Skip to main content

Abstract

Because of climate change, primarily water deficit and temperature extremes may negatively affect the plant growth. To develop stress-resistant plants, grafting can be a good solution. The stronger root system due to the rootstock became more resistant against biotic and abiotic stress elements and grafting itself increases the resistance of the whole plant, supported by many physiological changes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ABA:

Abscisic acid

ACC:

1-Aminocyclopropane-1-carboxylic acid

K:

Potassium

RDI:

Regulated deficit irrigation

RSA:

Root system architectures

RWC:

Relative water content

WUE:

Water use efficiency

References

  • Abdelmageed AHA, Gruda N (2009) Influence of grafting on growth, development and some physiological parameters of tomatoes under controlled heat stress conditions. Eur J Hortic Sci 47:16–20

    Google Scholar 

  • Albacete AA, Martínez-Andújar C, Pérez-Alfocea F (2014) Hormonal and metabolic regulation of source–sink relations under salinity and drought: from plant survival to crop yield stability. Biotechnol Adv 32(1):12–30. https://doi.org/10.1016/J.BIOTECHADV.2013.10.005

    Article  CAS  PubMed  Google Scholar 

  • Arvanitoyannis IS, Khah EM, Christakou EC, Bletsos FA (2005) Effect of grafting and modified atmosphere packaging on eggplant quality parameters during storage. Int J Food Sci Technol 40(3):311–322. https://doi.org/10.1111/j.1365-2621.2004.00919.x

    Article  CAS  Google Scholar 

  • Balal RM, Ashraf MY, Khan M, Jaskani M, Ashfaq M (2011) Influence of salt stress on growth and biochemical parameters of citrus rootstocks. Pak J Bot 43(4):2135–2141

    Google Scholar 

  • Bhatt RM, Upreti KK, Divya MH, Bhat S, Pavithra CB, Sadashiva AT (2015) Interspecific grafting to enhance physiological resilience to flooding stress in tomato (Solanum Lycopersicum L.). Sci Hortic 182(January):8–17. https://doi.org/10.1016/J.SCIENTA.2014.10.043

    Article  Google Scholar 

  • Bletsos FA, Olympios CM (2008) Rootstocks and grafting of tomatoes, peppers and eggplants for soil-borne disease resistance, improved yield and quality. Eur J Plant Sci Biotechnol 2:62–73. http://www.globalsciencebooks.info/Online/GSBOnline/images/0812/EJPSB_2(SI1)/EJPSB_2(SI1)62-73o.pdf. Accessed 8 Oct 2018

    Google Scholar 

  • Burelle N, Rosskopf EN (2011) Microplot evaluation of rootstocks for control of meloidogyne incognita on Grafted Tomato, Muskmelon, and Watermelon. J Nematol 43(3–4):166–171

    Google Scholar 

  • Cardoso SC, Soares ACF, Brito Ade S, dos Santos AP, Laranjeira FF, de Carvalho LA (2012) Evaluation of tomato rootstocks and its use to control bacterial wilt disease. Ciências Agrarias, Londrina 33:595–604

    Google Scholar 

  • Cantero-Navarro E, Romero-Aranda R, Fernández-Munoz R, Martínez-Andújara C, Pérez-Alfoceaa F, Albacete A (2016) Improving agronomic water use efficiency in tomato byrootstock-mediated hormonal regulation of leaf biomass. Plant Sci 251:90–100

    CAS  PubMed  Google Scholar 

  • Cohen R, Dombrovsky A, Louws FJ (2017) Grafting as agrotechnology for reducing disease damage. In: Colla G, Pérez-Alfocea F, Schwarz D (eds) Vegetable grafting: principles and practices. CAB International, Oxfordshire

    Google Scholar 

  • Colla G, Rouphael Y, Leonardi C, Bie Z (2010) Role of grafting in vegetable crops grown under saline conditions. Sci Hortic 127: 147–155. https://www.sciencedirect.com/science/article/pii/S0304423810003705. Accessed 28 Sept 2018

    Google Scholar 

  • Davis AR, Perkins-Veazie P, Sakata Y, López-Galarza S, Maroto JV, Lee S-GG, Huh Y-CC et al (2008) Cucurbit grafting. Crit Rev Plant Sci 27(1):50–74. https://doi.org/10.1080/07352680802053940

    Article  Google Scholar 

  • Estan MT, Martinez-Rodriguez MM, Perez-Alfocea F, Flowers TJ, Bolarin MC (2005) Grafting raises the salt tolerance of tomato through limiting the transport of sodium and chloride to the shoot. J Exp Bot 56(412):703–712. https://doi.org/10.1093/jxb/eri027

    Article  CAS  PubMed  Google Scholar 

  • Fadel AL, Stuchi ES, Zarate Couto HT, Ramos YC, Filho M (2018) Trifoliate hybrids as alternative rootstocks for ‘Valencia’ sweet orange under rainfed conditions. Sci Hortic 235:397–406

    Google Scholar 

  • Fan M, Bie Z, Krumbein A, Schwarz D (2011) Salinity stress in tomatoes can be alleviated by grafting and potassium depending on the rootstock and K-concentration employed. Sci Hortic 130(3):615–623. https://doi.org/10.1016/J.SCIENTA.2011.08.018

    Article  CAS  Google Scholar 

  • Fernández-García N, Martínez V, Carvajal M (2004) Effect of salinity on growth, mineral composition, and water relations of grafted tomato plants. J Plant Nutr Soil Sci 167(5):616–622. https://doi.org/10.1002/jpln.200420416

    Article  CAS  Google Scholar 

  • Flores FB, Sanchez-Bel P, Estañ MT, Martinez-Rodriguez MM, Moyano E, Morales B, Campos JF et al (2010) The effectiveness of grafting to improve tomato fruit quality. Sci Hortic 125(3):211–217. https://www.sciencedirect.com/science/article/pii/S030442381000138X

    Google Scholar 

  • Gao JJ, Qin AG, Yu XC (2009) Effect of grafting on cucumber leaf SOD and CAT gene expression and activities under low temperature stress. Chin J Appl Ecol 20(1):213–217

    CAS  Google Scholar 

  • Gisbert C, Prohens J, Nuez F (2011a) Performance of eggplant grafted onto cultivated, wild, and hybrid materials of eggplant and tomato. Int J Plant Prod 5:367–380. www.ijpp.info

    Google Scholar 

  • Gisbert C, Prohens J, Raigón MD, Stommel JR, Nuez F (2011b) Eggplant relatives as sources of variation for developing new rootstocks: effects of grafting on eggplant yield and fruit apparent quality and composition. Sci Hortic 128(1):14–22. https://doi.org/10.1016/J.SCIENTA.2010.12.007

    Article  Google Scholar 

  • Goreta S, Bucevic-Popovic V, Selak GV, Pavela-Vrancic M, Perica S (2008) Vegetative growth, superoxide dismutase activity and ion concentration of salt-stressed watermelon as influenced by rootstock. J Agric Sci 146(06):695. https://doi.org/10.1017/S0021859608007855

    Article  CAS  Google Scholar 

  • Harbertson JF, Keller M, Fields KC, Held PG, Harbertson JF (2012) Rootstock effects on deficit-irrigated winegrapes in a dry climate: grape and wine composition. Am J Enol Vitic 63(1):40–48. https://doi.org/10.5344/ajev.2011.11079

    Article  CAS  Google Scholar 

  • Harbi A, Hejazi A, Al-Omran A (2016) Responses of grafted tomato (Solanum lycopersiocon L.) to abiotic stresses in Saudi Arabia. Saudi J. Biol. Sci 24(6):1274–1280

    Google Scholar 

  • He Y, Zhu Z, Yang J, Ni X, Zhu B (2009) Grafting increases the salt tolerance of tomato by improvement of photosynthesis and enhancement of antioxidant enzymes activity. Environ Exp Bot 66(2):270–278. https://doi.org/10.1016/J.ENVEXPBOT.2009.02.007

    Article  CAS  Google Scholar 

  • Holbrook NM, Shashidhar VR, James RA, Munns R (2002) Stomatal control in tomato with ABA-deficient roots: response ofgrafted plants to soil drying. J Exp Bot 53:1503–1514

    CAS  PubMed  Google Scholar 

  • Huang Y, Zhu J, Zhen Ai, Liang C, Bie Z, Meri-Rastilantie (2005) Organic and inorganic solutes accumulation in the leaves and roots of grafted and ungrafted cucumber plants in response to NaCl stress WFL publisher science and technology. J Food Agric Environ 7. www.world-food.net

  • Ioannou N (2001) Integrating soil solarization with grafting on resistant root- stocks for management of soilborne pathogens of eggplant. J Hortic Sci Biotechnol 76:396–401

    Google Scholar 

  • Kawaide T (1985) Utilization of rootstocks in cucurbits production in Japan. Jpn Agr Res Qrtly 18:284–289

    Google Scholar 

  • Keatinge JDH, Lin L-J, Ebert AW, Chen WY, Hughes JA, Luther GC, Wang J-F, Ravishankar M (2014) Overcoming biotic and abiotic stresses in the solanaceae through grafting: current status and future perspectives. Biol Agric Hortic 30(4):272–287. https://doi.org/10.1080/01448765.2014.964317

    Article  Google Scholar 

  • Khadivi-Khub A, Anjam K (2016) Morphological characterization of Prunus scoparia using multivariate analysis. 2014. Plant Syst Evol 300(6):1361–1372

    Google Scholar 

  • King SR, Davis AR, Zhang X, Crosby K (2010) Genetics, breeding and selection of rootstocks for Solanaceae and Cucurbitaceae. Sci Hortic 127:106–111

    Google Scholar 

  • Kullaj E (2018) Rootstocks for improved postharvest quality of fruits: recent advances. In: Preharvest modulation of postharvest fruit and vegetable quality. Elsevier, Amsterdam, pp 189–207. https://doi.org/10.1016/B978-0-12-809807-3.00008-1

    Chapter  Google Scholar 

  • Kumar A, Sanket K (2017) Grafting of vegetable crops as a tool to improve yield and tolerance against diseases—a review. Int J Agric Sci 9(13):4050–4056. http://www.bioinfopublication.org/jouarchive.php?opt=&jouid=BPJ0000217

    Google Scholar 

  • Lee J-M, Kubota C, Tsao SJ, Bie Z, Hoyos Echevarria P, Morra L, Oda M (2010) Current status of vegetable grafting: diffusion, grafting techniques, automation. Sci Hortic 127(2):93–105. https://doi.org/10.1016/J.SCIENTA.2010.08.003

    Article  Google Scholar 

  • Liu Z-L, Zhu Y-L, Hu C-M, Wei G-P, Yang L-F, Zhang G-W (2007) Effects of NaCl stress on the growth, antioxidant enzyme activities and reactive oxygen metabolism of grafted eggplant. Ying Yong Sheng Tai Xue Bao (J Appl Ecol) 18(3):537–541. http://www.ncbi.nlm.nih.gov/pubmed/17552189

    CAS  Google Scholar 

  • Liu S, Li H, Lv X, Ahammed GJ, Xia X, Zhou J, Shi K, Asami T, Yu J, Zhou Y (2016) Grafting cucumber onto luffa improves drought tolerance by increasing ABA biosynthesis and sensitivity. Nature 6(20212):1–14

    Google Scholar 

  • Liu BH, Liang J, Tang GM, Wang XF, Liu FC, Zhao DC (2019) Drought stress affects on growth, water use efficiency, gas exchange and chlorophyll fluorescence of Juglans rootstocks. Sci Hortic 250:230–235

    CAS  Google Scholar 

  • López-Gómez E, San Juan MA, Diaz-Vivancos P, Mataix Beneyto J, García-Legaz MF, Hernández JA (2007) Effect of rootstocks grafting and boron on the antioxidant systems and salinity tolerance of Loquat plants (Eriobotrya Japonica Lindl.). Environ Exp Bot 60(2):151–158. https://doi.org/10.1016/J.ENVEXPBOT.2006.10.007

    Article  Google Scholar 

  • López-Marín J, Gálvez A, del Amor FM, Albacete A, Fernández JA, Egea-Gilabert C, Pérez-Alfocea F (2017) Selecting vegetative/generative/dwarfing rootstocks for improving fruit yield and quality in water stressed sweet peppers. Sci Hortic 214(January):9–17. https://doi.org/10.1016/J.SCIENTA.2016.11.012

    Article  Google Scholar 

  • Loureiro MD, Moreno-Sanz P, García A, Fernández O, Fernández N, Suárez B (2016) Influence of rootstock on the performance of the Albarín Negro minority grapevine cultivar. Sci Hortic 201:145–152

    Google Scholar 

  • Marguerit E, Brendel O, Lebon E, Van Leeuwen C, Ollat N (2012) Rootstock control of scion transpiration and its acclimation to water deficit are controlled by different genes. New Phytol 194(2):416–429. https://doi.org/10.1111/j.1469-8137.2012.04059.x

    Article  CAS  PubMed  Google Scholar 

  • McAvoy T, Freeman JH, Rideout SL, Olson SM, Paret ML (2012) Evaluation of grafting using hybrid rootstocks for management of bacterial wilt in field tomato production. HortScience 47:621–625

    Google Scholar 

  • Miao L, Qinghua D, Tianshu S, Yansu L, Ying D, Jun W, Yan Y, Chaoxing H, Changlin W, Xianchang Y (2019) Integrated metabolome and transcriptome analysis provide insights into the effects of grafting on fruit flavor of cucumber with different rootstocks. Int J Mol Sci 20(14):3592

    CAS  PubMed Central  Google Scholar 

  • Miguel A, Maroto JV, San Bautista A, Baixauli C, Cebolla V, Pascual B et al (2004) The grafting of triploid watermelon is an advantageous alternative to oil fumigation. Sci Hortic 103:9–17

    CAS  Google Scholar 

  • Ntatsi G, Savvas D, Druege U (2013) Contribution of phytohormones in alleviating the impact of sub-optimal temperature stress on grafted tomato. Sci Hortic 149(January):28–38. https://doi.org/10.1016/J.SCIENTA.2012.09.002.

    Article  CAS  Google Scholar 

  • Ntatsi G, Savvas D, Papasotiropoulos V, Anastasios Katsileros RM, Zrenner DK, Hincha EZ, Schwarz D (2017) Rootstock Sub-optimal temperature tolerance determines transcriptomic responses after long-term root cooling in rootstocks and scions of grafted tomato plants. Front Plant Sci 8:911. https://doi.org/10.3389/fpls.2017.00911

    Article  PubMed  PubMed Central  Google Scholar 

  • Okimura M, Matsuo S, Arai K, Okitsu S (1986) Influence of soil tem- perature on the growth of fruit vegetable grafted on different stocks. Bull Veg Ornam Crops Res Stn Japan Ser C 9:43–58. (in Japanese with English summary)

    Google Scholar 

  • Palada MC, Wu DL (2007) Increasing off-season tomato production using grafting technology for peri-urban agriculture in southern Asia. Acta Hortic 742:125–131

    Google Scholar 

  • Paplomatas EJ, Elena K, Tsagkarakou A, Perdikaris A (2002) Control of Verticillium wilt of tomato and cucurbits through grafting of commercial varieties on resistant rootstocks. Acta Hortic 579:445–449

    Google Scholar 

  • Penella C, Nebauer SG, Bautista AS, López-Galarza S, Calatayud Á (2014) Rootstock alleviates PEG-induced water stress in grafted pepper seedlings: physiological responses. J Plant Physiol 171(10):842–851. https://doi.org/10.1016/j.jplph.2014.01.013

    Article  CAS  PubMed  Google Scholar 

  • Penella C, Nebauer SG, López-Galarza S, Quiñones A, Bautista AS, Calatayud Á (2017) Grafting pepper onto tolerant rootstocks: an environmental-friendly technique overcome water and salt stress. Sci Hortic 226(December):33–41. https://doi.org/10.1016/J.SCIENTA.2017.08.020

    Article  Google Scholar 

  • Poudyala D, Khatria L, Uptmoora R (2015) An introgression of Solanum habrochaites in the rootstock improves stomatal regulation and leaf area development of grafted tomatoes under drought and low root-zone-temperatures. Adv Crop Sci Technol 3(3):175. https://doi.org/10.4172/2329-8863.1000175.

    Article  Google Scholar 

  • Qian ZW, Chen HL, Cui YL (2013) Effects of grafting on yield and mineral elements of eggplants with seawater cultivation. China Veg 2:58–65

    Google Scholar 

  • Rahman MA, Rashid MA, Hossain MM, Salam MA, Masum ASMH (2002) Grafting compatibility of cultivated eggplant varieties with wild Solanum species. Pak J Biol Sci 5:755–757

    Google Scholar 

  • Rao ES, Kadirvel P, Symonds RC, Ebert AW (2013) Relationship between survival and yield related traits in Solanum pimpinellifolium under salt stress. Euphytica 190(2):215–228. https://doi.org/10.1007/s10681-012-0801-2

    Article  Google Scholar 

  • Robles JM, Botía P, Pérez-Pérez JG (2017) Sour orange rootstock increases water productivity in deficit irrigated ‘Verna’ lemon trees compared with Citrus macrophylla. Agric Water Manag 186:98–107

    Google Scholar 

  • Rouphael Y, Cardarelli M, Colla G, Rea E (2008) Yield, mineral composition, water relations, and water use efficiency of grafted mini-watermelon plants under deficit irrigation. HortScience 43:730–736

    Google Scholar 

  • Rouphael Y, Kyriacou MC, Colla G (2018) Vegetable grafting: a toolbox for securing yield stability under multiple stress conditions. Front Plant Sci 8:2255

    PubMed  PubMed Central  Google Scholar 

  • Ruiz JM, Belakbir A, López-Cantarero I, Romero L (1997) Leaf-macronutrient content and yield in grafted melon plants. A model to evaluate the influence of rootstock genotype. Sci Hortic 71(3–4):227–234. https://doi.org/10.1016/S0304-4238(97)00106-4

    Article  Google Scholar 

  • Ruiz JM, Blasco B, Rivero RM, Romero L (2005) Nicotine-free and salt-tolerant tobacco plants obtained by grafting to salinity-resistant rootstocks of tomato. Physiol Plant 124(4):465–475. https://doi.org/10.1111/j.1399-3054.2005.00532.x

    Article  CAS  Google Scholar 

  • Sakata Y, Ohara T, Sugiyama M (2008) The history of melon and cucumber grafting in Japan. Acta Hortic 767:217–228

    Google Scholar 

  • Sallaku G, Sandén H, Babaj I, Kaciu S, Balliu A, Rewald B (2019) Specific nutrient absorption rates of transplanted cucumber seedlings are highly related to RGR and influenced by grafting method, AMF inoculation and salinity. Sci Hortic 243(January):177–188. https://doi.org/10.1016/J.SCIENTA.2018.08.027

