Skip to main content

Fabrication of Flexible Temperature Sensor Based on Printed Electronics

  • Conference paper
  • First Online:
Advanced Graphic Communication, Printing and Packaging Technology

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 600))

  • 1604 Accesses

Abstract

In this research, we developed a mass production method for the preparation of thermosensitive ink composite, followed by deposition of the composite on the flexible substrate via spray coating technology. Firstly, Ag micropattern was designed and deposited on flexible polyimide substrate by high-precision screen printing. The Ag interdigital electrodes with controlled spacing are realized by optimization of the sintering temperature, and the thermosensitive ink composed of polydimethylsiloxane (PDMS) mixed with graphite powder and graphene was coated on the surface of the electrodes. Effect of sintering temperature on the microstructure and electrical conductivity of Ag electrode is evaluated, and the sensitivity of the flexible temperature sensor in the large dynamic range of 15–40 °C is investigated. Finally, the sensing characteristics, response time, temperature hysteresis and effect of the spontaneous heating are tested, and the experimental results demonstrated a high-performance sensor with a higher sensitivity, a smaller hysteresis, a better linearity and a faster response.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Stempien Z, Rybicki E, Rybicki T, Lesnikowski J (2016) Inkjet-printing deposition of silver electro-conductive layers on textile substrates at low sintering temperature by using an aqueous silver ions-containing ink for textronic applications. Sens Actuators B: Chem 224(3):714–725

    Article  Google Scholar 

  2. Castro HF, Correia V, Pereira N, Costab P, Oliveira J, Lanceros-Méndez S (2018) Printed Wheatstone bridge with embedded polymer based piezoresistive sensors for strain sensing applications. Add Manuf 20:119–125

    Google Scholar 

  3. Alam A, Meng Q, Shi G, Arabi S, Ma J, Zhao N (2016) Electrically conductive, mechanically robust, pH-sensitive graphene/polymer composite hydrogels. Compos Sci Technol 127:119–126

    Article  Google Scholar 

  4. Li X, Shao L, Song N, Shi L, Ding P (2016) Enhanced thermal-conductive and anti-dripping properties of polyamide composites by 3D graphene structures at low filler content. Compos Part A: Appl Sci Manuf 88:305–314

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Beijing Municipal Science & Technology Commission (Z181100004418004), the Research and Development Program of BIGC (Ec201808), the National Natural Science Foundation of China (61501039), and the Beijing Natural Science Foundation (2162017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhou Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, R., Wang, X., Shi, Y., Sun, Z., Li, Z. (2020). Fabrication of Flexible Temperature Sensor Based on Printed Electronics. In: Zhao, P., Ye, Z., Xu, M., Yang, L. (eds) Advanced Graphic Communication, Printing and Packaging Technology. Lecture Notes in Electrical Engineering, vol 600. Springer, Singapore. https://doi.org/10.1007/978-981-15-1864-5_38

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-1864-5_38

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-1863-8

  • Online ISBN: 978-981-15-1864-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics