Skip to main content

Understanding the Metabolic Cross Talk Between Cancer Cells and Cancer-Associated Fibroblasts

  • Chapter
  • First Online:
Book cover Cancer Cell Metabolism: A Potential Target for Cancer Therapy

Abstract

The tumor microenvironment (TME) is a heterogeneous, complex, and dynamic setting in which both invading tumor and local stromal cells reside, coevolve, and form a metabolic symbiosis that dictates downstream steps of cancer development and progression. Besides tumor cells, cancer-associated fibroblasts (CAFs) are the predominant cell type found in the majority of solid tumor microenvironment. It is recognized that cancer cells induce a metabolic phenotype in CAFs that is conducive to cancer progression. In addition, CAFs produce nutrients and metabolites, which are utilized by the tumor for energy production, proliferation, invasion, and migration. However, the precise mechanisms whereby CAFs contribute to the process remain uncertain. CAFs are believed to contribute to tumor metabolism through the production of high energy intermediates to fuel glycolytic, oxidative, amino acid, and fatty acid metabolism of cancer cells. This chapter consolidates recent findings regarding the metabolic cross talk occurring between CAFs and cancer cells within the tumor microenvironment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alkasalias T, Moyano-Galceran L, Arsenian-Henriksson M, Lehti K (2018) Fibroblasts in the tumor microenvironment: shield or spear? Int J Mol Sci 19(5). https://doi.org/10.3390/ijms19051532

  • Avagliano A, Granato G, Ruocco MR, Romano V, Belviso I, Carfora A, Montagnani S, Arcucci A (2018) Metabolic reprogramming of cancer associated fibroblasts: the slavery of stromal fibroblasts. Biomed Res Int 2018:6075403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beacham DA, Cukierman E (2005) Stromagenesis: the changing face of fibroblastic microenvironments during tumor progression. Semin Cancer Biol 15(5):329–341

    Article  PubMed  Google Scholar 

  • Blomme A, Van Simaeys G, Doumont G, Costanza B, Bellier J, Otaka Y, Sherer F, Lovinfosse P, Boutry S, Palacios AP, De Pauw E, Hirano T, Yokobori T, Hustinx R, Bellahcene A, Delvenne P, Detry O, Goldman S, Nishiyama M, Castronovo V, Turtoi A (2018) Murine stroma adopts a human-like metabolic phenotype in the PDX model of colorectal cancer and liver metastases. Oncogene 37(9):1237–1250

    Article  CAS  PubMed  Google Scholar 

  • Bonuccelli G, Tsirigos A, Whitaker-Menezes D, Pavlides S, Pestell RG, Chiavarina B, Frank PG, Flomenberg N, Howell A, Martinez-Outschoorn UE, Sotgia F, Lisanti MP (2010a) Ketones and lactate “fuel” tumor growth and metastasis: evidence that epithelial cancer cells use oxidative mitochondrial metabolism. Cell Cycle 9(17):3506–3514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonuccelli G, Whitaker-Menezes D, Castello-Cros R, Pavlides S, Pestell RG, Fatatis A, Witkiewicz AK, Vander Heiden MG, Migneco G, Chiavarina B, Frank PG, Capozza F, Flomenberg N, Martinez-Outschoorn UE, Sotgia F, Lisanti MP (2010b) The reverse Warburg effect: glycolysis inhibitors prevent the tumor promoting effects of caveolin-1 deficient cancer associated fibroblasts. Cell Cycle 9(10):1960–1971

    Article  CAS  PubMed  Google Scholar 

  • Cuiffo BG, Karnoub AE (2012) Mesenchymal stem cells in tumor development: emerging roles and concepts. Cell Adhes Migr 6(3):220–230

    Article  Google Scholar 

  • Curry JM, Tuluc M, Whitaker-Menezes D, Ames JA, Anantharaman A, Butera A, Leiby B, Cognetti DM, Sotgia F, Lisanti MP, Martinez-Outschoorn UE (2013) Cancer metabolism, stemness and tumor recurrence: MCT1 and MCT4 are functional biomarkers of metabolic symbiosis in head and neck cancer. Cell Cycle 12(9):1371–1384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fiaschi T, Marini A, Giannoni E, Taddei ML, Gandellini P, De Donatis A, Lanciotti M, Serni S, Cirri P, Chiarugi P (2012) Reciprocal metabolic reprogramming through lactate shuttle coordinately influences tumor-stroma interplay. Cancer Res 72(19):5130–5140

    Article  CAS  PubMed  Google Scholar 

  • Fu Y, Liu S, Yin S, Niu W, Xiong W, Tan M, Li G, Zhou M (2017) The reverse Warburg effect is likely to be an Achilles’ heel of cancer that can be exploited for cancer therapy. Oncotarget 8(34):57813–57825

    Article  PubMed  PubMed Central  Google Scholar 

  • Gentric G, Mieulet V, Mechta-Grigoriou F (2017) Heterogeneity in cancer metabolism: new concepts in an old field. Antioxid Redox Signal 26(9):462–485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giatromanolaki A, Koukourakis MI, Koutsopoulos A, Mendrinos S, Sivridis E (2012) The metabolic interactions between tumor cells and tumor-associated stroma (TAS) in prostatic cancer. Cancer Biol Ther 13(13):1284–1289

    Article  PubMed  PubMed Central  Google Scholar 

  • Gonzalez L, Eiro N, Fernandez-Garcia B, Gonzalez LO, Dominguez F, Vizoso FJ (2016) Gene expression profile of normal and cancer-associated fibroblasts according to intratumoral inflammatory cells phenotype from breast cancer tissue. Mol Carcinog 55(11):1489–1502

    Article  CAS  PubMed  Google Scholar 

  • Gouirand V, Guillaumond F, Vasseur S (2018) Influence of the tumor microenvironment on cancer cells metabolic reprogramming. Front Oncol 8:117

    Article  PubMed  PubMed Central  Google Scholar 

  • Hacker HJ, Moore MA, Mayer D, Bannasch P (1982) Correlative histochemistry of some enzymes of carbohydrate metabolism in preneoplastic and neoplastic lesions in the rat liver. Carcinogenesis 3(11):1265–1272

    Article  CAS  PubMed  Google Scholar 

  • Huang L, Xu AM, Liu S, Liu W, Li TJ (2014) Cancer-associated fibroblasts in digestive tumors. World J Gastroenterol 20(47):17804–17818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalluri R (2016) The biology and function of fibroblasts in cancer. Nat Rev Cancer 16(9):582–598

    Article  CAS  PubMed  Google Scholar 

  • Knudsen ES, Balaji U, Freinkman E, McCue P, Witkiewicz AK (2016) Unique metabolic features of pancreatic cancer stroma: relevance to the tumor compartment, prognosis, and invasive potential. Oncotarget 7(48):78396–78411

    Article  PubMed  PubMed Central  Google Scholar 

  • Ko YH, Lin Z, Flomenberg N, Pestell RG, Howell A, Sotgia F, Lisanti MP, Martinez-Outschoorn UE (2011) Glutamine fuels a vicious cycle of autophagy in the tumor stroma and oxidative mitochondrial metabolism in epithelial cancer cells: implications for preventing chemotherapy resistance. Cancer Biol Ther 12(12):1085–1097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kowalik MA, Columbano A, Perra A (2017) Emerging role of the pentose phosphate pathway in hepatocellular carcinoma. Front Oncol 7:87

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar D, New J, Vishwakarma V, Joshi R, Enders J, Lin F, Dasari S, Gutierrez WR, Leef G, Ponnurangam S, Chavan H, Ganaden L, Thornton MM, Dai H, Tawfik O, Straub J, Shnayder Y, Kakarala K, Tsue TT, Girod DA, Van Houten B, Anant S, Krishnamurthy P, Thomas SM (2018) Cancer-associated fibroblasts drive glycolysis in a targetable signaling loop implicated in head and neck squamous cell carcinoma progression. Cancer Res 78(14):3769–3782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • LeBleu VS, Kalluri R (2018) A peek into cancer-associated fibroblasts: origins, functions and translational impact. Dis Model Mech 11(4):dmm029447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li B, Simon MC (2013) Molecular pathways: targeting MYC-induced metabolic reprogramming and oncogenic stress in cancer. Clin Cancer Res 19(21):5835–5841

    Article  CAS  PubMed  Google Scholar 

  • Liao Z, Tan ZW, Zhu P, Tan NS (2018) Cancer-associated fibroblasts in tumor microenvironment – accomplices in tumor malignancy. Cell Immunol 343:103729

    Article  CAS  PubMed  Google Scholar 

  • Liu FL, Mo EP, Yang L, Du J, Wang HS, Zhang H, Kurihara H, Xu J, Cai SH (2016) Autophagy is involved in TGF-beta1-induced protective mechanisms and formation of cancer-associated fibroblasts phenotype in tumor microenvironment. Oncotarget 7(4):4122–4141

    PubMed  Google Scholar 

  • Lyssiotis CA, Kimmelman AC (2017) Metabolic interactions in the tumor microenvironment. Trends Cell Biol 27(11):863–875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinez-Outschoorn UE, Lin Z, Whitaker-Menezes D, Howell A, Lisanti MP, Sotgia F (2012a) Ketone bodies and two-compartment tumor metabolism: stromal ketone production fuels mitochondrial biogenesis in epithelial cancer cells. Cell Cycle 11(21):3956–3963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinez-Outschoorn UE, Lin Z, Whitaker-Menezes D, Howell A, Sotgia F, Lisanti MP (2012b) Ketone body utilization drives tumor growth and metastasis. Cell Cycle 11(21):3964–3971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinez-Outschoorn UE, Lisanti MP, Sotgia F (2014) Catabolic cancer-associated fibroblasts transfer energy and biomass to anabolic cancer cells, fueling tumor growth. Semin Cancer Biol 25:47–60

    Article  CAS  PubMed  Google Scholar 

  • Micke P, Ostman A (2005) Exploring the tumour environment: cancer-associated fibroblasts as targets in cancer therapy. Expert Opin Ther Targets 9(6):1217–1233

    Article  CAS  PubMed  Google Scholar 

  • Migneco G, Whitaker-Menezes D, Chiavarina B, Castello-Cros R, Pavlides S, Pestell RG, Fatatis A, Flomenberg N, Tsirigos A, Howell A, Martinez-Outschoorn UE, Sotgia F, Lisanti MP (2010) Glycolytic cancer associated fibroblasts promote breast cancer tumor growth, without a measurable increase in angiogenesis: evidence for stromal-epithelial metabolic coupling. Cell Cycle 9(12):2412–2422

    Article  CAS  PubMed  Google Scholar 

  • Mikkilineni L, Whitaker-Menezes D, Domingo-Vidal M, Sprandio J, Avena P, Cotzia P, Dulau-Florea A, Gong J, Uppal G, Zhan T, Leiby B, Lin Z, Pro B, Sotgia F, Lisanti MP, Martinez-Outschoorn U (2017) Hodgkin lymphoma: a complex metabolic ecosystem with glycolytic reprogramming of the tumor microenvironment. Semin Oncol 44(3):218–225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mira A, Morello V, Cespedes MV, Perera T, Comoglio PM, Mangues R, Michieli P (2017) Stroma-derived HGF drives metabolic adaptation of colorectal cancer to angiogenesis inhibitors. Oncotarget 8(24):38193–38213

    Article  PubMed  PubMed Central  Google Scholar 

  • Orimo A, Gupta PB, Sgroi DC, Arenzana-Seisdedos F, Delaunay T, Naeem R, Carey VJ, Richardson AL, Weinberg RA (2005) Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 121(3):335–348

    Article  CAS  PubMed  Google Scholar 

  • Pan B, Liao Q, Niu Z, Zhou L, Zhao Y (2015) Cancer-associated fibroblasts in pancreatic adenocarcinoma. Future Oncol 11(18):2603–2610

    Article  CAS  PubMed  Google Scholar 

  • Patel BB, Ackerstaff E, Serganova IS, Kerrigan JE, Blasberg RG, Koutcher JA, Banerjee D (2017) Tumor stroma interaction is mediated by monocarboxylate metabolism. Exp Cell Res 352(1):20–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pavlides S, Tsirigos A, Migneco G, Whitaker-Menezes D, Chiavarina B, Flomenberg N, Frank PG, Casimiro MC, Wang C, Pestell RG, Martinez-Outschoorn UE, Howell A, Sotgia F, Lisanti MP (2010) The autophagic tumor stroma model of cancer: role of oxidative stress and ketone production in fueling tumor cell metabolism. Cell Cycle 9(17):3485–3505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pavlides S, Vera I, Gandara R, Sneddon S, Pestell RG, Mercier I, Martinez-Outschoorn UE, Whitaker-Menezes D, Howell A, Sotgia F, Lisanti MP (2012) Warburg meets autophagy: cancer-associated fibroblasts accelerate tumor growth and metastasis via oxidative stress, mitophagy, and aerobic glycolysis. Antioxid Redox Signal 16(11):1264–1284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pavlides S, Whitaker-Menezes D, Castello-Cros R, Flomenberg N, Witkiewicz AK, Frank PG, Casimiro MC, Wang C, Fortina P, Addya S, Pestell RG, Martinez-Outschoorn UE, Sotgia F, Lisanti MP (2009) The reverse Warburg effect: aerobic glycolysis in cancer associated fibroblasts and the tumor stroma. Cell Cycle 8(23):3984–4001

    Article  CAS  PubMed  Google Scholar 

  • Pietras K, Ostman A (2010) Hallmarks of cancer: interactions with the tumor stroma. Exp Cell Res 316(8):1324–1331

    Article  CAS  PubMed  Google Scholar 

  • Ramamonjisoa N, Ackerstaff E (2017) Characterization of the tumor microenvironment and tumor-stroma interaction by non-invasive preclinical imaging. Front Oncol 7:3

    Article  PubMed  PubMed Central  Google Scholar 

  • Ringuette Goulet C, Bernard G, Tremblay S, Chabaud S, Bolduc S, Pouliot F (2018) Exosomes induce fibroblast differentiation into cancer-associated fibroblasts through TGFbeta signaling. Mol Cancer Res 16(7):1196–1204

    Article  CAS  PubMed  Google Scholar 

  • Romero IL, Mukherjee A, Kenny HA, Litchfield LM, Lengyel E (2015) Molecular pathways: trafficking of metabolic resources in the tumor microenvironment. Clin Cancer Res 21(4):680–686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santi A, Kugeratski FG, Zanivan S (2018) Cancer associated fibroblasts: the architects of stroma remodeling. Proteomics 18(5–6):e1700167

    Article  CAS  PubMed  Google Scholar 

  • Stumpf H, Bannasch P (1994) Overexpression of glucose-6-phosphate-dehydrogenase in rat hepatic preneoplasia and neoplasia. Int J Oncol 5(6):1255–1260

    CAS  PubMed  Google Scholar 

  • Tanaka K, Sasayama T, Irino Y, Takata K, Nagashima H, Satoh N, Kyotani K, Mizowaki T, Imahori T, Ejima Y, Masui K, Gini B, Yang H, Hosoda K, Sasaki R, Mischel PS, Kohmura E (2015) Compensatory glutamine metabolism promotes glioblastoma resistance to mTOR inhibitor treatment. J Clin Invest 125(4):1591–1602

    Article  PubMed  PubMed Central  Google Scholar 

  • Terunuma A, Putluri N, Mishra P, Mathe EA, Dorsey TH, Yi M, Wallace TA, Issaq HJ, Zhou M, Killian JK, Stevenson HS, Karoly ED, Chan K, Samanta S, Prieto D, Hsu TY, Kurley SJ, Putluri V, Sonavane R, Edelman DC, Wulff J, Starks AM, Yang Y, Kittles RA, Yfantis HG, Lee DH, Ioffe OB, Schiff R, Stephens RM, Meltzer PS, Veenstra TD, Westbrook TF, Sreekumar A, Ambs S (2014) MYC-driven accumulation of 2-hydroxyglutarate is associated with breast cancer prognosis. J Clin Invest 124(1):398–412

    Article  CAS  PubMed  Google Scholar 

  • Tsun ZY, Possemato R (2015) Amino acid management in cancer. Semin Cell Dev Biol 43:22–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valencia T, Kim JY, Abu-Baker S, Moscat-Pardos J, Ahn CS, Reina-Campos M, Duran A, Castilla EA, Metallo CM, Diaz-Meco MT, Moscat J (2014) Metabolic reprogramming of stromal fibroblasts through p62-mTORC1 signaling promotes inflammation and tumorigenesis. Cancer Cell 26(1):121–135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warburg O, Wind F, Negelein E (1927) The metabolism of tumors in the body. J Gen Physiol 8(6):519–530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weber CE, Kuo PC (2012) The tumor microenvironment. Surg Oncol 21(3):172–177

    Article  PubMed  Google Scholar 

  • Wen S, Niu Y, Yeh S, Chang C (2015) BM-MSCs promote prostate cancer progression via the conversion of normal fibroblasts to cancer-associated fibroblasts. Int J Oncol 47(2):719–727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whitaker-Menezes D, Martinez-Outschoorn UE, Lin Z, Ertel A, Flomenberg N, Witkiewicz AK, Birbe RC, Howell A, Pavlides S, Gandara R, Pestell RG, Sotgia F, Philp NJ, Lisanti MP (2011) Evidence for a stromal-epithelial “lactate shuttle” in human tumors: MCT4 is a marker of oxidative stress in cancer-associated fibroblasts. Cell Cycle 10(11):1772–1783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilde L, Roche M, Domingo-Vidal M, Tanson K, Philp N, Curry J, Martinez-Outschoorn U (2017) Metabolic coupling and the reverse Warburg effect in cancer: implications for novel biomarker and anticancer agent development. Semin Oncol 44(3):198–203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wise DR, Thompson CB (2010) Glutamine addiction: a new therapeutic target in cancer. Trends Biochem Sci 35(8):427–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Witkiewicz AK, Whitaker-Menezes D, Dasgupta A, Philp NJ, Lin Z, Gandara R, Sneddon S, Martinez-Outschoorn UE, Sotgia F, Lisanti MP (2012) Using the “reverse Warburg effect” to identify high-risk breast cancer patients: stromal MCT4 predicts poor clinical outcome in triple-negative breast cancers. Cell Cycle 11(6):1108–1117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu D, Zhuo L, Wang X (2017) Metabolic reprogramming of carcinoma-associated fibroblasts and its impact on metabolic heterogeneity of tumors. Semin Cell Dev Biol 64:125–131

    Article  CAS  PubMed  Google Scholar 

  • Xing Y, Zhao S, Zhou BP, Mi J (2015) Metabolic reprogramming of the tumour microenvironment. FEBS J 282(20):3892–3898

    Article  CAS  PubMed  Google Scholar 

  • Zeisberg EM, Potenta S, Xie L, Zeisberg M, Kalluri R (2007) Discovery of endothelial to mesenchymal transition as a source for carcinoma-associated fibroblasts. Cancer Res 67(21):10123–10128

    Article  CAS  PubMed  Google Scholar 

  • Zhang D, Wang Y, Shi Z, Liu J, Sun P, Hou X, Zhang J, Zhao S, Zhou BP, Mi J (2015) Metabolic reprogramming of cancer-associated fibroblasts by IDH3alpha downregulation. Cell Rep 10(8):1335–1348

    Article  CAS  PubMed  Google Scholar 

  • Zhao H, Yang L, Baddour J, Achreja A, Bernard V, Moss T, Marini JC, Tudawe T, Seviour EG, San Lucas FA, Alvarez H, Gupta S, Maiti SN, Cooper L, Peehl D, Ram PT, Maitra A, Nagrath D (2016) Tumor microenvironment derived exosomes pleiotropically modulate cancer cell metabolism. Elife 5:e10250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the NIH grant CA227838 to S.M.T. and The National Cancer Institute Cancer Center Support Grant to the University of Kansas Cancer Center, P30CA168524.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sufi Mary Thomas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Alvarado, A.M., Arnold, L.K., Thomas, S.M. (2020). Understanding the Metabolic Cross Talk Between Cancer Cells and Cancer-Associated Fibroblasts. In: Kumar, D. (eds) Cancer Cell Metabolism: A Potential Target for Cancer Therapy. Springer, Singapore. https://doi.org/10.1007/978-981-15-1991-8_4

Download citation

Publish with us

Policies and ethics