Skip to main content

Dark Septate Endophytic Fungi (DSE) Response to Global Change and Soil Contamination

  • Chapter
  • First Online:
Plant Ecophysiology and Adaptation under Climate Change: Mechanisms and Perspectives II

Abstract

As a consequence of global change, distribution of species and interaction between organisms are altered. Organisms share their environment with hundreds of species, some of them displaying pathogenic, neutral, or benefic behavior. Due to the adapting ability of organisms to live in diverse natural scenarios, they present a wide array of responses to climate change and soil contamination. Some biological interactions, like plant–insect subjected to diverse environmental conditions, have been moderately well explained. However, plant–fungus associations have received less attention, particularly plant–dark septate endophytic fungi (DSE) relationship. Since DSE may reduce plant infection by pathogens, increase nutrient uptake, and reduce the detrimental effects of stressful environments allowing plant to establish in adverse environments, changes in plant–DSE interactions could have important consequences for ecosystem function. In this chapter, we summarize current knowledge on how global change, including anthropic contamination, global warming, concentration of CO2 in the atmosphere, and drought or heavy rainfall events, affects plant–DSE interactions. Understanding the specific responses of DSE will allow us to focus on possible lines of research that in a near future will help to develop tolerance to climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CAT:

Catalase

Cd:

Cadmium

CO2:

Carbon dioxide

Cs:

Cesium

DSE:

Dark septate endophytic fungi

H2O2:

Hydrogen peroxide

HMs:

Heavy metals

HO•:

Hydroxyl radical

O2•−:

Superoxide radical

P:

Phosphorous

Pb:

Lead

POD:

Peroxidase

SOD:

Superoxide dismutase

Zn:

Zinc

References

  • Alberton O, Kuyper TW, Summerbell RC (2010) Dark septate root endophytic fungi increase growth of Scots pine seedlings under elevated CO2 through enhanced nitrogen use efficiency. Plant Soil 328:459–470

    CAS  Google Scholar 

  • Andrade-Linares DR, Grosch R, Franken P, Kost G, Restrepo S, Garcia MCCD, Maximova E (2011) Colonization of roots of cultivated Solanum lycopersicum by dark septate and other ascomycetous endophytes. Mycologia 103:710–721

    PubMed  Google Scholar 

  • Ban Y, Tang M, Chen H, Xu Z, Zhang H, Yang Y (2012) The response of dark septate endophytes (DSE) to heavy metals in pure culture. PLoS One 7:e47968

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ban Y, Xu Z, Zhang H, Chen H, Tang M (2015) Soil chemistry properties, translocation of heavy metals, and mycorrhizal fungi associated with six plant species growing on lead-zinc mine tailings. Ann Microbiol 65:503–515

    CAS  Google Scholar 

  • Barnes CJ, van der Gast CJ, McNamara NP, Rowe R, Bending GD (2018) Extreme rainfall affects assembly of the root-associated fungal community. New Phytol 220(4):1172–1184

    PubMed  PubMed Central  Google Scholar 

  • Barrow JR (2003) Atypical morphology of dark septate fungal root endophytes of Bouteloua in arid southwestern USA rangelands. Mycorrhiza 13:239–247

    CAS  PubMed  Google Scholar 

  • Berthelot C, Leyval C, Foulon J, Chalot M, Blaudez D (2016) Plant growth promotion, metabolite production and metal tolerance of dark septate endophytes isolated from metal-polluted poplar phytomanagement sites. FEMS Microbiol Ecol 92(10)

    Google Scholar 

  • Berthelot C, Blaudez D, Leyval C (2017) Differential growth promotion of poplar and birch inoculated with three dark septate endophytes in two trace element-contaminated soils. Int J Phytoremediation 19:1118–1125

    CAS  PubMed  Google Scholar 

  • Berthelot C, Blaudez D, Beguiristain T, Chalot M, Leyval C (2018) Co-inoculation of Lolium perenne with Funneliformis mosseae and the dark septate endophyte Cadophora sp. in a trace element-polluted soil. Mycorrhiza 28:301–314

    CAS  PubMed  Google Scholar 

  • Bruenger FW, Stover BJ, Atherton DR (1967) The incorporation of various metal ions into in vivo- and in vitro-produced melanin. Radiat Res 32:1–21

    CAS  PubMed  Google Scholar 

  • Card S, Johnson L, Teasdale S, Caradus J (2016) Deciphering endophyte behaviour: the link between endophyte biology and efficacious biological control agents. FEMS Microbiol Ecol 92:8

    Google Scholar 

  • Carrillo-González R, González-Chávez MD (2012) Tolerance to and accumulation of cadmium by the mycelium of the fungi Scleroderma citrinum and Pisolithus tinctorius. Biol Trace Elem Res 146:388–395

    PubMed  Google Scholar 

  • Celebi SZ, Demir S, Celebi R, Durak ED, Yilmaz IH (2010) The effect of Arbuscular Mycorrhizal fungi (AMF) applications on the silage maize (Zea mays L.) yield in different irrigation regimes. Eur J Soil Biol 4:302–305

    Google Scholar 

  • Cerbasi IH, Yetis U (2001) Biosorption of Ni(II) and Pb(II) by Phanerochaete chrysosporium from binary metal system-Kinetics. Water Res 27:15–20

    Google Scholar 

  • Coutts MP, Nicoll BC (1990) Waterlogging tolerance of roots of Sitka spruce clones and of strands from Thelephora terrestris mycorrhizas. Can J For Res 20:1894–1899

    Google Scholar 

  • Deram A, Languereau F, Van Haluwyn C (2011) Mycorrhizal and endophytic fungal colonization in Arrhenatherum elatius L. roots according to the soil contamination in heavy metals. Soil Sediment Contam 20:114–127

    CAS  Google Scholar 

  • Diao YH, Li T, Zhao ZW (2013) Zinc accumulation characteristics of two Exophiala strains and their antioxidant response to Zn2+ stress. J Environ Prot 4:12–19

    CAS  Google Scholar 

  • Diene O, Sakagami N, Narisawa K (2014) The role of dark septate endophytic fungal isolates in the accumulation of cesium by Chinese Cabbage and Tomato plants under contaminated environments. Plos One 9:e109233

    PubMed  PubMed Central  Google Scholar 

  • Fogarty RV, Tobin JM (1996) Fungal melanins and their interactions with metals. Enzyme MicrobTechnol 19:311–317

    CAS  Google Scholar 

  • Fujimura KE, Egger KN, Henry GH (2008) The effect of experimental warming on the root associated fungal community of Salix arctica. ISME J 2(1):105

    CAS  PubMed  Google Scholar 

  • Gong M, Tang M, Chen H, Zhang Q, Feng X (2013) Effects of two Glomus species on the growth and physiological performance of Sophora davidii seedlings underwater stress. New Forests 44:399–408

    Google Scholar 

  • Hawkes CV, Hartley IP, Ineson P, Fitter AH (2008) Soil temperature affects carbon allocation within arbuscular mycorrhizal networks and carbon transport from plant to fungus. Glob Chang Biol 14:1181–1190

    Google Scholar 

  • Jin HQ, Liu HB, Xie YY, Zhang YG, Xu QQ, Mao LJ, Li XJ, Chen J, Lin FC, Zhang CL (2018) Effect of the dark septate endophytic fungus Acrocalymmavagum on heavy metal content in tobacco leaves. Symbiosis 74:89–95

    CAS  Google Scholar 

  • Jumpponen A (2001) Dark septate endophytes - are they mycorrhizal? Mycorrhiza 11(4):207–211

    Google Scholar 

  • Kerr RA (2001) It’s official: humans are behind most of global warming. Science 291:566

    CAS  PubMed  Google Scholar 

  • Kivlin SN, Emery SM, Rudgers JA (2013) Fungal symbionts alter plant responses to global change. Am J Bot 100:1445–1457

    PubMed  Google Scholar 

  • Knapp DG, Kovács GM, Zajta E, Groenewald JZ, Crous PW (2015) Dark septate endophytic Pleosporalean genera from semiarid areas. Persoonia 35:87–100

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, He X, Hou L, Ren Y, Wang S, Su F (2018) Dark septate endophytes isolated from a xerophyte plant promote the growth of Ammopiptanthus mongolicus under drought condition. Sci Rep 8(1):7896

    PubMed  PubMed Central  Google Scholar 

  • Likar M, Regvar M (2013) Isolates of dark septate endophytes reduce metal uptake and improve physiology of Salix caprea L. Plant Soil 370:593–604

    CAS  Google Scholar 

  • Lugo MA, Molina MG, Crespo EM (2009) Arbuscular mycorrhizas and dark septate endophytes in bromeliads from South American arid environment. Symbiosis 47:17–21

    Google Scholar 

  • Lugo MA, Reinhart KO, Menoyo E, Crespo EM, Urcelay C (2015) Plant functional traits and phylogenetic relatedness explain variation in associations with root fungal endophytes in an extreme arid environment. Mycorrhiza 25:85–95

    PubMed  Google Scholar 

  • Ma Y, Prasad MNV, Rajkumar M, Freitas H (2011) Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnol Adv 29:248–258

    CAS  PubMed  Google Scholar 

  • Ma Y, Raijkumar M, Zhang C, Freitas H (2016) Beneficial role of bacterial endophytes in heavy metal phytoremediation. J Environ Manage 174:14–25

    CAS  PubMed  Google Scholar 

  • Mandyam K, Jumpponen A (2005) Seeking the elusive function of the root-colonizing dark septate endophytic fungi. Stud Mycol 53:173–189

    Google Scholar 

  • Mandyam KG, Jumpponen A (2015) Mutualism–parasitism paradigm synthesized from results of root-endophyte models. Plant-Microbe Interact 5:776

    Google Scholar 

  • Mayerhofer MS, Kernaghan G, Harper KA (2013) The effects of fungal root endophytes on plant growth: a meta-analysis. Mycorrhiza 23:119–128

    PubMed  Google Scholar 

  • NASA (2016) The consequence of climate change. California Institute of Technology. http://climate.nasa.gov/effects/. Accessed 15 Feb 2019

  • Newsham KK (2011) A meta-analysis of plant responses to dark septate root endophytes. New Phytol 190:783–793

    CAS  PubMed  Google Scholar 

  • Pócsi I, Prade RA, Penninckx MJ (2004) Glutathione, altruistic metabolite in fungi. Adv Microb Physiol 49:1–76

    PubMed  Google Scholar 

  • Redman RS, Sheehan KB, Stout RG, Rodriguez RJ, Henson JM (2002) Thermotolerance generated by plant/fungal symbiosis. Science 298(5598):1581

    CAS  PubMed  Google Scholar 

  • Regvar M, Likar M, Piltaver A, Kugoni N, Smith JE (2010) Fungal community structure under goat willows (Salix caprea L.) growing at metal polluted site: the potential of screening in a model phytostabilisation study. Plant Soil 330:345–356

    CAS  Google Scholar 

  • Robinson CH (2001) Cold adaptation in Arctic and Antarctic fungi. New Phytol 151:341–353

    CAS  Google Scholar 

  • Rodriguez RJ, White JF Jr, Arnold AE, Redman RS (2009) Fungal endophytes: diversity and functional roles. New Phytol 182:314–330

    CAS  PubMed  Google Scholar 

  • Ruotsalainen AL (2018) Dark septate endophytes (DSE) in boreal and subarctic forests. In: Endophytes of forest trees. Springer, Cham, pp 105–117

    Google Scholar 

  • Ruttens A, Mench M, Colpaert JV, Boisson J, Carleer R, Vangronsveld J (2006) Phytostabilization of a metal contaminated sandy soil. I: influence of compost and/or inorganic metal immobilizing soil amendments on phytotoxicity and plant availability of metals. Environ Pollut 144:524–532

    CAS  PubMed  Google Scholar 

  • Schulz B, Boyle C (2005) The endophytic continuum. Mycol Res 109:661–686

    PubMed  Google Scholar 

  • Shepherd TG (2015) Climate science: the dynamics of temperature extremes. Nature 522:425–427

    CAS  PubMed  Google Scholar 

  • Sieber TN, Grünig CR (2006) Biodiversity of fungal root endophyte communities and populations, in particular of the dark septate endophyte Phialocephala fortiniis. l. In: Schulz B, Boyle C, Sieber TN (eds) Microbial root endophytes. Soil biology, vol 9. Springer, Berlin, pp 107–132

    Google Scholar 

  • Singh S, Gupta AK, Kaur N (2012) Differential responses of antioxidative defence system to long-term field drought in wheat (Triticumaestivum L.) genotypes differing in drought tolerance. J Agron Crop Sci 198:185–189

    CAS  Google Scholar 

  • Smith SE, Read DJ (2010) Mycorrhizal symbiosis. Academic Press, New York

    Google Scholar 

  • Sonjak S, Udovic M, Wraber T, Likar M, Regvar M (2009) Diversity of halophytes and identification of arbuscular mycorrhizal fungi colonizing their roots in an abandoned and sustained part of Scovljesalterns. Soil BiolBiochem 41:1847–1856

    CAS  Google Scholar 

  • Spagnoletti FN, Tobar NE, Fernández Di Pardo A, Chiocchio VM, Lavado RS (2017) Dark septate endophytes present different potential to solubilize calcium, iron and aluminum phosphates. Appl Soil Ecol 111:25–32

    Google Scholar 

  • Tedersoo L, Suvi T, Jairus T, Ostonen I, Polme S (2009) Revisiting ectomycorrhizal fungi of the genus Alnus: differential host specificity, diversity and determinants of the fungal community. New Phytol 182:727–735

    PubMed  Google Scholar 

  • Terhonen E, Sipari N, Asiegbu FO (2016) Inhibition of phytopathogens by fungal root endophytes of Norway spruce. Biol Control 99:53–63

    Google Scholar 

  • Upson R, Read DJ, Newsham KK (2009) Nitrogen form influences the response of Deschampsia antarctica to dark septate root endophytes. Mycorrhiza 201:1–11

    Google Scholar 

  • Usuki F, Narisawa K (2007) A mutualistic symbiosis between a dark septate endophytic fungus, Heteroconium chaetospira, and a nonmycorrhizal plant, Chinese cabbage. Mycologia 99:175–184

    CAS  PubMed  Google Scholar 

  • Valli PPS, Muthukumar T (2018) Dark septate root endophytic Fungus Nectria haematococca improves tomato growth under water limiting conditions. Indian J Microbiol 58:489–495

    Google Scholar 

  • Wu L-q, Lv Y-l, Meng Z-x, Chen J, Guo S-X (2010) The promoting role of an isolate of dark-septate fungus on its host plant Saussurea involucrata Kar. et Kir. Mycorrhiza 20(2):127–135

    CAS  PubMed  Google Scholar 

  • Xu R, Li T, Cui H, Wang J, Yu X, Ding Y, Wang C, Yang Z, Zhao Z (2015) Diversity and characterization of Cd-tolerant dark septate endophytes (DSEs) associated with the roots of Nepal alder (Alnus nepalensis) in a metal mine tailing of southwest China. Appl Soil Ecol 93:11–18

    Google Scholar 

  • Yang H, Koide RT, Zhang Q (2016) Short-term waterlogging increases arbuscular mycorrhizal fungal species richness and shifts community composition. Plant Soil 404:373–384

    CAS  Google Scholar 

  • Zhan F, He Y, Zu Y, Li T, Zhao Z (2011) Characterization of melanin isolated from a dark septate endophyte (DSE), Exophiala pisciphila. World J Microbiol Biotechnol 27:2483–2489

    CAS  Google Scholar 

  • Zhan F, He Y, Yang Y, Li Y, Li T, Zhao Z (2016) Effects of tricyclazole on cadmium tolerance and accumulation characteristics of a dark septate endophyte (DSE), Exophiala pisciphila. Bull Environ Contam Toxicol 96:235–241

    CAS  PubMed  Google Scholar 

  • Zhang YJ, Zhang Y, Liu MJ, Shi XD, Zhao ZW (2008) Dark septate endophyte (DSE) fungi isolated from metal polluted soils: their taxonomic position, tolerance, and accumulation of heavy metals in vitro. J Microbiol 46:624–632

    PubMed  Google Scholar 

  • Zhang Y, Li T, Zhao ZW (2013) Colonization characteristics and composition of dark septate endophytes (DSE) in a lead and zinc slag heap in Southwest China. Soil Sediment Contam Int J 22:532–545

    CAS  Google Scholar 

  • Zhang Q, Gong M, Yuan J, Hou Y, Zhang H, Wang Y, Hou X (2017) Dark septate endophyte improves drought tolerance in sorghum. Int J AgricBiol 19:53–60

    CAS  Google Scholar 

  • Zhu L, Li T, Wang C, Zhang X, Xu L, Xu R, Zhao Z (2018) The effects of dark septate endophyte (DSE) inoculation on tomato seedlings under Zn and Cd stress. Environ Sci Pollut Res 25(35):35232–35241

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Romina Giacometti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Spagnoletti, F.N., Giacometti, R. (2020). Dark Septate Endophytic Fungi (DSE) Response to Global Change and Soil Contamination. In: Hasanuzzaman, M. (eds) Plant Ecophysiology and Adaptation under Climate Change: Mechanisms and Perspectives II. Springer, Singapore. https://doi.org/10.1007/978-981-15-2172-0_23

Download citation

Publish with us

Policies and ethics