong defense system that fights against these stresses. There are various mechanisms responsible for defense against As stress such as phytochelatin (PC)-dependent defense in which As forms complex with PCs and these complexes are sequestered inside the vacuole. The antioxidant defense system is a very basic and strong player in this defense system. One of the interesting parts of this system is the hyperaccumulation of As. However, hyperaccumulation is not common to all the plants. This is a trait of some specific plant species which had gained a very high capacity of accumulation of As in the aboveground part without suffering phytotoxic effects during evolution. Hyperaccumulator plants differ from normal or non-accumulator plants in various ways. Among them, very fast translocation of As from root to aboveground part, much higher detoxification ability, and higher sequestration capacity of As in aboveground part are the main mechanism which differentiates hyperaccumulator plants to non-accumulator plants. In particular, a determinant role in driving the uptake, translocation to leaves, and, finally, sequestration in vacuoles is played in hyperaccumulators by constitutive overexpression of genes encoding transmembrane transporters, such as members of arsenical compound resistance 3 (ACR3). In this chapter, we will discuss mainly the As toxicity in the plants along with the mechanisms that are involved in hyperaccumulator plants, detoxification of As in plants, as well as the tolerance of As in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abedin MJ, Feldmann J, Meharg AA (2002) Uptake kinetics of arsenic species in rice plants. Plant Physiol 128:1120–1128

    CAS  PubMed  PubMed Central  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    CAS  PubMed  Google Scholar 

  • Bellin D, Asai S, Delledonne M, Yoshioka H (2013) Nitric oxide as a mediator for defense responses. Mol Plant Microbe Interact 26:271–277

    CAS  PubMed  Google Scholar 

  • Bienert GP, Thorsen M, Schüssler MD, Nilsson HR, Wagner A, Tamás MJ, Jahn TP (2008) A subgroup of plant aquaporins facilitate the bi-directional diffusion of As (OH)3 and Sb (OH)3 across membranes. BMC biol 6:26

    PubMed  PubMed Central  Google Scholar 

  • Bleeker PM, Schat H, Vooijs R, Verkleij JAC, Ernst WHO (2003) Mechanisms of arsenate tolerance in Cytisus striatus. New Phytol 157:33–38

    CAS  Google Scholar 

  • Bleeker PM, Hakvoort HWJ, Bliek M, Souer E, Schat H (2006) Enhanced arsenate reduction by a CDC25-like tyrosine phosphatase explains increased phytochelatin accumulation in arsenate-tolerant Holcuslanatus. Plant J 45:917–929

    CAS  PubMed  Google Scholar 

  • Burdiak P, Rusaczonek A, Witon D, Glow D, Karpinski S (2015) Cysteine-rich receptor-like kinase CRK5 as a regulator of growth, development, and ultraviolet radiation responses in Arabidopsis thaliana. J Exp Bot 66:3325–3337

    CAS  PubMed  PubMed Central  Google Scholar 

  • Caille N, Zhao FJ, McGrath SP (2005) Comparison of root absorption, translocation and tolerance of arsenic in the hyperaccumulator Pteris vittata and the nonhyperaccumulator Pteris tremula. New Phytol 165:755–761

    CAS  PubMed  Google Scholar 

  • Catarecha P, Segura MD, Franco-Zorrilla JM, García-Ponce B, Lanza M, Solano R, Leyva A (2007) A mutant of the Arabidopsis phosphate transporter PHT1; 1 displays enhanced arsenic accumulation. Plant Cell 19:1123–1133

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chao D-Y, Chen Y, Chen J, Shi S, Chen Z, Wang C, Danku JM, Zhao F-J, Salt DE (2014) Genome-wide association mapping identifies a new arsenate reductase enzyme critical for limiting arsenic accumulation in plants. PLoS Biol 12:12

    Google Scholar 

  • Chen W, Chi Y, Taylor NL, Lambers H, Finnegan PM (2010) Disruption of ptLPD1 or ptLPD2, genes that encode isoforms of the plastidial lipoamide dehydrogenase, confers arsenate hypersensitivity in Arabidopsis. Plant Physiol 153:1385–1397

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Fu JW, Han YH, Rathinasabapathi B, Ma LQ (2016) High As exposure induced substantial arsenite efflux in As-hyperaccumulator Pteris vittata. Chemosphere 144:2189–2194

    CAS  PubMed  Google Scholar 

  • Clark GT, Dunlop J, Phung HT (2000) Phosphate absorption by Arabidopsis thaliana: interactions between phosphorus status and inhibition by arsenate. Aust J Plant Physiol 27:959–965

    CAS  Google Scholar 

  • Cline DJ, Thorpe C, Schneider JP (2003) Effects of As(III) binding on alpha-helical structure. J Am Chem Soc 125:2923–2929

    CAS  PubMed  Google Scholar 

  • Cuypers K, Krokstad S, Lingaas Holmen T, SkjeiKnudtsen M, Bygren LO, Holmen J (2011) Patterns of receptive and creative cultural activities and their association with perceived health, anxiety, depression and satisfaction with life among adults: the HUNT study, Norway. J Epidemiol Community Health 66(8):698–703

    PubMed  Google Scholar 

  • Danh LT, Truong P, Mammucari R, Foster N (2014) A critical review of the arsenic uptake mechanisms and phytoremediation potential of Pteris vittata. Int J Phytoremediation 16:429–453

    CAS  PubMed  Google Scholar 

  • Dixit G, Singh AP, Kumar A, Singh PK, Kumar S, Dwivedi S, Tripathi RD (2015) Sulfur mediated reduction of arsenic toxicity involves efficient thiol metabolism and the antioxidant defense system in rice. J Hazard Mater 298:241–251

    CAS  PubMed  Google Scholar 

  • Duan GL, Hu Y, Schneider S, McDermott J, Chen J, Sauer N, Zhu YG (2016) Inositol transporters AtINT2 and AtINT4 regulate arsenic accumulation in Arabidopsis seeds. Nat Plants 2:15202

    CAS  PubMed  Google Scholar 

  • Duncan EG, Maher WA, Foster SD, Krikowa F, O’Sullivan CA, Roper MM (2017) Dimethylarsenate (DMA) exposure influences germination rates, arsenic uptake and arsenic species formation in wheat. Chemosphere 181:44–54

    CAS  PubMed  Google Scholar 

  • Fancy NN, Bahlmann A-K, Loake GJ (2016) Nitric oxide function in plant abiotic stress. Plant Cell Environ 40:462–472

    PubMed  Google Scholar 

  • Farnese FS, de Oliveira JA, Gusman GS, Leão GA, Ribeiro C, Siman LI, Cambraia J (2013) Plant responses to arsenic: the role of nitric oxide. Water Air Soil Pollut 224:1660

    Google Scholar 

  • Farooq MA, Islam F, Ali B, Najeeb U, Mao B, Gill RA et al (2016) Arsenic toxicity in plants: cellular and molecular mechanisms of its transport and metabolism. Environ Exp Bot 132:42–52

    CAS  Google Scholar 

  • Finnegan P, Chen W (2012) Arsenic toxicity: the effects on plant metabolism. Front Physiol 3:182

    CAS  PubMed  PubMed Central  Google Scholar 

  • Garg N, Singla P (2011) Arsenic toxicity in crop plants: physiological effects and tolerance mechanisms. Environ Chem Lett 9:303–321

    CAS  Google Scholar 

  • Gasic K, Korban SS (2007) Transgenic Indian mustard (Brassica juncea) plants expressing an Arabidopsis phytochelatin synthase (AtPCS1) exhibit enhanced As and Cd tolerance. Plant Mol Biol 64:361–369

    CAS  PubMed  Google Scholar 

  • Ghori Z, Iftikhar H, Bhatti MF, Nasar-um-Minullah, Sharma I, Kazi AG (2016) Phytoextraction: the use of plants to remove heavy metals from soil. In: Ahmad P (ed) Plant metal interaction: emerging remediation techniques. Elsevier, Amsterdan; Boston; Heidelberg; London; New York; Oxford; Paris; San Diego; San Francisco; Singapore; Sydney, NSW; Tokyo, pp 385–409

    Google Scholar 

  • Guo B, Jin Y, Wussler C, Blancaflor EB, Motes CM, Versaw WK (2008) Functional analysis of the Arabidopsis PHT4 family of intracellular phosphate transporters. New Phytol 177:889–898

    CAS  PubMed  Google Scholar 

  • Gupta DK, Srivastava S, Huang HG, Romero-Puertas MC, Sandalio LM (2011) Arsenic tolerance and detoxification mechanisms in plants. In: Detoxification of heavy metals. Springer, Berlin, pp 169–179

    Google Scholar 

  • Gupta DK, Pena LB, Romero-Puertas MC, Hernández A, Inouhe M, Sandalio LM (2017) NADPH oxidases differentially regulate ROS metabolism and nutrient uptake under cadmium toxicity. Plant Cell Environ 40:509–526

    CAS  PubMed  Google Scholar 

  • Ha SB, Smith AP, Howden R, Dietrich WM, Bugg S, O’Connell MJ, Goldsbrough PB, Cobbett CS (1999) Phytochelatin synthase genes from Arabidopsis and the yeast Schizosaccharomyces pombe. Plant Cell 11(6):1153–1163

    Google Scholar 

  • Halliwell B, Gutteridge JM (2015) Free radicals in biology and medicine, 5th edn. Oxford University Press, Oxford

    Google Scholar 

  • Hartley-Whitaker J, Ainsworth G, Vooijs R, Ten Bookum W, Schat H, Meharg AA (2001) Phytochelatins are involved in differential arsenate tolerance in Holcuslanatus. Plant Physiol 126:299–306

    CAS  PubMed  PubMed Central  Google Scholar 

  • He Z, Yan H, Chen Y, Shen H, Xu W, Zhang H, Ma M (2016) An aquaporin PvTIP4; 1 from Pteris vittata may mediate arsenite uptake. New Phytol 209:746–761

    CAS  PubMed  Google Scholar 

  • Huang ZC, Chen TB, Lei M, Liu YR, Hu TD (2008) Difference of toxicity and accumulation of methylated and inorganic arsenic in arsenic-hyperaccumulating and-hypertolerant plants. Environ Sci Technol 42:5106–5111

    CAS  PubMed  Google Scholar 

  • Huang TL, Nguyen QT, Fu SF, Lin CY, Chen YC, Huang HJ (2012) Transcriptomic changes and signalling pathways induced by arsenic stress in rice roots. Plant Mol Biol 80:587–608

    CAS  PubMed  Google Scholar 

  • Hussain A, Mun BG, Imran QM, Lee SU, Alem TA, Shahid M, Kim K-M, Yun B-W (2016) Nitric oxide mediated transcriptome profiling reveals activation of multiple regulatory pathways in Arabidopsis thaliana. Front Plant Sci 7:975

    PubMed  PubMed Central  Google Scholar 

  • Indriolo E, Na G, Ellis D, Saltd DE, Banks JA (2010) A vacuolar arsenite transporter necessary for arsenic tolerance in the arsenic hyperaccumulating fern Pteris vittata is missing in flowering plants. Plant Cell 22:2045–2205

    CAS  PubMed  PubMed Central  Google Scholar 

  • Isayenkov SV, Maathuis FJ (2008) The Arabidopsis thaliana aquaglyceroporin AtNIP7; 1 is a pathway for arsenite uptake. FEBS Lett 582:1625–1628

    CAS  PubMed  Google Scholar 

  • Ismail GSM (2012) Protective role of nitric oxide against arsenic-induced damages in germinating mung bean seeds. Acta Physiol Plant 34:1303–1311

    CAS  Google Scholar 

  • Jiang Y, Lei M, Duan L, Philip L (2015) Integrating phytoremediation with biomass valorisation and critical element recovery: a UK contaminated land perspective. Biomass Bioenergy 83:328–339

    CAS  Google Scholar 

  • Karimi N, Souri Z (2015) Effect of phosphorus on arsenic accumulation and detoxification in Arsenic Hyperaccumulator, Isatis cappadocica. J Plant Growth Regul 34:88–95

    CAS  Google Scholar 

  • Karimi N, Ghaderian SM, Raab A, Feldmann J, Meharg AA (2009) An arsenic accumulating, hyper tolerant brassica, Isatis capadocica. New Phytol 184:41–47

    CAS  PubMed  Google Scholar 

  • Karimi N, Shayesteh LS, Ghasmpour H, Alavi M (2013) Effects of arsenic on growth, photosynthetic activity, and accumulation in two new hyperaccumulating populations of Isatis cappadocica Desv. J Plant Growth Regul 32:823–830

    CAS  Google Scholar 

  • Katsuhara M, Sasano S, Horie T, Matsumoto T, Rhee J, Shibasaka M (2014) Functional and molecular characteristics of rice and barley NIP aquaporins transporting water, hydrogen peroxide and arsenite. Plant Biotechnol 31:213–219

    CAS  Google Scholar 

  • Kidwai M, Dhar YV, Gautam N, Tiwari M, Ahmad IZ, Asif MH, Chakrabarty D (2019) Oryza sativa class III peroxidase (OsPRX38) overexpression in Arabidopsis thaliana reduces arsenic accumulation due to apoplastic lignification. J Hazard Mater 362:383–393

    CAS  PubMed  Google Scholar 

  • Kitchin KT, Wallace K (2006) Dissociation of arsenite-peptide complexes: Triphasic nature, rate constants, half-lives, and biological importance. J Biochem Mol Toxicol 20:48–56

    CAS  PubMed  Google Scholar 

  • Kopyra M, Gwóźdź EA (2003) Nitric oxide stimulates seed germination and counteracts the inhibitory effect of heavy metals and salinity on root growth of Lupinusluteus. Plant Physiol Biochem 41:1011–1017

    CAS  Google Scholar 

  • Li Y, Dhankher OP, Carreira L, Lee D, Chen A, Schroeder JI, Balish RS, Meagher RB (2004) Overexpression of phytochelatin synthase in Arabidopsis leads to enhanced arsenic tolerance and cadmium hypersensitivity. Plant Cell Physiol 45:1787–1797

    CAS  PubMed  Google Scholar 

  • Li RY, Ago Y, Liu WJ, Mitani N, Feldmann J, McGrath SP, Zhao FJ (2009) The rice aquaporin Lsi1 mediates uptake of methylated arsenic species. Plant Physiol 150:2071–2080

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lin S, Cullen WR, Thomas DJ (1999) Methylarsenicals and arsinothiols are potent inhibitors of mouse liver thioredoxin reductase. Chem Res Toxicol 12:924–930

    CAS  PubMed  Google Scholar 

  • Liu WJ, Wood BA, Raab A, McGrath SP, Zhao FJ, Feldmann J (2010) Complexation of arsenite with phytochelatins reduces arsenite efflux and translocation from roots to shoots in Arabidopsis. Plant Physiol 152:2211–2221

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lombi E, Zhao FJ, Fuhrmann M, Ma LQ, McGrath SP (2002) Arsenic distribution and speciation in the fronds of the hyperaccumulator Pteris vittata. New Phytol 156:195–203

    CAS  Google Scholar 

  • Ma LQ, Komar KM, Tu C, Zhang WH, Cai Y, Kennelley ED (2001) A fern that hyperaccumulates arsenic. Nature 409:579–579

    CAS  PubMed  Google Scholar 

  • Ma JF, Yamaji N, Mitani N, Xu XY, Su YH, McGrath SP, Zhao FJ (2008) Transporters of arsenite in rice and their role in arsenic accumulation in rice grain. Proc Natl Acad Sci USA 105:9931–9935

    CAS  PubMed  Google Scholar 

  • Meharg AA, Williams PN, Adomako A, Lawgali YY, Deacon C, Villada A, Cambell RCJ, Sun G, Zhu YG, Feldmann J, Rabb A, Zhao FJ, Islam R, Hossain S, Yanai J (2009) Geographical variation in total and inorganic arsenic content of polished (white) rice. Environ Sci Technol 43:1612–1617

    CAS  PubMed  Google Scholar 

  • Mishra S, Srivastava S, Tripathi RD, Trivedi PK (2008) Thiol metabolism and antioxidant system complement each other during arsenate detoxification in Ceratophyllum demersum L. Aquat Toxicol 86:205–215

    CAS  PubMed  Google Scholar 

  • Naranmandura H, Xu S, Sawata T, Hao WH, Liu H, Bu N, Ogra Y, Lou YJ, Suzuki N (2011) Mitochondria are the main target organelle for trivalent monomethylarsonous acid (MMAIII)-induced cytotoxicity. Chem Res Toxicol 24:1094–1103

    CAS  PubMed  Google Scholar 

  • Panda S, Upadhyay R, Nath S (2010) Arsenic stress in plants. J Agron Crop Sci 196:161–174

    CAS  Google Scholar 

  • Potdukhe RM, Bedi P, Sarangi BK, Pandey RA, Thul ST (2018) Root transcripts associated with arsenic accumulation in hyperaccumulator Pteris vittata. J Biosci 43:105–115

    CAS  PubMed  Google Scholar 

  • Raab A, Feldmann J, Meharg AA (2004) The nature of arsenic-phytochelatin complexes in Holcus lanatus and Pteris cretica. Plant Physiol 134:1113–1122

    CAS  PubMed  PubMed Central  Google Scholar 

  • Raab A, Williams PN, Meharg A, Feldmann J (2007) Uptake and translocation of inorganic and methylated arsenic species by plants. Environ Chem 4:197–203

    CAS  Google Scholar 

  • Rao KP, Vani G, Kumar K, Wankhede DP, Misra M, Gupta M, Sinha AK (2011) Arsenic stress activates MAP kinase in rice roots and leaves. Arch Biochem Biophys 506:73–82

    CAS  PubMed  Google Scholar 

  • Requejo R, Tena M (2005) Proteome analysis of maize roots reveals that oxidative stress is a main contributing factor to plant arsenic toxicity. Phytochemistry 66:1519–1528

    CAS  PubMed  Google Scholar 

  • Romero-Puertas MC, Sandalio LM (2016a) Nitric oxide level is self-regulating and also regulates its ROS. Front Plant Sci 7:316

    PubMed  PubMed Central  Google Scholar 

  • Romero-Puertas MC, Sandalio LM (2016b) Role of NO-dependent posttranslational modifications in switching metabolic pathways. Adv Bot Res 77:123–144

    Google Scholar 

  • Sandalio LM, Rodríguez-Serrano M, Archilla-Ruiz A, Gupta DK, Romero-Puertas M, del Río LA (2012) Reactive oxygen species and nitric oxide under cadmium stress: from toxicity to signalling. In: Ahmad P, Prasad MNV (eds) Environmental adaptation and stress tolerance of plants in the area of climate change. Springer, Berlin, pp 199–216

    Google Scholar 

  • Schwerdtle T, Walter I, Hartwig A (2003) Arsenite and its biomethylated metabolites interfere with the formation and repair of stable BPDE-induced DNA adducts in human cells and impair XPAzf and Fpg. DNA Repair 2:1449–1463

    CAS  PubMed  Google Scholar 

  • Sharma I (2012) Arsenic induced oxidative stress in plants. Biologia 67:447–453

    CAS  Google Scholar 

  • Shi S, Wang T, Chen Z, Tang Z, Wu Z, Salt DE, Chao D-Y, Zhao F-J (2016) OsHAC1;1 and OsHAC1;2 function as arsenate reductases and regulate arsenic accumulation. J Plant Physiol 172:1708–1719

    CAS  Google Scholar 

  • Shri M, Dave R, Diwedi S, Shukla D, Kesari R, Tripathi RD, Trivedi PK, Chakrabarty D (2014) Heterologous expression of Ceratophyllum demersum phytochelatin synthase, CdPCS1, in rice leads to lower arsenic accumulation in grain. Sci Rep 4:5784

    CAS  PubMed  PubMed Central  Google Scholar 

  • Singh N, Ma LQ, Srivastava M, Rathinasabapathi B (2006) Metabolic adaptations to arsenic induced oxidative stress in Pteris vittata L. and Pteris ensiformis L. Plant Sci 170:274–282

    CAS  Google Scholar 

  • Singh HP, Kaur S, Batish DR, Sharma VP, Sharma N, Kohli RK (2009) Nitric oxide alleviates arsenic toxicity by reducing oxidative damage in the roots of Oryza sativa (rice). Nitric Oxide 20:289–297

    CAS  PubMed  Google Scholar 

  • Singh AP, Dixit G, Kumar A, Mishra S, Singh PK, Dwivedi S (2016) Nitric oxide alleviated arsenic toxicity by modulation of antioxidants and thiol metabolism in rice (Oryza sativa L.). Front Plant Sci 6:1272

    PubMed  PubMed Central  Google Scholar 

  • Song W-Y, Parka J, Mendoza Cozatl D, Suter-Grotemeyer M, Shim D, Hörtensteiner S, Geisler M, Weder B, Rea PA, Rentsch D, Schroeder JI, Lee Y, Martina E (2010) Arsenic tolerance in Arabidopsis is mediated by two ABCC-type phytochelatin transporters. Proc Natl Acad Sci USA 107:21187–21192

    CAS  PubMed  Google Scholar 

  • Song WY, Yamaki T, Yamaji N, Ko D, Jung K-H, Fujii-Kashino M, An G, Martinoia E, Lee Y, Ma JF (2014) A rice ABC transporter, OsABCC1, reduces arsenic accumulation in the grain. Proc Natl Acad Sci USA 111:15699–15704

    CAS  PubMed  Google Scholar 

  • Souri Z, Karimi N, Sandalio LM (2017) Arsenic hyperaccumulation strategies: an overview. Front Cell Dev Biol 5:67

    PubMed  PubMed Central  Google Scholar 

  • Srivastava S, Mishra S, Tripathi RD, Dwivedi S, Trivedi PK, Tandon PK (2007) Phytochelatins and antioxidant systems respond differentially during arsenite and arsenate stress in Hydrilla verticillata (L.f.) royle. Environ Sci Technol 41:2930–2936

    CAS  PubMed  Google Scholar 

  • Srivastava PK, Vaish A, Dwivedi S, Chakrabarty D, Singh N, Tripathi RD (2011) Biological removal of arsenic pollution by soil fungi. Sci Total Environ 409(12):2430–2442

    CAS  PubMed  Google Scholar 

  • Styblo M, Serves SV, Cullen WR, Thomas DJ (1997) Comparative inhibition of yeast glutathione reductase by arsenicals and arsenothiols. Chem Res Toxicol 10:27–33

    CAS  PubMed  Google Scholar 

  • Su YH, McGrath SP, Zhu YG, Zhao FJ (2008) Highly efficient xylem transport of arsenite in the arsenic hyperaccumulator Pteris vittata. New Phytol 180:434–441

    CAS  PubMed  Google Scholar 

  • Sun S, Gu M, Cao Y, Huang X, Zhang X, Ai P, Xu G (2012) A constitutive expressed phosphate transporter, OsPht1; 1, modulates phosphate uptake and translocation in phosphate-replete rice. Plant Physiol 159:1571–1581

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thapa G, Sadhukhan A, Panda SK, Sahoo L (2012) Molecular mechanistic model of plant heavy metal tolerance. Biometals 25:489–505

    CAS  PubMed  Google Scholar 

  • Torres MA, Dangl JL (2005) Functions of the respiratory burst oxidase in biotic interactions, abiotic stress and development. Curr Opin Plant Biol 8:397–403

    CAS  PubMed  Google Scholar 

  • Trinh NN, Huang TL, Chi WC, Fu SF, Chen CC, Huang HZ (2014) Chromium stress response effect on signal transduction and expression of signaling genes in rice. Physiol Plant 150:205–224

    CAS  PubMed  Google Scholar 

  • Tripathi RD, Srivastava S, Mishra S, Singh N, Tuli R, Gupta DK, Maathuis FJM (2007) Arsenic hazards: strategies for tolerance and remediation by plants. Trends Biotechnol 25:158–165

    CAS  PubMed  Google Scholar 

  • Tu C, Ma LQ (2002) Effects of arsenic concentrations and forms on arsenic uptake by the hyperaccumulator ladder brake. J Environ Quality 31:641–647

    CAS  Google Scholar 

  • Tu C, Ma LQ (2003) Interactive effects of pH, arsenic and phosphorus on uptake of As and P and growth of the arsenic hyperaccumulator Pteris vittata L. under hydroponic conditions. Environ Exp Bot 50:243–251

    CAS  Google Scholar 

  • Verma G, Srivastava D, Tiwari P, Chakrabarty D (2019) ROS modulation in crop plants under drought stress. In: Hasanuzzaman M, Fotopoulos V, Nahar K, Fujita M (eds) Reactive oxygen, nitrogen and sulfur species in plants: production, metabolism, signaling and defense mechanisms. Wiley, Hoboken, pp 311–336

    Google Scholar 

  • Wang JR, Zhao FJ, Meharg AA, Raab A, Feldmann J, McGrath SP (2002) Mechanisms of arsenic hyperaccumulation in Pteris vittata. uptake kinetics, interactions with phosphate, and arsenic speciation. Plant Physiol 130:1552–1561

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wojas S, Clemens S, Hennig J, Sklodowska A, Kopera E, Schat H, Bal W, Antosiewicz DM (2008) Overexpression of phytochelatin synthase in tobacco: distinctive effects of AtPCS1 and CePCS genes on plant response to cadmium. J Exp Bot 59:2205–2219

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wojas S, Clemens S, Sklodowska A, Antosiewicz DA (2010) Arsenic response of AtPCS1- and CePCS-expressing plants—effects of external As(V) concentration on As-accumulation pattern and NPT metabolism. J Plant Physiol 167:169–175

    CAS  PubMed  Google Scholar 

  • Wuana RA, Okieimen FE (2011) Heavy metals in contaminated soil: a review of sources, 729 chemistry, risks and best available strategies for bioremediation. ISRN Ecol 2011:20

    Google Scholar 

  • Xie QE, Yan XL, Liao XY, Li X (2009) The arsenic hyperaccumulator fern Pteris vittata L. Environ Sci Technol 43(22):8488–8495

    CAS  PubMed  Google Scholar 

  • Xu W, Dai W, Yan H, Li S, Shen H, Chen Y, Ma M (2015) Arabidopsis NIP3; 1 plays an important role in arsenic uptake and root-to-shoot translocation under arsenite stress conditions. Mol Plant 8:722–733

    CAS  PubMed  Google Scholar 

  • Ye Y, Li Z, Xing D (2013) Nitric oxide promotes MPK6 mediated caspase-3-like activation in cadmium induced Arabidopsis thaliana programmed cell death. Plant Cell Environ 36:1–15

    CAS  PubMed  Google Scholar 

  • Zhao FJ, Ma JF, Meharg AA, McGrath SP (2009) Arsenic uptake and metabolism in plants. New Phytol 181:777–794

    CAS  PubMed  Google Scholar 

  • Zhao FJ, McGrath SP, Meharg AA (2010) Arsenic as a food chain contaminant: mechanisms of plant uptake and metabolism and mitigation strategies. Annu Rev Plant Biol 61:535–559

    CAS  PubMed  Google Scholar 

  • Zhou X, Sun X, Cooper KL, Wang F, Liu KJ, Hudson LG (2011) Arsenite interacts selectively with zinc finger proteins containing C3H1 or C4 motifs. J Biol Chem 286:22855–22863

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shri, M., Chakrabarty, D., Verma, G. (2020). Mechanisms of Arsenic Hyperaccumulation by Plants. In: Hasanuzzaman, M. (eds) Plant Ecophysiology and Adaptation under Climate Change: Mechanisms and Perspectives II. Springer, Singapore. https://doi.org/10.1007/978-981-15-2172-0_29

Download citation

Publish with us

Policies and ethics