Skip to main content

Regulatory Role of Transcription Factors in Abiotic Stress Responses in Plants

  • Chapter
  • First Online:
Plant Ecophysiology and Adaptation under Climate Change: Mechanisms and Perspectives II

Abstract

Unlike animals, plants are sessile and cannot avoid environmental challenges by changing their place. They have to face all these challenges such as drought, flooding, salinity, and extreme temperatures. These stresses cause a significant loss in crop productivity and agriculture sustainability. To encounter these abiotic stresses, plants have evolved innate immunity and sophisticated defense system. The expression of stress-responsive genes and the production of stress-related proteins and peptides are key components of their defense system. The expression of such genes is not simple; rather, it involves complex signaling pathways including the regulation of such genes by transcription factors (TFs) which are important players of the regulatory mechanisms enabling plants to tolerate these stresses. There are different families of TFs known so far such as MYB, AVP, MAPK, WRKY, HK, MBF, ERF, etc. In this chapter, we will discuss the role of these transcription factors in regulation of the plant responses to various abiotic stresses. It will be helpful in understanding key regulatory mechanisms of plants’ stress responses and their application in enhancing stress tolerance in crop plants for sustainable agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agarwal M, Hao Y, Kapoor A, Dong C-H, Fujii H, Zheng X, Zhu J-K (2006) A R2R3 type MYB transcription factor is involved in the cold regulation of CBF genes and in acquired freezing tolerance. J Biol Chem 281:37636–37645

    Article  CAS  PubMed  Google Scholar 

  • Ai TN, Naing AH, Yun B-W, Lim SH, Kim CK (2018) Overexpression of RsMYB1 enhances anthocyanin accumulation and heavy metal stress tolerance in transgenic petunia. Front Plant Sci 9:1388

    Article  PubMed  PubMed Central  Google Scholar 

  • Ali MA, Azeem F, Nawaz MA, Acet T, Abbas A, Imran QM, Shah KH, Rehman HM, Chung G, Yang SH, Bohlmann H (2018) Transcription factors WRKY11 and WRKY17 are involved in abiotic stress responses in Arabidopsis. J Plant Physiol 226:12–21

    Article  CAS  PubMed  Google Scholar 

  • Angadi S, Cutforth H, Miller P, McConkey B, Entz M, Brandt S, Volkmar K (2000) Response of three Brassica species to high temperature stress during reproductive growth. Can J Plant Sci 80:693–701

    Article  Google Scholar 

  • Arce DP, Godoy AV, Tsuda K, Yamazaki K-i, Valle EM, Iglesias MJ, Di Mauro MF, CasalonguĂ© CA (2010) The analysis of an Arabidopsis triple knock-down mutant reveals functions for MBF1 genes under oxidative stress conditions. J Plant Physiol 167:194–200

    Article  CAS  PubMed  Google Scholar 

  • Arif A, Zafar Y, Arif M, Blumwald E (2013) Improved growth, drought tolerance, and ultrastructural evidence of increased turgidity in tobacco plants overexpressing arabidopsis vacuolar pyrophosphatase (AVP1). Mol Biotechnol 54:379–392

    Article  CAS  PubMed  Google Scholar 

  • Ashraf M (2010) Inducing drought tolerance in plants: recent advances. Biotechnol Adv 28:169–183

    Article  CAS  PubMed  Google Scholar 

  • Assunção AGL, Herrero E, Lin Y-F, Huettel B, Talukdar S, Smaczniak C, Immink RGH, van Eldik M, Fiers M, Schat H, Aarts MGM (2010) Arabidopsis thaliana transcription factors bZIP19 and bZIP23 regulate the adaptation to zinc deficiency. Proc Natl Acad Sci 107:10296–10301

    Article  PubMed  PubMed Central  Google Scholar 

  • Aukerman MJ, Sakai H (2003) Regulation of flowering time and floral organ identity by a MicroRNA and its APETALA2-like target genes. Plant Cell 15:2730–2741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Babitha KC, Ramu SV, Pruthvi V, Mahesh P, Nataraja KN, Udayakumar M (2013) Co-expression of AtbHLH17 and AtWRKY28 confers resistance to abiotic stress in Arabidopsis. Transgenic Res 22:327–341

    Article  CAS  PubMed  Google Scholar 

  • Bailey-Serres J, Colmer TD (2014) Plant tolerance of flooding stress–recent advances. Plant Cell Environ 37:2211–2215

