Skip to main content

Accuracy Improvement and Precision Measurement on Micro-EDM

  • Chapter
  • First Online:
Accuracy Enhancement Technologies for Micromachining Processes

Abstract

Micro electrical discharge machining (µEDM) is used for fabricating microstructures and micro components such as arrays of micro tools, micropillars, and complex three-dimensional shapes. These micro features are extensively used in the field of micro-electro-mechanical systems (MEMS), bio-MEMS, environmental and information technology, and so on. µEDM variants such as micro electrical discharge drilling (µED-drilling), reverse micro electrical discharge machining (R-µEDM), drilling with in situ fabricated tool, block micro electrical discharge grinding (B-µEDG), micro wire electrical discharge grinding (µWEDG), and micro electrical discharge milling (µED-milling) are equally contributing toward the fabrication of microscale parts and components. For the last few decades, researchers have mainly concentrated on the dimensional accuracy and precision measurement while fabricating microstructures for quantifying the response measures to determine the quality machining in micro level. Several factors such as machining parameters (electrical and non-electrical), tool and workpiece fixation, resolution, and repositioning capacity of the machine control dimensional accuracy and precision altogether. In addition, for machining the micro features, micro tools have been used. So, it is very important to study the tool wear because it directly affects the accuracy of micro features during machining. Tool wear cannot be completely avoided, but it can be minimized up to a significant level. Moreover, it can also be done using tool wear compensation. These errors are highly responsible for getting the inaccurate dimension of the microstructure. It is important to analyze the effect of each factor meticulously to achieve a precise and accurate dimension of micro components.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

µEDM:

Micro electrical discharge machining

MEMS:

Micro-electro-mechanical systems

µED-drilling:

Micro electrical discharge drilling

R-µEDM:

Reverse micro electrical discharge machining

B-µEDG:

Block micro electrical discharge grinding

µWEDG:

Micro wire electrical discharge grinding

µED-milling:

Micro electrical discharge milling

LBM:

Laser beam machining

LIGA:

Lithography, Electroplating, and Molding

µUSM:

Micro ultrasonic machining

IBM:

Ion beam machining

µECM:

Micro electrochemical machining

µWEDM:

Wire electrical discharge machining

RC:

Resistance–capacitance

E RC :

Discharge energy per pulse in RC circuit

C :

Capacitance

V g :

Gap voltage

E T :

Discharge energy per pulse in transistor circuit

I p :

Current of a single pulse

V p :

Voltage of a single pulse

T on :

Pulse duration

T off :

Pulse interval

W i :

Initial weight of workpiece

W f :

Final weight of workpiece

h :

Depth of hole

IEG:

Interelectrode gap

TF:

Tangential feed

CCD:

Charge–coupled device

UWM:

Uniform wear method

MRR:

Material removal rate

TWR:

Tool wear rate

BSA:

Based on scanned area

HTF:

Horizontal tool feed rate

LT:

Layer thickness

TRS:

Tool rotational speed

LDCA:

Layer depth constrained algorithm

SCAA:

S-curve accelerating algorithm

References

  1. Kibria G, Bhattacharyya B (2011) Investigation into micro-hole geometrical accuracy during micro-EDM of Ti-6Al-4V employing different dielectrics. Int J Mach Mach Mater 10:310

    Google Scholar 

  2. Kibria G, Shivakoti I, Pradhan BB, Bhattacharyya B (2017) Electrical discharge micro-hole machining process of Ti–6Al–4V: improvement of accuracy and performance. In: Non-traditional micromachining processes. Springer International Publishing, pp 93–144

    Google Scholar 

  3. Kibria G, Sarkar BR, Pradhan BB, Bhattacharyya B (2010) Comparative study of different dielectrics for micro-EDM performance during microhole machining of Ti-6Al-4V alloy. Int J Adv Manuf Technol 48:557–570

    Article  Google Scholar 

  4. Ho KH, Newman ST (2003) State of the art electrical discharge machining (EDM). Int J Mach Tools Manuf 43:1287–1300

    Article  Google Scholar 

  5. Kadirvel A, Hariharan P, Gowri S (2012) A review on various research trends in micro-EDM. Int J Mechatron Manuf Syst 5:361–384

    Google Scholar 

  6. Yu Z, Masuzawa T, Fujino M (2000) 3D micro-EDM with simple shape electrode Part 1: machining of cavities with sharp corners and electrode wear compensation. In: Proceedings KORUS 2000 4th Korea-Russia international symposium on science and technology. IEEE, pp 102–105

    Google Scholar 

  7. Jahan MP (2013) Micro-electrical discharge machining. In: Nontraditional machining processes. Springer, London, pp 111–151

    Google Scholar 

  8. Kibria G, Bhattacharyya B (2017) Microelectrical discharge machining of Ti-6Al-4V. In: Microfabrication and precision engineering. Elsevier, pp 99–142

    Google Scholar 

  9. Katz Z, Tibbles CJ (2004) Analysis of micro-scale EDM process. Int J Adv Manuf Technol 25:923–928

    Article  Google Scholar 

  10. Masuzawa T (2001) Micro-EDM. In: Proceedings of the thirteen international symposium on electro machining, pp 3–19

    Google Scholar 

  11. Karthikeyan G, Garg AK, Ramkumar J, Dhamodaran S (2012) A microscopic investigation of machining behavior in µeD-milling process. J Manuf Process 14:297–306

    Article  Google Scholar 

  12. Son S, Lim H, Kumar AS, Rahman M (2007) Influences of pulsed power condition on the machining properties in micro EDM. J Mater Process Technol 190:73–76

    Article  Google Scholar 

  13. Han F, Wachi S, Kunieda M (2004) Improvement of machining characteristics of micro-EDM using transistor type isopulse generator and servo feed control. Precis Eng 28:378–385

    Article  Google Scholar 

  14. Jahan MP, Wong YS, Rahman M (2009) A study on the quality micro-hole machining of tungsten carbide by micro-EDM process using transistor and RC-type pulse generator. J Mater Process Technol 209:1706–1716

    Article  Google Scholar 

  15. Karthikeyan G, Ramkumar J, Dhamodaran S, Aravindan S (2010) Micro electric discharge milling process performance: an experimental investigation. Int J Mach Tools Manuf 50:718–727

    Article  Google Scholar 

  16. Jafferson JM, Hariharan P, Ram Kumar J (2016) Effect of non-electrical parameters in μED milling: an experimental investigation. Int J Adv Manuf Technol 85:2037–2047

    Article  Google Scholar 

  17. Vidya S, Barman S, Chebolu A et al (2015) Effects of different cavity geometries on machining performance in micro-electrical discharge milling. J Micro Nano-Manuf 3:11007

    Article  Google Scholar 

  18. Wang C, Chu X, Liu G et al (2013) The design of integrated route in micro-EDM. Mater Manuf Process 28:1348–1355

    Article  Google Scholar 

  19. Karthikeyan G, Ramkumar J, Dhamodaran S (2014) Block EDG: issues and applicability in multiple pass µED-milling. Mach Sci Technol 18:120–136

    Article  Google Scholar 

  20. Rahman M, Lim HS, Neo KS et al (2007) Tool-based nanofinishing and micromachining. J Mater Process Technol 185:2–16

    Article  Google Scholar 

  21. Pham DT, Dimov SS, Bigot S et al (2004) Micro-EDM—recent developments and research issues. J Mater Process Technol 149:50–57

    Article  Google Scholar 

  22. Mastud S, Singh RK, Joshi SS (2012) Analysis of fabrication of arrayed micro-rods on tungsten carbide using reverse micro-EDM. Int J Manuf Technol Manage 26:176

    Article  Google Scholar 

  23. Masuzawa T, Fujino M, Kobayashi K et al (1985) Wire electro-discharge grinding for micro-machining. CIRP Ann Manuf Technol 34:431–434

    Article  Google Scholar 

  24. Sheu DY (2004) Multi-spherical probe machining by EDM: combining WEDG technology with one-pulse electro-discharge. J Mater Process Technol 149:597–603

    Google Scholar 

  25. Rees A, Brousseau E, Dimov SS et al (2013) Development of surface roughness optimisation and prediction for the process of wire electro-discharge grinding. Int J Adv Manuf Technol 64:1395–1410

    Article  Google Scholar 

  26. Oliaei SNB, Özdemir C, Karpat Y (2014) On-machine fabrication of PCD and WC micro end mills using micro electro discharge machining. Int J Mechatron Manuf Syst 7:246

    Google Scholar 

  27. Zhang L, Tong H, Li Y (2015) Precision machining of micro tool electrodes in micro EDM for drilling array micro holes. Precis Eng 39:100–106

    Article  Google Scholar 

  28. Ravi N, Huang H (2002) Fabrication of symmetrical section microfeatures using the electro-discharge machining block electrode method. J Micromech Microeng 12:905–910

    Article  Google Scholar 

  29. Zhao WS, Jia BX, Wang ZL, Hu FQ (2006) Study on block electrode discharge grinding of micro rods. Key Eng Mater 304–305:201–205

    Article  Google Scholar 

  30. Jahan MP, Rahman M, Wong YS, Fuhua L (2010) On-machine fabrication of high-aspect-ratio micro-electrodes and application in vibration-assisted micro-electrodischarge drilling of tungsten carbide. Proc Inst Mech Eng Part B J Eng Manuf 224:795–814

    Article  Google Scholar 

  31. Pham DT, Ivanov A, Bigot S et al (2007) An investigation of tube and rod electrode wear in micro EDM drilling. Int J Adv Manuf Technol 33:103–109

    Article  Google Scholar 

  32. Pradhan BB, Bhattacharyya B (2008) Improvement in microhole machining accuracy by polarity changing technique for microelectrode discharge machining on Ti–6Al–4V. Proc Inst Mech Eng Part B J Eng Manuf 222:163–173

    Article  Google Scholar 

  33. Puranik MS, Joshi SS (2008) Analysis of accuracy of high-aspect-ratio holes generated using micro-electric discharge machining drilling. Proc Inst Mech Eng Part B J Eng Manuf 222:1453–1464

    Article  Google Scholar 

  34. Aligiri E, Yeo SH, Tan PC (2010) A new tool wear compensation method based on real-time estimation of material removal volume in micro-EDM. J Mater Process Technol 210:2292–2303

    Article  Google Scholar 

  35. Jahan MP, Saleh T, Rahman M, Wong YS (2010) Development, modeling, and experimental investigation of low frequency workpiece vibration-assisted micro-EDM of tungsten carbide. J Manuf Sci Eng 132:54503

    Article  Google Scholar 

  36. Heinz K, Kapoor SG, DeVor RE, Surla V (2011) An investigation of magnetic-field-assisted material removal in micro-EDM for nonmagnetic materials. J Manuf Sci Eng 133:21002

    Article  Google Scholar 

  37. Maity KP, Singh RK (2012) An optimisation of micro-EDM operation for fabrication of micro-hole. Int J Adv Manuf Technol 61:1221–1229

    Article  Google Scholar 

  38. Jahan MP, Wong YS, Rahman M (2012) Evaluation of the effectiveness of low frequency workpiece vibration in deep-hole micro-EDM drilling of tungsten carbide. J Manuf Process 14:343–359

    Article  Google Scholar 

  39. Ferraris E, Castiglioni V, Ceyssens F et al (2013) EDM drilling of ultra-high aspect ratio micro holes with insulated tools. CIRP Ann Manuf Technol 62:191–194

    Article  Google Scholar 

  40. Natarajan N, Suresh P (2015) Experimental investigations on the microhole machining of 304 stainless steel by micro-EDM process using RC-type pulse generator. Int J Adv Manuf Technol 77:1741–1750

    Article  Google Scholar 

  41. D’Urso G, Ravasio C (2017) Material-Technology Index to evaluate micro-EDM drilling process. J Manuf Process 26:13–21

    Google Scholar 

  42. Kim BH, Park BJ, Chu CN (2006) Fabrication of multiple electrodes by reverse EDM and their application in micro ECM. J Micromech Microeng 16:843–850

    Article  Google Scholar 

  43. Mujumdar SS, Mastud SA, Singh RK, Joshi SS (2010) Experimental characterization of the reverse micro-electrodischarge machining process for fabrication of high-aspect-ratio micro-rod arrays. Proc Inst Mech Eng Part B J Eng Manuf 224:777–794

    Article  Google Scholar 

  44. Singh AK, Patowari PK, Deshpande NV (2015) Experimental analysis of reverse micro-EDM for machining microtool. Mater Manuf Process 31:530–540