    Article  Google Scholar 

  • Sánchez-Rodríguez E, Leyva R, Constán-Aguilar C, Romero L, Ruiz JM (2012) Grafting under water stress in tomato cherry: improving the fruit yield and quality. Ann Appl Biol 161:302–312

    Google Scholar 

  • Sánchez-Rodríguez E, Leyva R, Constán-Aguilar C, Romero L, Ruiz JM (2014) How does grafting affect the ionome ofcherry tomato plants underwater stress? Soil Sci Plant Nutr 60:145–155

    Google Scholar 

  • Santa-Cruz A, Martinez-Rodriguez MM, Perez-Alfocea F, Romero-Aranda R, Bolarin MC (2002) The rootstock effect on the tomato salinity response depends on the shoot genotype. Plant Sci 162(5):825–831. https://doi.org/10.1016/S0168-9452(02)00030-4

    Article  CAS  Google Scholar 

  • Satisha J, Prakash GS, Bhatt RM, Sampath Kumar P (2007) Physiological mecha- nisms of water use efficiency in grape rootstocks under drought conditions. Int J Agric Res 2:159–164

    Google Scholar 

  • Schwarz D, Rouphael Y, Venema JH (2010) Grafting as a tool to improve tolerance of vegetables to abiotic stresses: thermal stress, water stress and organic pollutants. Sci Hortic 127(2):162–171. https://doi.org/10.1016/J.SCIENTA.2010.09.016

    Article  CAS  Google Scholar 

  • Shahid MA, Balal RM, Khan N, Simón-Grao S, Alfosea-Simón M, Cámara-Zapata JM, Mattson NS, Garcia-Sanchez F (2019) Rootstocks influence the salt tolerance of Kinnow mandarin trees by altering the antioxidant defense system, osmolyte concentration, and toxic ion accumulation. Sci Hortic 250:1–11

    Google Scholar 

  • Shibuya T, Tokuda A, Terakura R, Shimizu-Maruo K, Sugiwaki H, Kitaya Y, Kiyota M (2007) Short-term bottom-heat treatment during low-air-temperature storage improves rooting in squash (Cucurbita Moschata Duch.) cuttings used for rootstock of cucumber (Cucumis Sativus L.). J Jpn Soc Hortic Sci 76(2):139–143. https://doi.org/10.2503/jjshs.76.139

    Article  Google Scholar 

  • Simpson C, Nelson S, Melgar J, Jifon J, King S, Schuster G, Volder A (2014) Growth response of grafted and ungrafted citrus trees to saline irrigation. Sci Hortic 169:199–205

    CAS  Google Scholar 

  • Tramontini S, Vitali M, Centioni L, Schubert A (2013) Rootstock control of scion response to water stress in grapevine. Environ Exp Bot 93:20–26. https://doi.org/10.1016/j.envexpbot.2013.04.001

    Article  Google Scholar 

  • Tsaballa A, Athanasiadis C, Pasentsis K, Ganopoulos I, Nianiou-Obeidat I, Tsaftaris A (2013) Molecular studies of inheritable grafting induced changes in pepper (Capsicum Annuum) fruit shape. Sci Hortic 149(January):2–8. https://doi.org/10.1016/J.SCIENTA.2012.06.018

    Article  CAS  Google Scholar 

  • Tworkoski T, Fazio G, Glenn DM (2016) Apple rootstock resistance to drought. Sci Hortic 204:70–78

    CAS  Google Scholar 

  • Venema JH, Dijk BE, Bax JM, van Hasselt PR, Elzenga JTM (2008) Grafting tomato (Solanum Lycopersicum) onto the rootstock of a high-altitude accession of Solanum habrochaites improves suboptimal-temperature tolerance. Environ Exp Bot 63(1–3):359–367. https://doi.org/10.1016/J.ENVEXPBOT.2007.12.015

    Article  Google Scholar 

  • Wang S, Yang R, Cheng J, Zhao J (2007) Effect of rootstocks on the tolerance to high temperature of eggplants under solar greenhouse during summer season. Acta Hortic 761:357–360

    Google Scholar 

  • Wang SH, Kong Y, Yang R (2008) Studies on rootstock screening and resistance to root-knot nematodes for grafted tomato. China Veg 12:24–27

    Google Scholar 

  • Wang D, Bus VGM, Wang K, Gao Y, Zhao J, Liu L, Li L, Piao J (2018) History and current status of American apple rootstock breeding and its commercial rootstock characteristics. China Fruits 6:107–113

    Google Scholar 

  • Wei G, Zhu Y, Liu Z, Yang L, Zhang G (2007) Growth and ionic distribution of grafted eggplant seedlings with NaCl stress. Acta Bot Sin 27:1172–1178. https://europepmc.org/abstract/cba/639334

    CAS  Google Scholar 

  • Yan YY, Wang SS, Wei M, Gong B, Shi QH (2018) Effect of different rootstocks on the salt stress tolerance inwatermelon seedlings. Hortic Plant J 4:239–249

    Google Scholar 

  • Yıldırım K, Yağcı A, Sucu S, Tunç S (2018) Responses of grapevine rootstocks to drought through altered root system architecture and root transcriptomic regulations. Plant Physiol Biochem 127:256–268

    PubMed  Google Scholar 

  • Yin R, Bai T, Ma F, Wang X, Li Y, Yue Z (2010) Physiological responses and relative tolerance by Chinese apple rootstocks to NaCl stress. Sci Hortic 126:247–252

    CAS  Google Scholar 

  • Zarig A, Ben Mohamed H, Tounekti T, Khemira H, Serrano M, Valero D, Vadel A (2016) Effect of rootstock on salinity tolerance of sweet almond (cv. Mazzetto). S Afr J Bot 102:50–59

    Google Scholar 

  • Zhang Z-K, Liu S-Q, Hao A-Q, Liu S-H (2010) Grafting increases the copper tolerance of cucumber seedlings by improvement of polyamine contents and enhancement of antioxidant enzymes activity. Agric Sci China 9:985–994

    CAS  Google Scholar 

  • Zhang H, Li X, Zhang S, Yin Z, Zhu W, Li J, Meng L, Zhong H, Xu N, Wu Y, Sun G (2018) Rootstock alleviates salt stress in grafted mulberry seedlings: physiological and PSII function responses. Front Plant Sci 9:1806

    PubMed  PubMed Central  Google Scholar 

  • Zhou YH, Huang LF, Zhang YL, Shi K, Yu JQ, Nogues S (2007) Chill-induced decrease in capacity of RuBP carboxylation and associated H2O2 accumulation in cucumber leaves are alleviated by grafting onto figleaf gourd. Ann Bot 100:839–848

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zijlstra S, Groot SPC, Jansen J (1994) Genotypic variation of rootstocks for growth and production in cucumber; possibilities for improving the root system by plant breeding. Sci Hortic 56(3):185–196. https://doi.org/10.1016/0304-4238(94)90001-9

    Article  Google Scholar 

Download references

Acknowledgments

This publication is created in number EFOP-3.6.1-16-2016-00016. The SZIE Campus of Szarvas specialized in research and training profiles with intelligent specialization in the themes of water management, hydroculture, precision mechanical engineering, alternative crop production. This research was supported by the Higher Education Institutional Excellence Program (1783-3/2018/FEKUTSTRAT) awarded by the Ministry of Human Capacities within the framework of water-related research at Szent István University.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mozafarian Meimandi, M., Kappel, N. (2020). Grafting Plants to Improve Abiotic Stress Tolerance. In: Hasanuzzaman, M. (eds) Plant Ecophysiology and Adaptation under Climate Change: Mechanisms and Perspectives II. Springer, Singapore. https://doi.org/10.1007/978-981-15-2172-0_16

Download citation

Publish with us

Policies and ethics