Skip to main content

Current Trends of Phytoremediation in Wetlands: Mechanisms and Applications

  • Chapter
  • First Online:
Plant Ecophysiology and Adaptation under Climate Change: Mechanisms and Perspectives II

Abstract

This study is being done to integrate global scientific research on phytoremediation and to assess current trends of pollutant removal by wetlands. It focuses on phytoremediation of excessive organic and inorganic pollutants from contaminated sites. The concecpt of natural and constructed wetlands based on phytoremediation is a cost-effective and green emerging technology for cleaning up organic (phosphorus, nitrogen, pathogens) and inorgagnic (metals and pesticides) pollutants. Wetlands can remove pollutants by absorbing and binding them and make them a part of sediment. Mechanisms of pollutant removal include phytoextraction, phytostabilization, phytovolatilization, and rhizofiltration. Phytoremediation strategy used for removal depends on pollution level, plant species, and climatic conditions of that wetland. Some plants have natural ability to degrade or render harmless contaminants in soils, water, or air that pose serious threat to humans and animals. This review paper provides information on recent progress in research and practical applications of phytoremediation in wetland.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad R, Ali S, Rizwan M, Dawood M, Farid M, Hussain A, Wijaya L, Alyemeni MN, Ahmad P (2019) Hydrogen sulfide alleviates chromium stress on cauliflower by restricting its uptake and enhancing antioxidative system. Physiol Plant

    Google Scholar 

  • Angier JT, McCarty GW, Rice CP, Bialek K (2002) Influence of a riparian wetland on nitrate and herbicides exported from an agricultural field. J Agric Food Chem 50(15):4424–4429

    CAS  PubMed  Google Scholar 

  • Ansa EDO, Lubberding HJ, Ampofo JA, Gijzen HJ (2012) Attachment of faecal coliform and macro-invertebrate activity in the removal of fecal coliform in domestic wastewater treatment pond. Ecol Eng 42:35–41

    Google Scholar 

  • Ayaz SÇ, Aktas Ö, Findik N, Akca L (2012) Phosphorus removal and effect of adsorbent type in a constructed wetland system. Desalin Water Treat 37:152–159

    CAS  Google Scholar 

  • Bertrand M (2008) Heavy metal pollution in aquatic ecosystem and its phytoremediation using wetland plants: an eco sustainable approach. Int J Phytorem 10(2):133–160

    Google Scholar 

  • Burken JG, Schnoor JL (1996) Phytoremediation: plant uptake of atrazine and role of root exudates. J Environ Eng 122(11):958–963

    Google Scholar 

  • Buth JM, Grandbois M, Vikesland PJ, McNeill K, Arnold WA (2009) Aquatic photochemistry of chlorinated triclosan derivatives. Environ Toxicol Chem 28(12):2555–2563

    CAS  PubMed  Google Scholar 

  • Cabral JPS (2010) Water microbiology: bacterial pathogens and water. Int J Environ Res Public Health 7(10):3657–3703

    PubMed  PubMed Central  Google Scholar 

  • Cunningham SD, Berti WR (2000) Phytoextraction and phytostabilization: technical, economic and regulatory considerations of the soil-lead issue. In: Terry N, Bañuelos G (eds) Phytoremediation of contaminated soil and water. CRC Press LLC, Boca Raton, pp 350–368

    Google Scholar 

  • Deng H, Wong MH (2004) Accumulation of lead, zinc, copper and cadmium by 12 wetland plant species thriving in metal-contaminated sites in China. Environ Polluti 132(1):29–40

    CAS  Google Scholar 

  • Doni S, Macci C, Peruzzi E, Iannelli R, Ceccanti B, Masciandaro G (2013) Decontamination and functional reclamation of dredged brackish sediments. Biodegradation 24:499–512

    CAS  PubMed  Google Scholar 

  • Du L, Chen Q, Liu P, Zhang X, Wang H, Zhou Q, Xu D, Wu Z (2017a) Phosphorus removal performance and biological dephosphorization process in treating reclaimed water by Integrated Vertical-Flow Constructed Wetlands (IVCWs). Bioresour Technol 243:204–211. https://doi.org/10.1016/j.biortech.2017.06.092

    Article  CAS  PubMed  Google Scholar 

  • Du L, Trinh X, Chen Q, Wang C, Wang H, Xia X, Zhou Q, Xu D, Wu Z (2017b) Enhancement of microbial nitrogen removal pathway by vegetation in Integrated Vertical-Flow Constructed Wetlands (IVCWs) for treating reclaimed water. Bioresour Technol 249:644–651. https://doi.org/10.1016/j.biortech.2017.10.074

    Article  CAS  PubMed  Google Scholar 

  • Ehsan S, Ali S, Noureen S, Mahmood K, Farid M, Ishaque W, Shakoor MB, Rizwan M (2014) Citric acid assisted phytoremediation of cadmium by Brassicanapus L. Ecotoxicol Environ Saf 106:164–172

    Google Scholar 

  • Farid M, Ali S, Ishaque W, Shakoor MB, Niazi NK, Bibi I, Dawood M, Gill RA, Abbas F (2015) Exogenous application of ethylenediamminetetraacetic acid enhanced phytoremediation of cadmium by Brassicanapus L. Int J Environ Sci Technol 12(12):3981–3992

    CAS  Google Scholar 

  • Farid M, Ali S, Rizwan M, Ali Q, Abbas F, Bukhari SAH, Saeed R, Wu L (2017a) Citric acid assisted phytoextraction of chromium by sunflower; morpho-physiological and biochemical alterations in plants. Ecotoxicol Environ Saf 145:90–102

    Google Scholar 

  • Farid M, Ali S, Rizwan M, Saeed R, Tauqeer HM, Sallah-Ud-Din R, Azam A, Raza N (2017b) Microwave irradiation and citric acid assisted seed germination and phytoextraction of nickel (Ni) by Brassica napus L.: morpho-physiological and biochemical alterations under Ni stress. Environ Sci Pollut Res 24(26):21050–21064

    CAS  Google Scholar 

  • Farid M, Ali S, Rizwan M, Ali Q, Saeed R, Nasir T, Abbasi GH, Rehmani MIA, Ata-Ul-Karim ST, Bukhari SAH, Ahmad T (2018a) Phyto-management of chromium contaminated soils through sunflower under exogenously applied 5-aminolevulinic acid. Ecotoxicol Environ Saf 151:255–265

    CAS  PubMed  Google Scholar 

  • Farid M, Ali S, Zubair M, Saeed R, Rizwan M, Sallah-Ud-Din R, Azam A, Ashraf R, Ashraf W (2018b) Glutamic acid assisted phyto-management of silver-contaminated soils through sunflower; physiological and biochemical response. Environ Sci Pollut Res 25(25):25390–25400

    Google Scholar 

  • Farid M, Ali S, Saeed R, Rizwan M, Bukhari SAH, Abbasi GH, Hussain A, Ali B, Zamir MSI, Ahmad I (2019) Combined application of citric acid and 5-aminolevulinic acid improved biomass, photosynthesis and gas exchange attributes of sunflower (L.) grown on chromium contaminated soil. Int J Phytoremediation 21(8):760–767

    CAS  PubMed  Google Scholar 

  • Farid M, Ali S, Rizwan M, Yasmeen T, Arif MS, Riaz M, Saqib M, Ziaur Rehman M, Ayub MA (2020a) Combined effects of citric acid and 5-aminolevulinic acid in mitigating chromium toxicity in sunflower (Helianthus annuus l.) grown in cr spiked soil. Pak J Agri Sci. (Accepted: online)

    Google Scholar 

  • Farid M, Farid S, Zubair M, Rizwan M, Ishaq HK, Ali S, Ashraf U, Alhaithloul HAS, Gowayed S, Soliman MH (2020b) Efficacy of Zeamays L. for the management of marble effluent contaminated soil under citric acid amendment; morpho-physiological and biochemical response. Chemosphere 240:124930

    CAS  PubMed  Google Scholar 

  • Ferreira AR, Ribeiro A, Couto N (2017) Remediation of pharmaceutical and personal care products (PPCPs) in constructed wetlands: applicability and new perspectives. In: Phytoremediation. Springer, Cham, pp 277–292

    Google Scholar 

  • Fritioff A, Greger M (2003) Aquatic and terrestrial plant species with potential to remove heavy metals from stormwater. Int J Phytoremed 5(3):211–224

    CAS  Google Scholar 

  • Ganjo DGA, Khwakaram AI (2010) Phytoremediation of wastewater using some of aquatic macrophytes as biological purifiers for irrigation purposes (removal efficiency and heavy metals Fe, Mn, Zn and Cu). World Acad Sci Eng Technol 66:565–574

    Google Scholar 

  • Godos ID, Vargas VA, Blanco S, Garcia-Gonzalez MC, Soto R, Garcia-Encina PA, Becares E, Munoz R (2010) A comparative evaluation of micro algae for degradation of piggery wastewater under photosynthetic oxygenation. Bioresour Technol 101:5150–5158

    PubMed  Google Scholar 

  • Gómez MJ, Martínez-Bueno MJ, Lacorte S, Fernández-Alba AR, Agüera A (2007) Pilot survey monitoring pharmaceuticals and related compounds in a sewage treatment plant located on the Mediterranean coast. Chemosphere 66:993–1002

    PubMed  Google Scholar 

  • Habiba U, Ali S, Farid M, Shakoor MB, Rizwan M, Ibrahim M, Abbasi GH, Hayat T, Ali B (2015) EDTA enhanced plant growth, antioxidant defense system, and phytoextraction of copper by Brassica napus L. Environ Sci Pollut Res 22(2):1534–1544

    CAS  Google Scholar 

  • Jabeen N, Abbas Z, Iqbal M, Rizwan M, Jabbar A, Farid M, Ali S, Ibrahim M, Abbas F (2015) Glycinebetaine mediates chromium tolerance in mung bean through lowering of Cr uptake and improved antioxidant system. Arch Agron Soil Sci 62(5):648–662

    Google Scholar 

  • Kotti IP, Gikas GD, Tsihrintzis VA (2010) Effect of operational and design parameters on removal efficiency of pilot-scale FWS constructed wetlands and comparison with HSF systems. Ecol Eng 36:862–875

    Google Scholar 

  • Lopez D (1995) Wetland: characteristics and boundaries. National Academy Press, Washington, p 328

    Google Scholar 

  • Macci C, Peruzzi E, Doni S, Iannelli R, Masciandaro G (2015) Ornamental plants for micro pollutant removal in wetland systems. Environ Sci Pollut Res 22(4):2406–2415. https://doi.org/10.1007/s11356-014-2949-x

    Article  CAS  Google Scholar 

  • Maillard E, Payraudeau S, Faivre E, Grégoire C, Gangloff S, Imfeld G (2011) Removal of pesticide mixtures in a stormwater wetland collecting runoff from a vineyard catchment. Sci Total Environ 409(11):2317–2324

    CAS  PubMed  Google Scholar 

  • Malaviya P, Singh A (2012) Constructed wetlands for management of urban stormwater runoff. Crit Rev Environ Sci Technol 42(20):2153–2214

    CAS  Google Scholar 

  • Matamoros V, Caselles-Osorio A, García J, Bayona JM (2008) Behavior of pharmaceutical products and biodegradation intermediates in horizontal subsurface flow constructed wetland. A microcosm experiment. Sci Total Environ 394:171–176

    CAS  PubMed  Google Scholar 

  • Meagher RB (2000) Phytoremediation of toxic elemental and organic pollutants. Curr Opin Plant Biol 3(2):153–162

    CAS  PubMed  Google Scholar 

  • Merkl N, Schultze-Kraft R, Infante C (2005) Phytoremediation in the tropics–influence of heavy crude oil on root morphological characteristics of graminoids. Environ Pollut 138(1):86–91

    CAS  PubMed  Google Scholar 

  • Mwegoha WJ (2008) The use of phytoremediation technology for abatement soil and groundwater pollution in Tanzania: opportunities and challenges. J Sustain Dev Afr 10(1):140–156

    Google Scholar 

  • Nwoko CO (2010) Trends in phytoremediation of toxic elemental and organic pollutants. Afr J Biotechnol 9(37):6010–6016

    CAS  Google Scholar 

  • Peddrick S (2003) Metal uptake, transport and release by wetland plants: implication for phytoremediation and restoration. Environ Int 30(5):685–700

    Google Scholar 

  • Peralta M, Ahn C (2009) Soil bacterial community structure and physicochemical properties in the mitigation wetland created in the piedmont region of Virginia (USA). Ecol Eng 35(7):1036–1042

    Google Scholar 

  • Rai PK (2008) Efficiency of constructed wetland in decontamination of water polluted by heavy metals. Int J Phytoremed 10(2):133–160

    CAS  Google Scholar 

  • Rai PK, Kumar V, Lee SS, Raza N, Kim K-H, Ok YS, Tsang DCW (2018) Nanoparticle-plant interaction: implications in energy, environment, and agriculture. Environ Int 119:1–19

    CAS  PubMed  Google Scholar 

  • Rizwan M, Ali S, Hussain A, Ali Q, Shakoor MB, Zia-ur-Rehman M, Farid M, Asma M (2017a) Effect of zinc-lysine on growth, yield and cadmium uptake in wheat (Triticum aestivum L.) and health risk assessment. Chemosphere 187:35–42

    CAS  PubMed  Google Scholar 

  • Rizwan M, Ali S, Qayyum MF, Ok YS, Adrees M, Ibrahim M, Zia-ur-Rehman M, Farid M, Abbas F (2017b) Effect of metal and metal oxide nanoparticles on growth and physiology of globally important food crops: a critical review. J Hazard Mater 322:2–16

    CAS  PubMed  Google Scholar 

  • Rodriguez L, Lopez-Bellido FJ, Carnicer A, Recreo F, Tallos A, Monteagudo JM (2005) Mercury recovery from soils by phytoremediation. In: Environmental chemistry. Springer, Berlin, pp 197–204

    Google Scholar 

  • Roy S, Labelle S, Mehta P, Mihoc A, Fortin N, Masson C, Olsen C (2005) Phytoremediation of heavy metal and PAH-contaminated brownfield sites. Plant Soil 272(1–2):277–290

    CAS  Google Scholar 

  • Sa’ at SKM (2017) Phytoremediation potential of palm oil mill effluent by constructed wetland treatment. Eng Heritage J 1(1):49–54

    Google Scholar 

  • Sallah-Ud-Din R, Farid M, Saeed R, Ali S, Rizwan M, Tauqeer HM, Bukhari SAH (2017) Citric acid enhanced the antioxidant defense system and chromium uptake by Lemna minor L. grown in hydroponics under Cr stress. Environ Sci Pollut Res 24(21):17669–17678

    CAS  Google Scholar 

  • Schwitzguébel JP, van der Lelie D, Baker A, Glass DJ, Vangronsveld J (2002) Phytoremediation: European and American trends successes, obstacles and needs. J Soils Sediments 2(2):91–99

    Google Scholar 

  • Seuntjens P, Nowack B, Schulin R (2004) Root-zone modeling of heavy metal uptake and leaching in the presence of organic ligands. Plant Soil 265(1–2):61–73

    CAS  Google Scholar 

  • Shakoor MB, Ali S, Hameed A, Farid M, Hussain S, Yasmeen T, Najeeb U, Bharwana SA, Abbasi GH (2014) Citric acid improves lead (Pb) phytoextraction in rassica napus L. by mitigating Pb-induced morphological and biochemical damages. Ecotoxicol Environ Saf 109:38–47

    Google Scholar 

  • Tangahu BV, Abdullah SRS, Basri H, Idris M, Anuar N, Mukhlisin M (2013) Phytoremediation of wastewater containing lead (Pb) in pilot reed bed using Scirpus grossus. Int J Phytoremed 15(7):663–676

    CAS  Google Scholar 

  • Tu S, Ma LQ, Fayiga AO, Zillioux EJ (2004) Phytoremediation of arsenic-contaminated groundwater by the arsenic hyperaccumulating fern Pteris vittata L. Int J Phytoremed 6(1):35–47

    CAS  Google Scholar 

  • Van Ginneken L, Meers E, Guisson R, Ruttens A, Elst K, Tack FM, Vangronsveld J, Dejonghe W (2007) Phytoremediation for heavy metal-contaminated soils combined with bioenergy production. J Environ Eng Landscape Manage 15(4):227–236

    Google Scholar 

  • Vara Prasad MN, de Oliveira Freitas HM (2003) Metal hyperaccumulation in plants: biodiversity prospecting for phytoremediation technology. Electron J Biotechnol 6(3):285–321

    Google Scholar 

  • Vymazal J (2007) Removal of nutrients in various types of constructed wetlands. Sci Total Environ 380(1–3):48–65

    CAS  PubMed  Google Scholar 

  • Vymazal J (2011) CWs for wastewater treatment: five decades of experience. Environ Sci Technol 45:61–69

    CAS  PubMed  Google Scholar 

  • Vymazal J, Březinová T (2015) The use of constructed wetlands for removal of pesticides from agricultural runoff and drainage. Environ Int 75:11–20

    CAS  PubMed  Google Scholar 

  • Wang X, Xing B (2007) Sorption of organic contaminants by biopolymer-derived chars. Environ Sci Technol 41(24):8342–8348

    CAS  PubMed  Google Scholar 

  • Wani RA, Ganai BA, Shah MA, Uqab B (2017) Heavy metal uptake potential of aquatic plants through phytoremediation technique—a review. J Bioremediat Biodegrad 8(404):2

    Google Scholar 

  • Weber KP, Legge RL (2008) Pathogen removal in constructed wetlands. In: Wetlands: ecology, conservation & restoration. Nova Science, New York

    Google Scholar 

  • Williams JB, Zambrano D, Ford MG, May E, Butler JE (1999) Constructed wetlands for wastewater treatment in colombia. Water Sci Technol 40(3):217–223

    CAS  Google Scholar 

  • Wu H, Wang X, He X, Zhang S, Liang R, Shen J (2017) Effects of root exudates on denitrifier gene abundance, community structure and activity in a micro-polluted constructed wetland. Sci Total Environ 598:697–703

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ezaz, Z. et al. (2020). Current Trends of Phytoremediation in Wetlands: Mechanisms and Applications. In: Hasanuzzaman, M. (eds) Plant Ecophysiology and Adaptation under Climate Change: Mechanisms and Perspectives II. Springer, Singapore. https://doi.org/10.1007/978-981-15-2172-0_28

Download citation

Publish with us

Policies and ethics