    Article  Google Scholar 

  45. Jahan MP, Wong YS, Rahman M, Liang TW (2012) In-situ machining of varied-shaped and arrays of microelectrodes using reverse micro-electrodischarge machining. Int J Mechatron Manuf Syst 5:495–515

    Google Scholar 

  46. Nirala CK, Saha P (2016) A new approach of tool wear monitoring and compensation in RμEDM process. Mater Manuf Process 31:483–494

    Article  Google Scholar 

  47. Yu ZY, Masuzawa T, Fujino M (1998) Micro-EDM for three-dimensional cavities-development of uniform wear method. CIRP Ann Manuf Technol 47:169–172

    Article  Google Scholar 

  48. Singh AK, Patowari PK, Deshpande NV (2016) Effect of tool wear on microrods fabrication using reverse μEDM. Mater Manuf Process 32:1–8

    Google Scholar 

  49. Yamazaki M, Suzuki T, Mori N, Kunieda M (2004) EDM of micro-rods by self-drilled holes. J Mater Process Technol 149:134–138

    Article  Google Scholar 

  50. Yamazaki M, Suzuki T, Mori N, Kunieda M (2006) Electrical discharge machining of micro-rod using self-drilled holes. J Japan Soc Precis Eng Contrib Pap 72:657–661

    Google Scholar 

  51. Yamazaki M, Suzuki T, Mori N et al (2008) Minimum diameter of microrods machined by micro-electrical discharge machining using self-drilled holes method. Denki Kako Gakkaishi 42:51–57

    Article  Google Scholar 

  52. Yamazaki M, Suzuki T, Mori N et al (2008) Improvement of accuracy of micro EDM using self-drilled holes method. J Japan Soc Precis Eng 74:264–268

    Article  Google Scholar 

  53. Sato T, Masuzawa T, Fujino T, Onishi Y (1989) Application of WEDG for microdrilling and microendmilling. In: Proceedings of annual spring assembly of JSPE, pp 1091–1092

    Google Scholar 

  54. Masuzawa T, Tönshoff HK (1997) Three-dimensional micromachining by machine tools. CIRP Ann Manuf Technol 46:621–628

    Article  Google Scholar 

  55. Bissacco G, Valentincic J, Hansen HN, Wiwe BD (2010) Towards the effective tool wear control in micro-EDM milling. Int J Adv Manuf Technol 47:3–9

    Article  Google Scholar 

  56. Karthikeyan G, Ramkumar J, Shalabh Aravindan S (2012) Performance analysis of μeD-milling process using various statistical techniques. Int J Mach Mach Mater 11:183–203

    Google Scholar 

  57. Li JZ, Xiao L, Wang H et al (2013) Tool wear compensation in 3D micro EDM based on the scanned area. Precis Eng 37:753–757

    Article  Google Scholar 

  58. Jafferson JM, Hariharan P, Ram Kumar J (2014) Effects of ultrasonic vibration and magnetic field in micro-EDM milling of nonmagnetic material. Mater Manuf Process 29:357–363

    Article  Google Scholar 

  59. Tong H, Zhang L, Li Y (2014) Algorithms and machining experiments to reduce depth errors in servo scanning 3D micro EDM. Precis Eng 38:538–547

    Article  Google Scholar 

  60. Zhang L, Du J, Zhuang X et al (2015) Geometric prediction of conic tool in micro-EDM milling with fix-length compensation using simulation. Int J Mach Tools Manuf 89:86–94

    Article  Google Scholar 

  61. Wang J, Qian J, Ferraris E, Reynaerts D (2017) In-situ process monitoring and adaptive control for precision micro-EDM cavity milling. Precis Eng 47:261–275

    Article  Google Scholar 

  62. Ali MY, Rahman MA, ZuhaidaZunairi SN, Banu A (2017) Dimensional accuracy of micro-electro discharge milling. IOP Conf Ser Mater Sci Eng 184:12034

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Promod Kumar Patowari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, A.K., Kar, S., Patowari, P.K. (2020). Accuracy Improvement and Precision Measurement on Micro-EDM. In: Kibria, G., Bhattacharyya, B. (eds) Accuracy Enhancement Technologies for Micromachining Processes. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-15-2117-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-2117-1_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-2116-4

  • Online ISBN: 978-981-15-2117-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics