Skip to main content

Non-orthogonal Multiple Access in Coordinated LEO Satellite Networks

  • Conference paper
  • First Online:
Cyberspace Data and Intelligence, and Cyber-Living, Syndrome, and Health (CyberDI 2019, CyberLife 2019)

Abstract

Non-orthogonal multiple access (NOMA) has been widely considered to improve the spectral efficiency in terrestrial wireless networks. In this paper, we extend the idea to satellite networks and propose a NOMA-based scheme for coordinated low Earth orbit satellite systems, where the beam-edge user is supported by two satellites. By exploiting the difference of the equivalent downlink channel gains, users located both at the beam-center and beam-edge can be served simultaneously using NOMA. It is shown that the NOMA-based cooperative method is capable of providing a higher system capacity while guarantee the rate quality of the beam-edge user.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bai, L., Li, T., Liu, J., et al.: Large-scale MIMO detection using MCMC approach with blockwise sampling. IEEE Trans. Commun. 64(9), 3697–3707 (2016)

    Article  Google Scholar 

  2. Ning, H., Liu, H., Ma, J., et al.: Cybermatics: cyber-physical-social-thinking hyperspace based science and technology. Future Gener. Comput. Syst. 56, 504–522 (2016)

    Article  Google Scholar 

  3. Ning, H., Liu, H.: Cyber-physical-social-thinking space based science and technology framework for the Internet of Things. Sci. China Inf. Sci. 58(3), 1–19 (2015)

    Article  Google Scholar 

  4. Liu, L., Chen, C., Qiu, T., et al.: A data dissemination scheme based on clustering and probabilistic broadcasting in VANETs. Veh. Commun. 13, 78–88 (2018)

    Google Scholar 

  5. Chen, C., Jin, Y., Pei, Q., et al.: A connectivity-aware intersection-based routing in VANETs. EURASIP J. Wirel. Commun. Netw. 2014(1), 42 (2014)

    Article  Google Scholar 

  6. Chen, Y., Bayesteh, A., Wu, Y., et al.: Toward the standardization of non-orthogonal multiple access for next generation wireless networks. IEEE Commun. Mag. 56(3), 19–27 (2018)

    Article  Google Scholar 

  7. Liu, Y., Xing, H., Pan, C., et al.: Multiple-antenna-assisted non-orthogonal multiple access. IEEE Wirel. Commun. 25(2), 17–23 (2018)

    Article  Google Scholar 

  8. Saito, Y., Kishiyama, Y., Benjebbour, A., et al.: Non-orthogonal multiple access (NOMA) for cellular future radio access. In: Proceedings of IEEE Vehicular Technology Conference, Dresden, Germany (2013)

    Google Scholar 

  9. Zhang, X., Zhu, L., Li, T., et al.: Multiple-User transmission in space information networks: architecture and key techniques. IEEE Wirel. Commun. 26(2), 17–23 (2019)

    Article  Google Scholar 

  10. Yan, X., Xiao, H., Wang, C., et al.: Performance analysis of NOMA-based land mobile satellite networks. IEEE Access 6, 31327–31339 (2018)

    Article  Google Scholar 

  11. Shi, X., Thompson, J.S., Safari, M., et al.: Beamforming with superposition coding in multiple antenna satellite communications. In: Proceedings of IEEE ICC Workshops, pp. 705–710 (2017)

    Google Scholar 

  12. Caus, M., Vazquez, M.A., Perez-Neira, A.: NOMA and interference limited satellite scenarios. In: Proceedings of IEEE ACSSC, pp. 497–501. Pacific Grove (2017)

    Google Scholar 

  13. Choi, J.: Non-orthogonal multiple access in downlink coordinated two-point systems. IEEE Commun. Lett. 18(2), 313–316 (2014)

    Article  Google Scholar 

  14. Yan, X., Xiao, H., An, K., et al.: Hybrid satellite terrestrial relay networks with cooperative non-orthogonal multiple access. IEEE Commun. Lett. 22(5), 978–981 (2018)

    Article  Google Scholar 

  15. Zhu, X., Jiang, C., Kuang, L., et al.: Non-orthogonal multiple access based integrated terrestrial-satellite networks. IEEE J. Sel. Areas Commun. 35(10), 2253–2267 (2017)

    Article  Google Scholar 

  16. Yan, X., An, K., Liang, T., et al.: The application of power-domain non-orthogonal multiple access in satellite communication networks. IEEE Access 7, 63531–63539 (2019)

    Article  Google Scholar 

  17. Bai, L., Zhu, L., Choi, J., et al.: Cooperative transmission over Rician fading channels for geostationary orbiting satellite collocation system. IET Commun. 11(4), 538–547 (2017)

    Article  Google Scholar 

  18. Yue, X., Liu, Y., Kang, S., et al.: Exploiting full/half-duplex user relaying in NOMA systems. IEEE Trans. Commun. 66(2), 560–575 (2018)

    Article  Google Scholar 

  19. Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series and Products, 7th edn. Academic, New York (2007)

    MATH  Google Scholar 

Download references

Acknowledgment

This work was supported by the Project funded by China Postdoctoral Science Foundation (2019M661051), the Key Research and Cultivation Project at Beijing Information Science and Technology University (5211910924), the National Natural Science Foundation of China (61571338), the key research and development plan of Shaanxi province (2017ZDCXL-GY-05-01), and the Xi’an Key Laboratory of Mobile Edge Computing and Security (201805052-ZD3CG36).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tian Li .

Editor information

Editors and Affiliations

Appendices

Appendix

A Proof of Theorem 1

Since \(|h_{i,i}|^2\sim \exp (1/L)\) and \(|h_{i,e}|^2\sim \exp (1/(\eta \bar{L}))\), we have

$$\begin{aligned} \mathbb {E}[R_1] = \mathbb {E}[R_2] = \beta \frac{1}{\ln 2} \int _{0}^{\infty } \frac{1-(1-e^{-\frac{\beta }{L\gamma (1-\alpha )}x})}{1+x}dx. \end{aligned}$$
(23)

Based on the result derived in [19] (Page 341, line 2), (23) can be derived as

$$\begin{aligned} \mathbb {E}[R_1] = \mathbb {E}[R_2]&= \beta \frac{1}{\ln 2} \int _{0}^{\infty } \frac{e^{-\frac{\beta }{L\gamma (1-\alpha )}x}}{1+x}dx\nonumber \\&= -\beta \frac{1}{\ln 2} e^{\frac{\beta }{L\gamma (1-\alpha )}} \mathrm {Ei}\big (-\frac{\beta }{L\gamma (1-\alpha )}\big ), \end{aligned}$$
(24)

where \(\mathrm {Ei}(x) = -\int _{-x}^{\infty } e^{-r}/rdr\).

From (14), the ergodic rate of User e can be calculated as

$$\begin{aligned}&\mathbb {E}[R_e] = \mathbb {E}[(1-\beta ) \log _2(1+(|h_{1,e}|^2 + |h_{2,e}|^2) \frac{\alpha }{1-\beta }\gamma )]\nonumber \\&= (1-\beta ) \frac{1}{\ln 2} \int _{0}^{\infty } \frac{1-\mathrm {Pr}((|h_{1,e}|^2 + |h_{2,e}|^2) \frac{\alpha }{1-\beta }\gamma \le x)}{1+x}dx. \end{aligned}$$
(25)

Let \(Y\triangleq |h_{1,e}|^2 + |h_{2,e}|^2\). Then, the probability density function of Y can be expressed as \(f_Y(y) = (\frac{1}{\eta \bar{L}})^2 y e^{-y/(\eta \bar{L})}\). From this, we have

$$\begin{aligned}&\mathrm {Pr}((|h_{1,e}|^2 + |h_{2,e}|^2) \frac{\alpha }{1-\beta }\gamma \le x)\nonumber \\&= \int _{0}^{(1-\beta )x/(\alpha \gamma )} \big (\frac{1}{\eta \bar{L}}\big )^2 ye^{-y/(\eta \bar{L})}dy\nonumber \\&= 1-\big (1 + \frac{(1-\beta )x}{\eta \bar{L} \alpha \gamma }\big ) e^{-\frac{(1-\beta )x}{\eta \bar{L} \alpha \gamma }}. \end{aligned}$$
(26)

Substituting (26) into (25), it can be derived that

$$\begin{aligned}&\mathbb {E}[R_e] = (1-\beta ) \frac{1}{\ln 2} \int _{0}^{\infty } \frac{(1 + \frac{(1-\beta )x}{\eta \bar{L} \alpha \gamma }) e^{-\frac{(1-\beta )x}{\eta \bar{L} \alpha \gamma }}}{1+x}dx\nonumber \\&= (1-\beta ) \frac{1}{\ln 2} \bigg ( \int _{0}^{\infty } \frac{e^{-\frac{(1-\beta )x}{\eta \bar{L} \alpha \gamma }}}{1+x}dx + \int _{0}^{\infty } \frac{\frac{(1-\beta )x}{\eta \bar{L}\alpha \gamma }e^{-\frac{(1-\beta )x}{\eta \bar{L} \alpha \gamma }}}{1+x}dx \bigg )\nonumber \\&= (1-\beta ) \frac{1}{\ln 2} \big [ -e^{\frac{1-\beta }{\eta \bar{L}\gamma \alpha }} \mathrm {Ei}\big (-\frac{1-\beta }{\eta \bar{L}\gamma \alpha }\big )\nonumber \\&~~~~~~~~+ \frac{1-\beta }{\eta \bar{L}\gamma \alpha } e^{\frac{1-\beta }{\eta \bar{L}\gamma \alpha }}\mathrm {Ei}\big (-\frac{1-\beta }{\eta \bar{L}\gamma \alpha }\big ) + 1 \big ]. \end{aligned}$$
(27)

Then, we can derive the result in Theorem 1.

The proof is completed.

B Proof of Theorem 2

According to Lemma 1, the ergodic rate for User e is given by

$$\begin{aligned} \mathbb {E}[R_{e}^{'}] = \mathbb {E} \big [ \log _2\big ( 1 + X\big ) \big ] = \frac{1}{\ln 2} \int _{0}^{\infty } \frac{1-F_X(x)}{1+x}dx, \end{aligned}$$
(28)

where \(X=\frac{(|h_{1,e}|^2 + |h_{2,e}|^2) \alpha \gamma }{(|h_{1,e}|^2 + |h_{2,e}|^2) (1-\alpha )\gamma + 1}\).

Since \(Y\triangleq |h_{1,e}|^2 + |h_{2,e}|^2\), which has been defined in above, \(F_X(x)\) can be further expressed as

$$\begin{aligned} F_X(x)&= \mathrm {Pr} (X\le x) = \mathrm {Pr} \big (\frac{Y\alpha \gamma }{Y(1-\alpha )\gamma +1}\le x\big )\nonumber \\&= \mathrm {Pr} (Y(\alpha \gamma -x(1-\alpha )\gamma )\le x). \end{aligned}$$
(29)

In (29), when \(\alpha \gamma -x(1-\alpha )\gamma >0\), i.e., \(x<\frac{\alpha \gamma }{(1-\alpha )\gamma }\), we have

$$\begin{aligned}&\mathrm {Pr} (Y(\alpha \gamma -x(1-\alpha )\gamma )\le x) = \mathrm {Pr} \big (Y\le \frac{x}{\alpha \gamma -x(1-\alpha )\gamma }\big )\nonumber \\&= \int _0^{\frac{x}{(\alpha \gamma -x(1-\alpha )\gamma )}} \big (\frac{1}{\eta \bar{L}}\big )^2 y e^{-y/(\eta \bar{L})}dy\nonumber \\&= \big ( -\frac{x}{\eta \bar{L} (\alpha \gamma -x(1-\alpha )\gamma )}-1 \big ) e^{-\frac{x}{\eta \bar{L} (\alpha \gamma -x(1-\alpha )\gamma )}} + 1. \end{aligned}$$
(30)

For the case of \(\alpha \gamma -x(1-\alpha )\gamma <0\), it can be found that \(\mathrm {Pr} (Y(\alpha \gamma -x(1-\alpha )\gamma )\le x)=\mathrm {Pr} (Y\ge \frac{x}{\alpha \gamma -x(1-\alpha )\gamma })=1\) as Y is always a positive random variable. Thus, (29) becomes

$$\begin{aligned} F_X(x) = \left\{ \begin{array}{ll} \big ( -\frac{x}{\eta \bar{L} (\alpha \gamma -x(1-\alpha )\gamma )}-1 \big ) e^{-\frac{x}{\eta \bar{L} (\alpha \gamma -x(1-\alpha )\gamma )}} + 1,\\ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ \qquad \qquad x<\frac{\alpha \gamma }{(1-\alpha )\gamma }\\ 1, ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\qquad \qquad x>\frac{\alpha \gamma }{(1-\alpha )\gamma }. \end{array} \right. \end{aligned}$$
(31)

Substituting (31) into (28), we have

$$\begin{aligned} \mathbb {E}[R_e^{'}] = \frac{1}{\ln 2} \int _{0}^{\frac{\alpha }{1-\alpha }} \frac{(\frac{x}{\eta \bar{L} (\alpha \gamma -x(1-\alpha )\gamma )} + 1) e^{-\frac{x}{\eta \bar{L} (\alpha \gamma -x(1-\alpha )\gamma )}}}{1+x}dx. \end{aligned}$$
(32)

From (16) and (32), we can derive Theorem 2.

The proof is completed.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, T., Hao, X., Li, G., Li, H., Yue, X. (2019). Non-orthogonal Multiple Access in Coordinated LEO Satellite Networks. In: Ning, H. (eds) Cyberspace Data and Intelligence, and Cyber-Living, Syndrome, and Health. CyberDI CyberLife 2019 2019. Communications in Computer and Information Science, vol 1138. Springer, Singapore. https://doi.org/10.1007/978-981-15-1925-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-1925-3_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-1924-6

  • Online ISBN: 978-981-15-1925-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics