Skip to main content

Numerical and Physical Model Analysis Comparison for Velocity of Water at Spillway

  • Conference paper
  • First Online:
ICDSME 2019 (ICDSME 2019)

Abstract

High velocity may affect the structure integrity due to long exposure. Thus, this study was done to assess velocity specifically at energy dissipater and stilling basin of Chenderoh Dam spillway by numerical and physical model analysis. A 3D model drawing of 1:20 scaled had be drawn to be analysed and as a reference for physical model development. Numerical model had been analysed based on the fundamental of computational fluid dynamic (CFD). Physical model of the spillway has been developed to verify the accuracy of numerical model analysis. The result shows that both of the difference percentage at energy dissipater and stilling basin for velocity are less than 10% which are 4.3135% and 4.1879% respectively. Therefore, the numerical and physical model result for 1:20 scale model can be used to validate this dam numerical simulation result up to 95% precision.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Structures, G.C.: Chapter 9 Hydraulic Structures Contents, vol. 2, Jan 2016

    Google Scholar 

  2. Muda, C.: Condition Assessment on Hydropower Dam based on Simulation Approach: a Review, vol. 020254 (2018)

    Google Scholar 

  3. Holder, G., Villeneuve, M., Lasalle, G.C.: Computational Fluid Dynamic

    Google Scholar 

  4. Andrew, I.: CFD Modelling for Spillways, no. 38

    Google Scholar 

  5. Kim, D.G., Park, J.H.: Analysis of flow structure over ogee-spillway in consideration of scale and roughness effects by using CFD model. J. Civ. Eng. KSCE 9(2), 161–169 (2005)

    Article  Google Scholar 

  6. Mohamad, G., et al.: Structural Dynamic Analysis of the Chenderoh Dam Sector, vol. 02002, pp. 1–6 (2018)

    Google Scholar 

  7. Moradinejad, A., Parssai, A., Noriemamzade, M.: Numerical modeling of flow pattern in kamal saleh dam spillway approach channel. Appl. Sci. Rep. 10(2) (2015)

    Google Scholar 

  8. Zawawi, M.H., Swee, M.G., Zainal, N.S., Zahari, N.M., Kamarudin, M.A., Ramli, M.Z.: Computational Fluid Dynamic Analysis For Independent Floating Water Treatment Device, vol. 020122, p. 020122 (2017)

    Google Scholar 

  9. Tobergte, D.R., Curtis, S.: Hydraulic Structures, vol. 53, no. 9 (2013)

    Google Scholar 

  10. Silva, M.R.: 3D Numerical Modeling of Flow Along Spillways with Free Surface Complementary Spillway of Salamonde, pp. 1–12 (2006)

    Google Scholar 

  11. Yeo, H., Kang, J., Jung, S.: An experimental study for construction of emergency spillway in daechung dam. Engineering 2012(September), 568–577 (2012)

    Article  Google Scholar 

  12. U. S. Society: Materials for embankment dams Penman. A D M Int. Water Power Dam ConstrV35, N1, P15, 22(1) 1985

    Google Scholar 

  13. Singarella, P.N., Adams, E.E.: Physical and Numerical Modeling of the, pp. 71–75, Mar 1982

    Google Scholar 

  14. Olsen, N.R.B.: CFD Modelling for Hydraulic Structures, May 2001

    Google Scholar 

  15. Parsaie, A., Haghiabi, A.H., Moradinejad, A.: CFD modeling of flow pattern in spillway’s approach channel. Sustain. Water Resour. Manag. 1(3), 245–251 (2015)

    Article  Google Scholar 

  16. Anderson, J.D.: Computational fluid dynamics an introduction. Complex Water Surf. ACM TOG 21, 736–744 (2002)

    Google Scholar 

  17. Chanel, P.G.: An Evaluation of Computational Fluid Dynamics for Spillway Modeling, p. 84 (2008)

    Google Scholar 

  18. Dehdar-Behbahani, S., Parsaie, A.: Numerical modeling of flow pattern in dam spillway’s guide wall. Case study: balaroud dam, Iran. Alex. Eng. J. 55(1), 467–473 (2016)

    Article  Google Scholar 

  19. Hou, G., Wang, J., Layton, A.: Numerical methods for fluid-structure interaction—a review. Commun. Comput. Phys. 12(2), 337–377 (2012)

    Article  Google Scholar 

  20. Thacker, B.H., Doebling, S.W., Hemez, F.M., Anderson, M.C., Pepin, J.E., Rodriguez, E.A.: Concepts of model verification and validation. Concepts Model Verif. Valid. 41 (2004)

    Google Scholar 

  21. Kiricci, V., Celik, A.O.: Modeling Hydraulic Structures With Computational Fluid Dynamics, pp. 585–591, Oct 2014

    Google Scholar 

  22. Dynamics, C.F., Our, B., Ghd, E., Computational, S., Dynamics, F., Cfx, A.: Hydraulic Modelling for Dams and Associated Structures

    Google Scholar 

  23. Novák, P.: Hydraulic Structures, p. 700 (2007)

    Google Scholar 

  24. Haga, K., Terada, A., Kaminaga, M., Hino, R.: Water Flow Experiment using the PIV Technique and the Thermal Hydraulic Analysis on the Cross-Flow Type Mercury Target Model (2001)

    Google Scholar 

  25. Thanh, N.C., Ling-Ling, W.: Physical and numerical model of flow through the spillways with a breast wall. KSCE J. Civ. Eng. 19(7), 2317–2324 (2015)

    Article  Google Scholar 

  26. Tudy, S.T.C.A.S.E.S.: Physical Modeling for Complex Hydraulic Structures (Main Pumping a. Froude number (Fr): b. Reynolds number (Re), pp. 21–23, Apr 2016

    Google Scholar 

  27. Chanson, H.: Physical modelling of hydraulics. Hydraul. Open Channel Flow 261–283 (1999)

    Google Scholar 

  28. Investigation, P.M.: Andri Gunnarsson (2012)

    Google Scholar 

  29. Kiricci, V., Celik, A.O.: Modeling Hydraulics Structures with Computational Fluid Dynamics (CFD), vol. 2014, pp. 585–591, Oct 2014

    Google Scholar 

  30. Duró, G.: Physical Modeling and Cfd Comparison : Case Study of a Hydro-Combined Power Station in Spillway Mode, no. 2007, pp. 36–47 (2012)

    Google Scholar 

  31. Gianluca Iaccarino: Simulation of Turbulent Flows. Stanf. Lect. Notes Course ME469B (2004)

    Google Scholar 

  32. FLUENT, I.: Modeling Turbulent Flows, pp. 2–6, 6–49. ANSYS. Inc. (2006)

    Google Scholar 

  33. Delafosse, A., Line, A., Morchain, J., Guiraud, P.: LES and URANS simulations of hydrodynamics in mixing tank: comparison to PIV experiments. Chem. Eng. Res. Des. 86(12), 1322–1330 (2008)

    Article  CAS  Google Scholar 

  34. Ng, F.C., et al.: Fluid/structure interaction study on the variation of radial gate’s gap height in dam. IOP Conference Series: Materials Science and Engineering, vol. 370, no. 1 (2018)

    Article  Google Scholar 

  35. Stamhuis, E.J.: Basics and Principles of Particle Image Velocimetry (PIV) for Mapping Biogenic and Biologically Relevant Flows, pp. 463–479 (2006)

    Article  Google Scholar 

  36. Azman, A., et al.: Modelling of Cascade Aerator, vol. 04005, pp. 1–6 (2018)

    Google Scholar 

  37. Arias, I., Knap, J., Chalivendra, V.B., Hong, S., Ortiz, M., Rosakis, A.J.: Numerical modelling and experimental validation of dynamic fracture events along weak planes. Comput. Methods Appl. Mech. Eng. 196(37–40 SPEC. ISS.), 3833–3840 (2007)

    Article  Google Scholar 

  38. Kane, J.M.: A user’ guide to clozapine. Acta Psychiatr. Scand. 123(6), 407–408 (2011)

    Article  Google Scholar 

  39. Kamaruddin, M.A.: Fluid-Structure Interactions Study on Hydraulic Structures: A Review, vol. 020244 (2018)

    Google Scholar 

  40. Zawawi, M.H., Saleha, A., Salwa, A., Hassan, N.H., Zahari, N.M., Ramli, M.Z.: A Review: Fundamentals of Computational Fluid Dynamics, vol. 020252 (2018)

    Google Scholar 

  41. Georgoulas, A., Angelidis, P., Kopasakis, K., Kotsovinos, N.: 3D Multiphase Numerical Modelling for Turbidity Current Flows (2006)

    Google Scholar 

  42. Euler-lagrange, T.: The lagrangian method. Introd. Class. Mech. Probl. Solut. (2008)

    Google Scholar 

  43. Muda, Z.C.: Computational Fluid Dynamic Analysis at Dam Spillway due to Different Gate Openings, vol. 020245 (2018)

    Google Scholar 

Download references

Acknowledgement

This research project was funded under the TNB Consultancy grant (U-TG- CR-18-04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. H. Hassan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zaki, S.A.A. et al. (2020). Numerical and Physical Model Analysis Comparison for Velocity of Water at Spillway. In: Mohd Sidek, L., Salih, G., Boosroh, M. (eds) ICDSME 2019. ICDSME 2019. Water Resources Development and Management. Springer, Singapore. https://doi.org/10.1007/978-981-15-1971-0_41

Download citation

Publish with us

Policies and ethics