    PubMed  Google Scholar 

  • Banavath JN, Chakradhar T, Pandit V, Konduru S, Guduru KK, Akila CS, Podha S, Puli COR (2018) Stress inducible overexpression of AtHDG11 leads to improved drought and salt stress tolerance in peanut (Arachis hypogaea L.). Front Chem 6:34

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bao A-K, Wang S-M, Wu G-Q, Xi J-J, Zhang J-L, Wang C-M (2009) Overexpression of the Arabidopsis H+-PPase enhanced resistance to salt and drought stress in transgenic alfalfa (Medicago sativa L.). Plant Sci 176:232–240

    Article  CAS  Google Scholar 

  • Bhaskaran S, Savithramma DL (2011) Co-expression of Pennisetum glaucum vacuolar Na+/H+ antiporter and Arabidopsis H+-pyrophosphatase enhances salt tolerance in transgenic tomato. J Exp Bot 62:5561–5570

    Article  CAS  PubMed  Google Scholar 

  • Bita C, Gerats T (2013) Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops. Front Plant Sci 4:273

    Article  PubMed  PubMed Central  Google Scholar 

  • Cai M, Qiu D, Yuan T, Ding X, Li H, Duan L, Xu C, Li X, Wang S (2008) Identification of novel pathogen-responsive cis-elements and their binding proteins in the promoter of OsWRKY13, a gene regulating rice disease resistance. Plant Cell Environ 31:86–96

    Article  CAS  PubMed  Google Scholar 

  • Casaretto JA, El-kereamy A, Zeng B, Stiegelmeyer SM, Chen X, Bi Y-M, Rothstein SJ (2016) Expression of OsMYB55 in maize activates stress-responsive genes and enhances heat and drought tolerance. BMC Genomics 17:312

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen L, Song Y, Li S, Zhang L, Zou C, Yu D (2012) The role of WRKY transcription factors in plant abiotic stresses. Biochim Biophys Acta Gene Regul Mech 1819:120–128

    Article  CAS  Google Scholar 

  • Chen J, Yang L, Yan X, Liu Y, Wang R, Fan T, Ren Y, Tang X, Xiao F, Liu Y, Cao S (2016) Zinc-finger transcription factor ZAT6 positively regulates cadmium tolerance through the glutathione-dependent pathway in Arabidopsis. Plant Physiol 171:707–719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cramer GR, Urano K, Delrot S, Pezzotti M, Shinozaki K (2011) Effects of abiotic stress on plants: a systems biology perspective. BMC Plant Biol 11:163

    PubMed  PubMed Central  Google Scholar 

  • Cui L, Feng K, Wang M, Wang M, Deng P, Song W, Nie X (2016) Genome-wide identification, phylogeny and expression analysis of AP2/ERF transcription factors family in Brachypodium distachyon. BMC Genomics 17:636

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cui J, Jiang N, Zhou X, Hou X, Yang G, Meng J, Luan Y (2018) Tomato MYB49 enhances resistance to Phytophthora infestans and tolerance to water deficit and salt stress. Planta 248:1487–1503

    Article  CAS  PubMed  Google Scholar 

  • Dai X, Wang Y, Yang A, Zhang W-H (2012) OsMYB2P-1, an R2R3 MYB transcription factor, is involved in the regulation of phosphate-starvation responses and root architecture in rice. Plant Physiol 159:169–183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dai X, Wang Y, Zhang W-H (2015) OsWRKY74, a WRKY transcription factor, modulates tolerance to phosphate starvation in rice. J Exp Bot 67:947–960

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Danquah A, de Zelicourt A, Colcombet J, Hirt H (2014) The role of ABA and MAPK signaling pathways in plant abiotic stress responses. Biotechnol Adv 32:40–52

    Article  CAS  PubMed  Google Scholar 

  • Davletova S, MĂ©száros T, Miskolczi P, Oberschall A, Török K, Magyar Z, Dudits D, Deák M (2001) Auxin and heat shock activation of a novel member of the calmodulin like domain protein kinase gene family in cultured alfalfa cells. J Exp Bot 52:215–221

    Article  CAS  PubMed  Google Scholar 

  • Deinlein U, Stephan AB, Horie T, Luo W, Xu G, Schroeder JI (2014) Plant salt-tolerance mechanisms. Trends Plant Sci 19:371–379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding Z, Li S, An X, Liu X, Qin H, Wang D (2009) Transgenic expression of MYB15 confers enhanced sensitivity to abscisic acid and improved drought tolerance in Arabidopsis thaliana. J Genet Genomics 36:17–29

    Article  CAS  PubMed  Google Scholar 

  • Do PT, Degenkolbe T, Erban A, Heyer AG, Kopka J, Köhl KI, Hincha DK, Zuther E (2013) Dissecting rice polyamine metabolism under controlled long-term drought stress. PLoS One 8:e60325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du H, Yang S-S, Liang Z, Feng B-R, Liu L, Huang Y-B, Tang Y-X (2012) Genome-wide analysis of the MYB transcription factor superfamily in soybean. BMC Plant Biol 12:106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farooq M, Wahid A, Kobayashi N, Fujita D, Basra S (2009) Plant drought stress: effects, mechanisms and management. In: Sustainable agriculture. Springer, Berlin, pp 153–188

    Chapter  Google Scholar 

  • Gao F, Gao Q, Duan X, Yue G, Yang A, Zhang J (2006) Cloning of an H+-PPase gene from Thellungiella halophila and its heterologous expression to improve tobacco salt tolerance. J Exp Bot 57:3259–3270

    Article  CAS  PubMed  Google Scholar 

  • Gao F, Yao H, Zhao H, Zhou J, Luo X, Huang Y, Li C, Chen H (2016a) Tartary buckwheat FtMYB10 encodes an R2R3-MYB transcription factor that acts as a novel negative regulator of salt and drought response in transgenic Arabidopsis. Plant Physiol Biochem 109:387–396

    Article  CAS  PubMed  Google Scholar 

  • Gao F, Yao H, Zhao H, Zhou J, Luo X, Huang Y, Li C, Chen H, Q. wu. (2016b) Tartary buckwheat FtMYB10 encodes an R2R3-MYB transcription factor that acts as a novel negative regulator of salt and drought response in transgenic Arabidopsis. Plant Physiol Biochem 109:387–396

    Article  CAS  PubMed  Google Scholar 

  • Gaxiola RA, Li J, Undurraga S, Dang LM, Allen GJ, Alper SL, Fink GR (2001) Drought- and salt-tolerant plants result from overexpression of the AVP1 H(+)-pump. Proc Natl Acad Sci U S A 98:11444–11449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo ZJ, Chen XJ, Wu XL, Ling JQ, Xu P (2004) Overexpression of the AP2/EREBP transcription factor OPBP1 enhances disease resistance and salt tolerance in tobacco. Plant Mol Biol 55:607–618

    Article  CAS  PubMed  Google Scholar 

  • Hasegawa PM, Bressan RA, Zhu J-K, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Biol 51:463–499

    Article  CAS  Google Scholar 

  • He Y, Li W, Lv J, Jia Y, Wang M, Xia G (2011) Ectopic expression of a wheat MYB transcription factor gene, TaMYB73, improves salinity stress tolerance in Arabidopsis thaliana. J Exp Bot 63:1511–1522

    Article  PubMed  CAS  Google Scholar 

  • He G-H, Xu J-Y, Wang Y-X, Liu J-M, Li P-S, Chen M, Ma Y-Z, Xu Z-S (2016a) Drought-responsive WRKY transcription factor genes TaWRKY1 and TaWRKY33 from wheat confer drought and/or heat resistance in Arabidopsis. BMC Plant Biol 16:116

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • He Q, Jones DC, Li W, Xie F, Ma J, Sun R, Wang Q, Zhu S, Zhang B (2016b) Genome-wide identification of R2R3-MYB genes and expression analyses during abiotic stress in Gossypium raimondii. Sci Rep 6:22980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hermans C, Hammond JP, White PJ, Verbruggen N (2006) How do plants respond to nutrient shortage by biomass allocation? Trends Plant Sci 11:610–617

    Article  CAS  PubMed  Google Scholar 

  • Hichri I, Muhovski Y, Ĺ˝iĹľková E, Dobrev PI, Gharbi E, Franco-Zorrilla JM, Lopez-Vidriero I, Solano R, Clippe A, Errachid A, Motyka V, Lutts S (2017) The Solanum lycopersicum WRKY3 transcription factor SlWRKY3 is involved in salt stress tolerance in tomato. Front Plant Sci 8:1343

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang D-D, Huang H-J, Fu S-F, Chou W-C (2002) Transcriptional regulation of a rice mitogen-activated protein kinase gene, OsMAPK4, in response to environmental stresses. Plant Cell Physiol 43:958–963

    Article  PubMed  Google Scholar 

  • Huang Y, Zhao H, Gao F, Yao P, Deng R, Li C, Chen H, Wu Q (2018) A R2R3-MYB transcription factor gene, FtMYB13, from Tartary buckwheat improves salt/drought tolerance in Arabidopsis. Plant Physiol Biochem 132:238–248

    Article  CAS  PubMed  Google Scholar 

  • Jackson M, Colmer T (2005) Response and adaptation by plants to flooding stress. Ann Bot 96:501–505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang W, Yu D, Zou C (2010) Male gametophyte-specific WRKY34 transcription factor mediates cold sensitivity of mature pollen in Arabidopsis. J Exp Bot 61:3901–3914

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kavas M, Kizildogan A, Gökdemir G, Baloglu MC (2015) Genome-wide investigation and expression analysis of AP2-ERF gene family in salt tolerant common bean. EXCLI J 14:1187–1206

    PubMed  PubMed Central  Google Scholar 

  • Kim JH, Nguyen NH, Jeong CY, Nguyen NT, Hong S-W, Lee H (2013) Loss of the R2R3 MYB, AtMyb73, causes hyper-induction of the SOS1 and SOS3 genes in response to high salinity in Arabidopsis. J Plant Physiol 170:1461–1465

    Article  CAS  PubMed  Google Scholar 

  • Klay I, Pirrello J, Riahi L, Bernadac A, Cherif A, Bouzayen M, Bouzid S (2014) Ethylene response factor Sl-ERF.B.3 is responsive to abiotic stresses and mediates salt and cold stress response regulation in tomato. Scientific World Journal 2014:167681

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Knight H, Knight MR (2001) Abiotic stress signalling pathways: specificity and cross-talk. Trends Plant Sci 6:262–267

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi T, Ogo Y, Itai RN, Nakanishi H, Takahashi M, Mori S, Nishizawa NK (2007) The transcription factor IDEF1 regulates the response to and tolerance of iron deficiency in plants. Proc Natl Acad Sci 104:19150–19155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kocsy G, Galiba G, Brunold C (2001) Role of glutathione in adaptation and signalling during chilling and cold acclimation in plants. Physiol Plant 113:158–164

    Article  CAS  PubMed  Google Scholar 

  • Kozlowski T (1997) Responses of woody plants to flooding and salinity. Tree Physiol 17:490

    Article  Google Scholar 

  • Kumar T, Uzma MR, Khan ZA, Ali GM (2014) Genetic improvement of sugarcane for drought and salinity stress tolerance using Arabidopsis vacuolar pyrophosphatase (AVP1) gene. Mol Biotechnol 56:199–209

    Article  CAS  PubMed  Google Scholar 

  • Lee H, Cha J, Choi C, Choi N, Ji H-S, Park SR, Lee S, Hwang D-J (2018) Rice WRKY11 plays a role in pathogen defense and drought tolerance. Rice 11:5

    Article  PubMed  PubMed Central  Google Scholar 

  • Li Z, Baldwin CM, Hu Q, Liu H, Luo H (2010) Heterologous expression of Arabidopsis H+-pyrophosphatase enhances salt tolerance in transgenic creeping bentgrass (Agrostis stolonifera L.). Plant Cell Environ 33:272–289

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Gao Q, Liu Y, He C, Zhang X, Zhang J (2011) Overexpression of transcription factor ZmPTF1 improves low phosphate tolerance of maize by regulating carbon metabolism and root growth. Planta 233:1129–1143

    Article  CAS  PubMed  Google Scholar 

  • Li L, Mu S, Cheng Z, Cheng Y, Zhang Y, Miao Y, Hou C, Li X, Gao J (2017a) Characterization and expression analysis of the WRKY gene family in moso bamboo. Sci Rep 7:6675

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li W-Q, Yu X-L, Peng M, Ruan M-B, Wang B, Guo X, Yang Y-L, Zhang P (2017b) Genome-wide characterization and expression analysis enables identification of abiotic stress-responsive MYB transcription factors in cassava (Manihot esculenta). J Exp Bot 68:3657–3672

    Article  PubMed  CAS  Google Scholar 

  • Linger BR, Price CM (2009) Conservation of telomere protein complexes: shuffling through evolution. Crit Rev Biochem Mol Biol 44:434–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Q-X, Nakashima-Kamimura N, Ikeo K, Hirose S, Gojobori T (2007) Compensatory change of interacting amino acids in the coevolution of transcriptional coactivator MBF1 and TATA-box–binding protein. Mol Biol Evol 24:1458–1463

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Wang Y, Wang N, Dong YY, Fan XD, Liu XM, Yang J, Li HY (2011) Cloning of a vacuolar H+-pyrophosphatase gene from the Halophyte Suaeda corniculata whose heterologous overexpression improves salt, saline-alkali and drought tolerance in Arabidopsis. J Integr Plant Biol 53:731–742

    CAS  PubMed  Google Scholar 

  • Liu Q-L, Zhong M, Li S, Pan Y-Z, Jiang B-B, Jia Y, Zhang H-Q (2013) Overexpression of a chrysanthemum transcription factor gene, DgWRKY3, in tobacco enhances tolerance to salt stress. Plant Physiol Biochem 69:27–33

    Article  CAS  PubMed  Google Scholar 

  • Lv S, Zhang K, Gao Q, Lian L, Song Y, Zhang J (2008) Overexpression of an H+-PPase gene from Thellungiella halophila in cotton enhances salt tolerance and improves growth and photosynthetic performance. Plant Cell Physiol 49:1150–1164

    Article  CAS  PubMed  Google Scholar 

  • Meng L, Li S, Guo J, Guo Q, Mao P, Tian X (2017) Molecular cloning and functional characterisation of an H+-pyrophosphatase from Iris lactea. Sci Rep 7:17779

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Moustafa K, AbuQamar S, Jarrar M, Al-Rajab AJ, TrĂ©mouillaux-Guiller J (2014) MAPK cascades and major abiotic stresses. Plant Cell Rep 33:1217–1225

    Article  CAS  PubMed  Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250

    Article  CAS  PubMed  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Nagajyoti PC, Lee KD, Sreekanth T (2010) Heavy metals, occurrence and toxicity for plants: a review. Environ Chem Lett 8:199–216

    Article  CAS  Google Scholar 

  • Nishiyama R, Watanabe Y, Leyva-Gonzalez MA, Van Ha C, Fujita Y, Tanaka M, Seki M, Yamaguchi-Shinozaki K, Shinozaki K, Herrera-Estrella L (2013a) Arabidopsis AHP2, AHP3, and AHP5 histidine phosphotransfer proteins function as redundant negative regulators of drought stress response. Proc Natl Acad Sci 110:4840–4845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishiyama R, Watanabe Y, Leyva-Gonzalez MA, Van Ha C, Fujita Y, Tanaka M, Seki M, Yamaguchi-Shinozaki K, Shinozaki K, Herrera-Estrella L, Tran L-SP (2013b) ArabidopsisAHP2, AHP3, and AHP5 histidine phosphotransfer proteins function as redundant negative regulators of drought stress response. Proc Natl Acad Sci 110:4840–4845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oh JE, Kwon Y, Kim JH, Noh H, Hong S-W, Lee H (2011) A dual role for MYB60 in stomatal regulation and root growth of Arabidopsis thaliana under drought stress. Plant Mol Biol 77:91–103

    Article  CAS  PubMed  Google Scholar 

  • Panda P, Sahoo L, Panda SK (2013) Reactive oxygen species signaling in plants under abiotic stress AU—Choudhury, Shuvasish. Plant Signal Behav 8:e23681

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Saf 60:324–349

    Article  CAS  PubMed  Google Scholar 

  • Park S, Li J, Pittman JK, Berkowitz GA, Yang H, Undurraga S, Morris J, Hirschi KD, Gaxiola RA (2005) Up-regulation of a H+-pyrophosphatase (H+-PPase) as a strategy to engineer drought-resistant crop plants. Proc Natl Acad Sci U S A 102:18830–18835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paz-Ares J, Ghosal D, Wienand U, Peterson PA, Saedler H (1987) The regulatory c1 locus of Zea mays encodes a protein with homology to myb proto-oncogene products and with structural similarities to transcriptional activators. EMBO J 6(12):3553–3558

    Google Scholar 

  • Pedley KF, Martin GB (2005) Role of mitogen-activated protein kinases in plant immunity. Curr Opin Plant Biol 8:541–547

    Article  CAS  PubMed  Google Scholar 

  • Perata P, Armstrong W, Voesenek LA (2011) Plants and flooding stress. New Phytol 190:269–273

    Article  PubMed  Google Scholar 

  • Pereira A (2016) Plant abiotic stress challenges from the changing environment. Front Plant Sci 7:1123–1123

    PubMed  PubMed Central  Google Scholar 

  • Plaxton WC (2004) Plant response to stress: biochemical adaptations to phosphate deficiency. Encyclopedia of plant and crop science. Marcel Dekker, New York, pp 976–980

    Google Scholar 

  • Qu A-L, Ding Y-F, Jiang Q, Zhu C (2013) Molecular mechanisms of the plant heat stress response. Biochem Biophys Res Commun 432:203–207

    Article  CAS  PubMed  Google Scholar 

  • Raineri J, Ribichich KF, Chan RL (2015) The sunflower transcription factor HaWRKY76 confers drought and flood tolerance to Arabidopsis thaliana plants without yield penalty. Plant Cell Rep 34:2065–2080

    Article  CAS  PubMed  Google Scholar 

  • Rajendran K, Tester M, Roy SJ (2009) Quantifying the three main components of salinity tolerance in cereals. Plant Cell Environ 32:237–249

    Article  CAS  PubMed  Google Scholar 

  • Rashid M, Sajid MA, Noreen S, Akrem A, Mahmood S, Shah KH (2018) Study of adverse effects of drought stress on two different hybrids of maize (Zea mays L.). Pure Appl Biol 7:1316–1325

    Article  CAS  Google Scholar 

  • Rushton PJ, Somssich IE, Ringler P, Shen QJ (2010) WRKY transcription factors. Trends Plant Sci 15:247–258

    Article  CAS  PubMed  Google Scholar 

  • Sairam R, Srivastava G, Agarwal S, Meena R (2005) Differences in antioxidant activity in response to salinity stress in tolerant and susceptible wheat genotypes. Biol Plant 49:85

    Article  CAS  Google Scholar 

  • Sharma SS, Dietz K-J (2006) The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress. J Exp Bot 57:711–726

    Article  CAS  PubMed  Google Scholar 

  • Shen C, Yue R, Sun T, Zhang L, Yang Y, Wang H (2015) OsARF16, a transcription factor regulating auxin redistribution, is required for iron deficiency response in rice (Oryza sativa L.). Plant Sci 231:148–158

    Article  CAS  PubMed  Google Scholar 

  • Shim D, Hwang J-U, Lee J, Lee S, Choi Y, An G, Martinoia E, Lee Y (2009) Orthologs of the Class A4 heat shock transcription factor HsfA4a confer cadmium tolerance in wheat and rice. Plant Cell 21:4031–4043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shin D, Moon S-J, Han S, Kim B-G, Park SR, Lee S-K, Yoon H-J, Lee HE, Kwon H-B, Baek D (2011) Expression of StMYB1R-1, a novel potato single MYB-like domain transcription factor, increases drought tolerance. Plant Physiol 155:421–432

    Article  CAS  PubMed  Google Scholar 

  • Singh S, Parihar P, Singh R, Singh VP, Prasad SM (2016) Heavy metal tolerance in plants: role of transcriptomics, proteomics, metabolomics, and ionomics. Front Plant Sci 6:1143

    PubMed  PubMed Central  Google Scholar 

  • Soda N, Gupta BK, Anwar K, Sharan A, Govindjee SLS-P, Pareek A (2018) Rice intermediate filament, OsIF, stabilizes photosynthetic machinery and yield under salinity and heat stress. Sci Rep 8:4072

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Solanke AU, Sharma AK (2008) Signal transduction during cold stress in plants. Physiol Mol Biol Plants 14:69–79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song X, Li Y, Hou X (2013) Genome-wide analysis of the AP2/ERF transcription factor superfamily in Chinese cabbage (Brassica rapa ssp. pekinensis). BMC Genomics 14:573–573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song Z-Z, Yang S-Y, Zuo J, Su Y-H (2014) Over-expression of ApKUP3 enhances potassium nutrition and drought tolerance in transgenic rice. Biol Plant 58:649–658

    Article  CAS  Google Scholar 

  • Suzuki N, Sejima H, Tam R, Schlauch K, Mittler R (2011) Identification of the MBF1 heat-response regulon of Arabidopsis thaliana. Plant J 66:844–851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thakur P, Kumar S, Malik JA, Berger JD, Nayyar H (2010) Cold stress effects on reproductive development in grain crops: an overview. Environ Exp Bot 67:429–443

    Article  CAS  Google Scholar 

  • Thamilarasan SK, Park J-I, Jung H-J, Nou I-S (2014) Genome-wide analysis of the distribution of AP2/ERF transcription factors reveals duplication and CBFs genes elucidate their potential function in Brassica oleracea. BMC Genomics 15:422–422

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Thomine S, Lelièvre F, Debarbieux E, Schroeder JI, Barbier-Brygoo H (2003) AtNRAMP3, a multispecific vacuolar metal transporter involved in plant responses to iron deficiency. Plant J 34:685–695

    Article  CAS  PubMed  Google Scholar 

  • Tran L-SP, Urao T, Qin F, Maruyama K, Kakimoto T, Shinozaki K, Yamaguchi-Shinozaki K (2007) Functional analysis of AHK1/ATHK1 and cytokinin receptor histidine kinases in response to abscisic acid, drought, and salt stress in Arabidopsis. Proc Natl Acad Sci 104:20623–20628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsuda K, Yamazaki K-i (2004) Structure and expression analysis of three subtypes of Arabidopsis MBF1 genes. Biochim Biophys Acta Gene Struct Express 1680:1–10

    Article  CAS  Google Scholar 

  • Vinocur B, Altman A (2005) Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Curr Opin Biotechnol 16:123–132

    Article  CAS  PubMed  Google Scholar 

  • Wan Y, Mao M, Wan D, Yang Q, Yang F, Mandlaa GL, Wang R (2018) Identification of the WRKY gene family and functional analysis of two genes in Caragana intermedia. BMC Plant Biol 18:31

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang C, Deng P, Chen L, Wang X, Ma H, Hu W, Yao N, Feng Y, Chai R, Yang G (2013) A wheat WRKY transcription factor TaWRKY10 confers tolerance to multiple abiotic stresses in transgenic tobacco. PLoS One 8:e65120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Wang H, Xiang W, Chai T (2014) A Medicago truncatula H+-pyrophosphatase gene, MtVP1, improves sucrose accumulation and anthocyanin biosynthesis in potato (Solanum tuberosum L.). Genet Mol Res 13(2):3615–3626

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Zeng J, Li Y, Rong X, Sun J, Sun T, Li M, Wang L, Feng Y, Chai R, Chen M, Chang J, Li K, Yang G, He G (2015) Expression of TaWRKY44, a wheat WRKY gene, in transgenic tobacco confers multiple abiotic stress tolerances. Front Plant Sci 6:615

    PubMed  PubMed Central  Google Scholar 

  • Wang C-T, Ru J-N, Liu Y-W, Yang J-F, Li M, Xu Z-S, Fu J-D (2018) The Maize WRKY transcription factor ZmWRKY40 confers drought resistance in transgenic Arabidopsis. Int J Mol Sci 19:2580

    Article  PubMed Central  CAS  Google Scholar 

  • Wei Q, Luo Q, Wang R, Zhang F, He Y, Zhang Y, Qiu D, Li K, Chang J, Yang G, He G (2017a) A wheat R2R3-type MYB transcription factor TaODORANT1 positively regulates drought and salt stress responses in transgenic tobacco plants. Front Plant Sci 8:1374

    Article  PubMed  PubMed Central  Google Scholar 

  • Wei Q, Zhang F, Sun F, Luo Q, Wang R, Hu R, Chen M, Chang J, Yang G, He G (2017b) A wheat MYB transcriptional repressor TaMyb1D regulates phenylpropanoid metabolism and enhances tolerance to drought and oxidative stresses in transgenic tobacco plants. Plant Sci 265:112–123

    Article  CAS  PubMed  Google Scholar 

  • Wohlbach DJ, Quirino BF, Sussman MR (2008) Analysis of the Arabidopsis histidine kinase ATHK1 reveals a connection between vegetative osmotic stress sensing and seed maturation. Plant Cell 20:1101–1117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu M, Liu H, Han G, Cai R, Pan F, Xiang Y (2017) A moso bamboo WRKY gene PeWRKY83 confers salinity tolerance in transgenic Arabidopsis plants. Sci Rep 7:11721

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xie Z, Zhang Z-L, Zou X, Huang J, Ruas P, Thompson D, Shen QJ (2005) Annotations and functional analyses of the rice WRKY gene superfamily reveal positive and negative regulators of abscisic acid signaling in aleurone cells. Plant Physiol 137:176–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamaji N, Huang CF, Nagao S, Yano M, Sato Y, Nagamura Y, Ma JF (2009) A zinc finger transcription factor ART1 regulates multiple genes implicated in aluminum tolerance in rice. Plant Cell 21:3339–3349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan H, Jia H, Chen X, Hao L, An H, Guo X (2014) The cotton WRKY transcription factor GhWRKY17 functions in drought and salt stress in transgenic Nicotiana benthamiana through ABA signaling and the modulation of reactive oxygen species production. Plant Cell Physiol 55:2060–2076

    Article  CAS  PubMed  Google Scholar 

  • Yang A, Dai X, Zhang W-H (2012) A R2R3-type MYB gene, OsMYB2, is involved in salt, cold, and dehydration tolerance in rice. J Exp Bot 63:2541–2556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang G, Zhang W, Liu Z, Yi-Maer A-Y, Zhai M, Xu Z (2017) Both JrWRKY2 and JrWRKY7 of Juglans regia mediate responses to abiotic stresses and abscisic acid through formation of homodimers and interaction. Plant Biol 19:268–278

    Article  CAS  PubMed  Google Scholar 

  • Zhang T, Liu Y, Yang T, Zhang L, Xu S, Xue L, An L (2006) Diverse signals converge at MAPK cascades in plant. Plant Physiol Biochem 44:274–283

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Zhao G, Xia C, Jia J, Liu X, Kong X (2012a) A wheat R2R3-MYB gene, TaMYB30-B, improves drought stress tolerance in transgenic Arabidopsis. J Exp Bot 63:5873–5885

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y-M, Yan Y-S, Wang L-N, Yang K, Xiao N, Liu Y-F, Fu Y-P, Sun Z-X, Fang R-X, Chen X-Y (2012b) A novel rice gene, NRR responds to macronutrient deficiency and regulates root growth. Mol Plant 5:63–72

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Liu B, Li M, Feng D, Jin H, Wang P, Liu J, Xiong F, Wang J, Wang H-B (2015) The bHLH transcription factor bHLH104 interacts with IAA-LEUCINE RESISTANT3 and modulates iron homeostasis in Arabidopsis. Plant Cell 27:787–805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Yu H, Yang X, Li Q, Ling J, Wang H, Gu X, Huang S, Jiang W (2016) CsWRKY46, a WRKY transcription factor from cucumber, confers cold resistance in transgenic-plant by regulating a set of cold-stress responsive genes in an ABA-dependent manner. Plant Physiol Biochem 108:478–487

    Article  CAS  PubMed  Google Scholar 

  • Zhang T, Zhao Y, Wang Y, Liu Z, Gao C (2018) Comprehensive analysis of MYB gene family and their expressions under abiotic stresses and hormone treatments in Tamarix hispida. Front Plant Sci 9:1303–1303

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao F-Y, Zhang X-J, Li P-H, Zhao Y-X, Zhang H (2006) Co-expression of the Suaeda salsa SsNHX1 and Arabidopsis AVP1 confer greater salt tolerance to transgenic rice than the single SsNHX1. Mol Breed 17:341–353

    Article  CAS  Google Scholar 

  • Zhao H, Wang S, Chen S, Jiang J, Liu G (2015) Phylogenetic and stress-responsive expression analysis of 20 WRKY genes in Populus simoniiĂ—Populus nigra. Gene 565:130–139

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Tian X, Wang F, Zhang L, Xin M, Hu Z, Yao Y, Ni Z, Sun Q, Peng H (2017) Characterization of wheat MYB genes responsive to high temperatures. BMC Plant Biol 17:208

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhao Y, Cheng X, Liu X, Wu H, Bi H, Xu H (2018) The wheat MYB transcription factor TaMYB31 is involved in drought stress responses in Arabidopsis. Front Plant Sci 9:1426

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu J-K (2001) Cell signaling under salt, water and cold stresses. Curr Opin Plant Biol 4:401–406

    Article  CAS  PubMed  Google Scholar 

  • Zhu J-K (2016) Abiotic stress signaling and responses in plants. Cell 167:313–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu N, Cheng S, Liu X, Du H, Dai M, Zhou D-X, Yang W, Zhao Y (2015) The R2R3-type MYB gene OsMYB91 has a function in coordinating plant growth and salt stress tolerance in rice. Plant Sci 236:146–156

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kausar Hussain Shah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rashid, M., Ejaz, S., Shah, K.H. (2020). Regulatory Role of Transcription Factors in Abiotic Stress Responses in Plants. In: Hasanuzzaman, M. (eds) Plant Ecophysiology and Adaptation under Climate Change: Mechanisms and Perspectives II. Springer, Singapore. https://doi.org/10.1007/978-981-15-2172-0_19

Download citation

Publish with us

Policies and ethics