Skip to main content

Laser-based Fabrication of Micro-channels

  • Chapter
  • First Online:
Accuracy Enhancement Technologies for Micromachining Processes

Part of the book series: Lecture Notes in Mechanical Engineering ((LNME))

  • 349 Accesses

Abstract

Micro-channels are generally used in micro-fluidic devices and heat sinks for biomedical, chemical, microelectronics, and micro-electromechanical applications. A number of processing techniques are used for fabricating micro-channels on different materials. Laser-based micro-channeling techniques are now gaining popularity because of simplicity, flexibility, repeatability, and reliability of the process. Laser is a versatile non-contact machining tool, which can be utilized to machine any profile contour on almost every type of materials. In this chapter, the attempt is made to furnish a comprehensive technical know-how about laser-based fabrication techniques of micro-channels. An overview on fabrication of micro-channels and their applications, including a brief discussion on operation principles of commonly used micro-channeling techniques is presented in the initial sections. The subsequent sections elaborate laser micro-channeling process, including process fundamentals and process requirements. Thereafter, underwater laser processing of micro-channels is also discussed, which is a recent development in this field. The improvements achieved in terms of dimensional accuracy and quality of micro-channels, by using laser-based fabrication techniques, are reported and discussed to justify the effectiveness of these techniques, which are evidenced by several research findings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Becker H, Locascio LE (2002) Polymer microfluidic devices. Talanta 56:267–287

    Article  Google Scholar 

  2. Farson D, Choi HW, Lu C, Lee LJ (2006) Femtosecond laser bulk micromachining of microfluid channels in PMMA. J Laser Appl 18:210

    Article  Google Scholar 

  3. Muhammad N, Li L (2012) Underwater femtosecond laser micromachining of thin nitinol tubes for medical coronary stent manufacture. Appl Phys A 107:849–861

    Article  Google Scholar 

  4. Atkin M, Hayes JP, Brack N, Poetter K, Cattrall R, Harvey EC (2002) Disposable biochip fabrication for DNA diagnostics. Proc SPIE 4937:125–135

    Article  Google Scholar 

  5. Bai X, Roussel C, Jensen H, Girault HH (2004) Polyelectrolyte-modified short micro-channel for cation separation. Electrophoresis 25:931–935

    Article  Google Scholar 

  6. Castano-Alvarez M, Fernandez-Abedul MT, Costa-Garcia A (2005) Poly (methyl methacrylate) and Topas capillary electrophoresis microchip performance with electrochemical detection. Electrophoresis 26:3160–3168

    Article  Google Scholar 

  7. Phillips RJ (1988) Micro-channel heat sinks. Lincoln Lab J 1(1):31–48

    Google Scholar 

  8. Pan M, Zeng D, Tang Y (2009) Feasibility investigations on multi-cutter milling process: a novel fabrication method for microreactors with multiple micro-channels. J Power Sources 192:562–572

    Article  Google Scholar 

  9. Kikuchi T, Wachi Y, Sakairi M, Suzuki RO (2013) Aluminum bulk micromachining through an anodic oxide mask by electrochemical etching in an acetic acid/perchloric acid solution. Microelectron Eng 111:14–20

    Article  Google Scholar 

  10. Pal P, Sato K (2009) Silicon microfluidic channels and microstructures in single photolithography step. In: Proceedings of the DTIP of MEMS and MOEMS, Rome, New York, pp 419–423

    Google Scholar 

  11. Matteucci M, Christiansen TL, Tanzi S, Østergaard PF, Larsen ST, Taboryski R (2013) Fabrication and characterization of injection molded multi level nano and microfluidic systems. Microelectron Eng 111:294–298

    Article  Google Scholar 

  12. Martynova L, Locascio LE, Gaitan M, Kramer GW, Christensen RG, MacCrehan WA (1997) Fabrication of plastic microfluid channels by imprinting methods. Anal Chem 69(23):4783–4789

    Article  Google Scholar 

  13. Mathur A, Roy SS, Tweedie M, Mukhopadhyay S, Mitra SK, McLaughlin JA (2009) Characterisation of PMMA microfluidic channels and devices fabricated by hot embossing and sealed by direct bonding. Curr Appl Phys 9(6):1199–1202

    Article  Google Scholar 

  14. Abdelgawad M, Wu C, Chien WY, Jewett MA, Sun Y (2011) A fast and simple method to fabricate circular micro-channels in polydimethylsiloxane (PDMS). Lab Chip 11:545–551

    Article  Google Scholar 

  15. Prakash S, Acherjee B, Kuar AS, Mitra S (2013) An experimental investigation on Nd:YAG laser micro-channeling on polymethyl methacrylate submerged in water. Proc IMech E Part B J Eng Manuf 227:508–519

    Article  Google Scholar 

  16. Castano-Alvarez M, Ayuso DFP, Granda MG, Fernandez-Abedul MT, Garcia JR, Costa-Garcia A (2008) Critical points in the fabrication of microfluidic devices on glass substrates. Sens Actuator B Chem 130:436–448

    Article  Google Scholar 

  17. Lin C-H, Lee G-B, Lin Y-H, Chang G-L (2008) A fast prototyping process for fabrication of microfluidic systems on soda-lime glass. J Micromech Microeng 11:726–732

    Article  Google Scholar 

  18. Chung CK, Lin SL (2010) CO2 laser micromachined crackles through holes of Pyrex 7740 glass. Int J Mach Tool Manuf 50:961–968

    Article  Google Scholar 

  19. An R, Li Y, Dou Y, Gong Q (2005) Simultaneous multi-microhole drilling of soda-lime glass by water-assisted ablation with femtosecond laser pulses. Opt Express 13(6):1855–1859

    Article  Google Scholar 

  20. Dwivedi VK, Gopal R, Ahmad S (2000) Fabrication of very smooth walls and bottoms of silicon micro-channels for heat dissipation of semiconductor devices. Microelectr J 31:405–410

    Article  Google Scholar 

  21. Wee LM, Ng EYK, Prathama AH, Zheng H (2011) Micro-machining of silicon wafer in air and under water. Opt Laser Technol 43:62–71

    Article  Google Scholar 

  22. Qin SJ, Li WJ (2002) Micromachining of complex channel systems in 3D quartz substrates using Q-switched Nd:YAG laser. Appl Phys A Mater 74:773–777

    Article  Google Scholar 

  23. Nakashima S, Sugioka K, Midorikawa K (2009) Fabrication of micro-channels in single-crystal GaN by wet-chemical-assisted femtosecond laser ablation. Appl Surf Sci 255:9770–9774

    Article  Google Scholar 

  24. Muck A Jr, Wang J, Jacobs M, Chen G, Chatrathi MP, Jurka V, Výborný Z, Spillman SD, Sridharan G, Schöning MJ (2004) Fabrication of poly(methyl methacrylate) microfluidic chips by atmospheric molding. Anal Chem 76:2290–2297

    Article  Google Scholar 

  25. Chang TC, Molian PA (1999) Excimerpulsed laser ablation of polymers in air and liquids for micromachining applications. J Manuf Process 18:1–17

    Article  Google Scholar 

  26. Jo BH, Lerberghe VLM, Motsegood KM et al (2000) Threedimensional micro-channel fabrication in polydimethylsiloxane (PDMS) elastomer. J Microelectromech Syst 9(1):76–81

    Article  Google Scholar 

  27. Kanlayasiri K, Paul BK (2004) A nickel aluminide micro-channel array heat exchanger for high temperature applications. J Manuf Process 6(1):72–80

    Article  Google Scholar 

  28. Paulraj P, Paul BK, Peterson B (2012) Development of an adhesive-bonded counterflow micro-channel heat exchanger. Appl Therm Eng 48:194–201

    Article  Google Scholar 

  29. Kim M, Yi M, Zhong J, Bau HH, Hu H, Ananthasuresh SGK (1998) The fabrication of flow conduits in ceramic tapes and the measurement of fluid flow through these conduits. In: Proceedings of the ASME dynamic systems and controls division, Anaheim, CA, vol 66, pp 171–177

    Google Scholar 

  30. Yi Q (2010) Micro-manufacturing engineering and technology, 1st edn. Elsevier Inc., Oxford

    Google Scholar 

  31. Molian P, Pecholt B, Gupta S (2009) Picosecond pulsed laser ablation and micromachining of 4H-SiC wafers. Appl Surf Sci 255:4515–4520

    Article  Google Scholar 

  32. Sokolowski-Tinten K, Bialkowski J, Cavalleri A, von der Linde D, Oparin A, Meyer-Ter-Vehn J, Anisimov SI (1998) Transient states of matter during short pulse laser ablation. Phys Rev Lett 81:224–227

    Article  Google Scholar 

  33. Prakash S, Kumar S (2015) Fabrication of micro-channels: a review. ProcIMechE Part B J Eng Manuf 229:1273–1288

    Article  Google Scholar 

  34. Heng Q, Tao C, Zuo TC (2006) Surface roughness analysis and improvement of micro-fluidic channel with excimer laser. Microfluid Nanofluid 2:357–360

    Article  Google Scholar 

  35. Fernandez-Pradas JM, Serrano D, Serra P, Morenza JL (2009) Laser fabricated micro-channels inside photostructurable glass-ceramic. Appl Surf Sci 255:5499–5502

    Article  Google Scholar 

  36. Waddell EA, Locascio LE, Kramer GW (2002) UV laser micromachining of polymers for microfluidic applications. J Assoc Lab Autom 7(1):78–82

    Article  Google Scholar 

  37. Lim D, Kamotani Y, Cho B et al (2003) Fabrication of microfluidic mixers and artificial vasculatures using a high brightness diode-pumped Nd:YAG laser direct write method. Lab Chip 3:318–323

    Article  Google Scholar 

  38. Hong TF, Ju WJ, Wu MC, Tsai CH, Fu LM (2010) Rapid prototyping of PMMA microfluidic chips utilizing a CO2 laser. Microfluid Nanofluid 9:1125–1133

    Article  Google Scholar 

  39. Kam DH, Majumder J (2008) 3-D biomimetic micro-channel network by laser direct writing. J Laser Appl 20:185

    Article  Google Scholar 

  40. Snakenborg D, Klank H, Kutter JP (2004) Microstructure fabrication with a CO2 laser system. J Micromech Microeng 14:182

    Article  Google Scholar 

  41. Cheng JY, Wei CW, Hsu KH, Young TH (2004) Direct-write laser micromachining and universal surface modification of PMMA for device development. Sens Actuator B Chem 99:186–196

    Article  Google Scholar 

  42. Day D, Gu M (2005) Micro-channel fabrication in PMMA based on localized heating by nanojoule high repetition rate femtosecond pulses. Opt Express 13(16):5939–5946

    Article  Google Scholar 

  43. Zheng ZY, Zhang Y, Zhao CC, Hao H, Lu X, Li Y, Zhang J (2007) Ablation pressure of the shock wave generated by laser interaction with solid targets. Optoelectron Lett 3(5):394–396

    Article  Google Scholar 

  44. Chen X, Xu RQ, Chen JP, Shen ZH, Jian L, Ni XW (2004) Shock-wave propagation and cavitation bubble oscillation by Nd:YAG laser ablation of a metal in water. Appl Opt 43(16):3251–3257

    Article  Google Scholar 

  45. Ageev VA (1975) Investigation of optical erosion of metals in liquids. J Appl Spectrosc 23(1):903–906

    Article  Google Scholar 

  46. Choo KL, Ogawa Y, Kanbargi G, Otra V, Raff LM, Komanduri R (2004) Micromachining of silicon by short-pulse laser ablation in air and under water. Mat Sci Eng A Struct 372:145–162

    Article  Google Scholar 

  47. Muhammad N, Whitehead D, Boor A, Li L (2010) Comparison of dry and wet fibre laser profile cutting of thin316L stainless steel tubes for medical device applications. J Mater Process Tech 210:2261–2267

    Article  Google Scholar 

  48. Li L, Achara C (2004) Chemical assisted laser machining for the minimisation of recast and heat affected zone. CIRP Ann Manuf Techn 53(1):175–178

    Article  Google Scholar 

  49. Acherjee B, Prakash S, Kuar AS, Mitra S (2014) Grey relational analysis based optimization of underwater Nd:YAG laser micro-channeling on PMMA. Proc Eng 97:1406–1415

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bappa Acherjee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Acherjee, B. (2020). Laser-based Fabrication of Micro-channels. In: Kibria, G., Bhattacharyya, B. (eds) Accuracy Enhancement Technologies for Micromachining Processes. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-15-2117-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-2117-1_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-2116-4

  • Online ISBN: 978-981-15-2117-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics