Skip to main content

Type of Exercise Training and Training Methods

  • Chapter
  • First Online:
Physical Exercise for Human Health

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1228))

Abstract

There is general agreement that exercise training leads to functional, morphological, and metabolic adaptations of different biological systems, thereby increasing overall physical performance and promoting good health. Thus, an active lifestyle is propagated in all age groups. However, not every exercise routine or workout is suitable for everyone. Inappropriate training can also pose risks, and too low or too high training intensity or volume often does not lead to the expected success. To ensure significant benefits, specific principles and strategies need to be considered and accustomed to the individual.

This chapter summarizes the key exercise variables and training principles to consider when developing a training program to improve or maintain performance and health. In addition, the various steps for creating an individual training program are described, and an overview of the different training methods and training strategies is given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Blair SN (2009) Physical inactivity: the biggest public health problem of the 21st century. Br J Sports Med 43(1):1–2

    PubMed  Google Scholar 

  2. Lee IM, Shiroma EJ, Lobelo F, Puska P, Blair SN, Katzmarzyk PT, Lancet Physical Activity Series Working Group (2012) Effect of physical inactivity on major non-communicable diseases worldwide: an analysis of burden of disease and life expectancy. Lancet 380(9838):219–229

    Article  PubMed  PubMed Central  Google Scholar 

  3. World Health Organization (2010) Global recommendations on physical activity for health. World Health Organization, Geneva

    Google Scholar 

  4. Piercy KL, Troiano RP, Ballard RM, Carlson SA, Fulton JE, Galuska DA, George SM, Olson RD (2018) The Physical Activity Guidelines for Americans. J Am Med Assoc 320(19):2020–2028

    Article  Google Scholar 

  5. Caspersen CJ, Powell KE, Christenson GM (1985) Physical activity, exercise, and physical fitness: definitions and distinctions for health-related research. Public Health Rep 100(2):126–131

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Haskell WL, Lee IM, Pate RR, Powell KE, Blair SN, Franklin BA, Macera CA, Heath GW, Thompson PD, Bauman A (2007) Physical activity and public health: updated recommendation for adults from the American College of Sports Medicine and the American Heart Association. Med Sci Sports Exerc 39(8):1423–1434

    Article  PubMed  Google Scholar 

  7. Wen CP, Wai JPM, Tsai MK, Yang CTYD, Lee M-C (2011) Minimum amount of physical activity for reduced mortality and extended life expectancy: a prospective cohort study. Lancet 378(9798):1244–1253

    Article  PubMed  Google Scholar 

  8. Garber CE, Blissmer BD, Michael R, Franklin BA, Lamonte MJ, Lee IM, Nieman DC, Swain DP, American College of Sports Medicine (2011) American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Med Sci Sports Exerc 43(7):1334–1359

    Article  PubMed  Google Scholar 

  9. Lee IM, Skerrett PJ (2001) Physical activity and all-cause mortality: what is the dose-response relation? Med Sci Sports Exerc 33(6):459–471

    Article  Google Scholar 

  10. Swain DP, Franklin BD (2002) VO2max reserve and the minimal intensity for improving cardiorespiratory fitness. Med Sci Sports Exerc 34(1):152–157

    Article  PubMed  Google Scholar 

  11. Borg GA (1974) Perceived exertion. Exerc Sport Sci Rev 2:131–153

    Article  CAS  PubMed  Google Scholar 

  12. Robertson RJ, Goss FL, Dube J, Rutkowski J, Dupain M, Brennan C, Andreacci J (2004) Validation of the adult OMNI scale of perceived exertion for cycle ergometer exercise. Med Sci Sports Exerc 36(1):102–108

    Article  PubMed  Google Scholar 

  13. Chen MJ, Fan X, Moe ST (2002) Criterion-related validity of the Borg ratings of perceived exertion scale in healthy individuals: a meta-analysis. J Sports Sci 20(11):873–899

    Article  PubMed  Google Scholar 

  14. Irving BA, Rutkowski J, Brock DW, Davis CK, Barrett EJ, Gaesser GA, Weltman A (2006) Comparison of Borg- and OMNI-RPE as markers of the blood lactate response to exercise. Med Sci Sports Exerc 38(7):1348–1352

    Article  CAS  PubMed  Google Scholar 

  15. Haddad M, Padulo J, Chamari K (2014) The usefulness of session rating of perceived exertion for monitoring training load despite several influences on perceived exertion. Int J Sports Physiol Perform 9(5):882–883

    Article  PubMed  Google Scholar 

  16. Potteiger JA, Webber SF (1994) Rating of perceived exertion and heart rate as indicators of exercise intensity in different environmental temperatures. Med Sci Sports Exerc 26(6):791–796

    Article  CAS  PubMed  Google Scholar 

  17. Åstrand PO, Rodahl K, Dahl HA, Stromme SB (2003) Textbook of work physiology, 4th edn. Human Kinetics, Champaign, pp 242–243

    Google Scholar 

  18. Ribeiro AS, Avelar A, Schoenfeld BJ, Fleck SJ, Souza MF, Padilha CS, Cyrino ES (2015) Analysis of the training load during a hypertrophy-type resistance training program in men and women. Eur J Sport Sci 15(4):256–264

    Article  PubMed  Google Scholar 

  19. Brown LE, Greenwood M (2005) Periodization essentials and innovations in resistance training protocols. Strength Cond J 27(4):80–85

    Article  Google Scholar 

  20. Hagermann PS (2012) Aerobic endurance program design. In: Cobrun JW, Malek MH (eds) NSCA’s essentials of personal training, 2nd edn. Human Kinetics, Champaign, pp 389–410

    Google Scholar 

  21. Meeusen R, Duclos M, Foster C, Fry A, Gleeson M, Nieman D, Raglin J, Rietjens G, Steinacker J, Urhausen A, European College of Sport Science; American College of Sports Medicine (2013) Prevention, diagnosis, and treatment of the overtraining syndrome: joint consensus statement of the European College of Sport Science and the American College of Sports Medicine. Med Sci Sports Exerc 45(1):186–205

    Article  PubMed  Google Scholar 

  22. Bellenger CR, Karavirta L, Thomson RL, Robertson EY, Davison K, Buckley JD (2016) Contextualizing parasympathetic hyperactivity in functionally overreached athletes with perceptions of training tolerance. Int J Sports Physiol Perform 11(7):685–692

    Article  PubMed  Google Scholar 

  23. Hottenrott K, Hoos O (2017) Heart rate variability analysis in exercise physiology. In: Jelinek HF, Cornforth DJ, Khandoker AH (eds) ECG time series variability analysis: engineering and medicine. CRC Press, New York, pp 245–275

    Google Scholar 

  24. Le Meur Y, Pichon A, Schaal K, Schmitt L, Louis J, Gueneron J, Vidal PP, Haussw C (2013) Evidence of parasympathetic hyperactivity in functionally overreached athletes. Med Sci Sports Exerc 45(11):2061–2071

    Article  PubMed  Google Scholar 

  25. Haff GG, Haff EE (2012) Training integration and periodization. In: Hoffman J (ed) Strength and conditioning program design. Human Kinetics, Champaign, pp 209–254

    Google Scholar 

  26. Ciccone AB, Weir LL, Weir JP (2019) Resistance training prescription. In: Chandler J, Brown LE (eds) Conditioning for strength and human performance. Routledge, New York, pp 417–432

    Google Scholar 

  27. Thomas DE, Elliott EJ, Naughton GA (2006) Exercise for type 2 diabetes mellitus. Cochrane Database Syst Rev 3:CD002968

    Google Scholar 

  28. Ketelhut RG, Ketelhut K, Messerli FH, Badtke G (1996) Fitness in the fit: does physical conditioning affect cardiovascular risk factors in middle-aged marathon runners? Eur Heart J 17(2):199–203

    Article  CAS  PubMed  Google Scholar 

  29. Paffenbarger RS Jr, Hyde RT, Wing AL, Lee IM, Jung D, Kampert JB (1993) The association of changes in physical activity level and other lifestyle characteristics with mortality among men. N Engl J Med 328(8):538–545

    Article  PubMed  Google Scholar 

  30. Pescatello LS, Franklin BA, Fagard R, Farquhar WB, Kelley GA, Ray CA (2004) American College of Sports Medicine position stand: exercise and hypertension. Med Sci Sports Exerc 36(3):533–553

    Article  PubMed  Google Scholar 

  31. Snowling NJ, Hopkins WG (2006) Effects of different modes of exercise training on glucose control and risk factors for complications in type 2 diabetic patients: a meta-analysis. Diabetes Care 29(11):2518–2527

    Article  PubMed  Google Scholar 

  32. Reuter BH, Dawes J (2016) Program design and technique for aerobic endurance training. In: Haff GG, Triplett NT (eds) Essentials of strength training and conditioning. Human Kinetics, Champaign, pp 559–582

    Google Scholar 

  33. Daniels J (1989) Training distance runners—primer. Gatorade Sports Sci Exchange 1:1–5

    Google Scholar 

  34. Schnohr P, Marott JL, Jensen JS, Jensen GB (2012) Intensity versus duration of cycling, impact on all-cause and coronary heart disease mortality: the Copenhagen City Heart Study. Eur J Prev Cardiol 19(1):73–80

    Article  PubMed  Google Scholar 

  35. Gibala MJ, Little JP, MacDonald MJ, Hawley JA (2012) Physiological adaptations to low-volume, high-intensity interval training in health and disease. J Physiol 590(5):1077–1084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gibala MJ, McGee SL (2008) Metabolic adaptations to short-term high-intensity interval training: a little pain for a lot of gain? Exerc Sport Sci Rev 36(2):58–63

    Article  PubMed  Google Scholar 

  37. Stork MJ, Gibala MJ, Martin Ginis KA (2018) Psychological and behavioral responses to interval and continuous exercise. Med Sci Sports Exerc 50(10):2110–2121

    Article  PubMed  Google Scholar 

  38. Wisloff U, Stoylen A, Loennchen JP, Bruvold M, Rognmo O, Haram PM, Tjønna AE, Helgerud J, Slørdahl SA, Lee SJ, Videm V, Bye A, Smith GL, Najjar SM, Ellingsen Ø, Skjærpe T (2007) Superior cardiovascular effect of aerobic interval training versus moderate continuous training in heart failure patients. A randomized study. Circulation 115(24):3086–3094

    Article  PubMed  Google Scholar 

  39. Ketelhut S, Kircher E, Ketelhut SR, Wehlan E, Ketelhut K (2018a) The effectiveness of high-intensity interval training on improving cardiometabolic health and endurance capacity in school aged children: a pilot randomized controlled trial. In: Book of abstracts 23rd annual congress of the European College of Sport Science

    Google Scholar 

  40. Birat A, Bourdier P, Piponnier E, Blazevich AJ, Maciejewski H, Duché P, Ratel S (2018) Metabolic and fatigue profiles are comparable between prepubertal children and well-trained adult endurance athletes. Front Physiol 9:387

    Article  PubMed  PubMed Central  Google Scholar 

  41. Valstad SA, von Heimburg E, Welde B, van den Tillaar R (2018) Comparison of long and short high-intensity interval exercise bouts on running performance, physiological and perceptual responses. Sports Med Int Open 2(1):e20–e27

    Article  PubMed  Google Scholar 

  42. Buchheit M, Laursen PB (2013) High-intensity interval training, solutions to the programming puzzle. Sports Med 43(5):313–338

    Article  PubMed  Google Scholar 

  43. Weston KS, Wisløff U, Coombes JS (2014) High-intensity interval training in patients with lifestyle-induced cardiometabolic disease: a systematic review and meta-analysis. Br J Sports Med 48(16):1227–1234

    Article  PubMed  Google Scholar 

  44. Jurca R, Lamonte MJ, Barlow CE, Kampert JB, Church TS, Blair SN (2005) Association of muscular strength with incidence of metabolic syndrome in men. Med Sci Sports Exerc 37(11):1849–1855

    Article  PubMed  Google Scholar 

  45. Gale CR, Martyn CN, Cooper C, Sayer AA (2007) Grip strength, body composition, and mortality. Int J Epidemiol 36(1):228–235

    Article  PubMed  Google Scholar 

  46. García-Hermoso A, Cavero-Redondo I, Ramírez-Vélez R, Ruiz JR, Ortega FB, Lee DC, Martínez-Vizcaíno V (2018) Muscular strength as a predictor of all-cause mortality in an apparently healthy population: a systematic review and meta-analysis of data from approximately 2 million men and women. Arch Phys Med Rehabil 99(10):2100–2113

    Article  PubMed  Google Scholar 

  47. Sillanpää EL, Laaksonen DE, Häkkinen A, Karavirta L, Jensen B, Kraemer WJ, Nyman K, Häkkinen K (2009) Body composition, fitness, and metabolic health during strength and endurance training and their combination in middle-aged and older women. Eur J Appl Physiol 106(2):285–296

    Article  PubMed  CAS  Google Scholar 

  48. Brooks N, Layne JE, Gordon PL, Roubenoff R, Nelson ME, Castaneda-Sceppa C (2006) Strength training improves muscle quality and insulin sensitivity in Hispanic older adults with type 2 diabetes. Int J Med Sci 4(1):19–27

    PubMed  PubMed Central  Google Scholar 

  49. Bennett GG, Wolin KY, Puleo EM, Mâsse LC, Atienza AA (2009) Awareness of national physical activity recommendations for health promotion among US adults. Med Sci Sports Exerc 41(10):1849–1855

    Article  PubMed  PubMed Central  Google Scholar 

  50. Kohrt WM, Bloomfield SA, Little KD, Nelson ME, Yingling VR, American College of Sports Medicine (2004) American College of Sports Medicine Position Stand: physical activity and bone health. Med Sci Sports Exerc 36(11):1985–1996

    Article  PubMed  Google Scholar 

  51. Csapo R, Alegre LM (2016) Effects of resistance training with moderate vs heavy loads on muscle mass and strength in the elderly: a meta-analysis. Scand J Med Sci Sports 26(9):995–1006

    Article  CAS  PubMed  Google Scholar 

  52. Fleck SJ, Kraemer WJ (2014) Designing resistance training programs, 4th edn. Human Kinetics, Champaign

    Google Scholar 

  53. Sheppard JM, Triplett NT (2016) Program design for resistance training. In: Haff GG, Triplett NT (eds) Essentials of strength training and conditioning. Human Kinetics, Champaign, pp 439–470

    Google Scholar 

  54. Graves JE, Pollock ML, Legette SH, Braith RW, Carpenter DM, Bishop LE (1988) Effect of reduced training frequency on muscular strength. Int J Sports Med 9(5):316–319

    Article  CAS  PubMed  Google Scholar 

  55. McGee D, Jessee TC, Stone MH, Blessing D (1992) Leg and hip endurance adaptions to three weight-training programs. J Appl Sport Sci Res 6(2):92–95

    Google Scholar 

  56. Ratamess NA, Falvo MJ, Mangine GT, Hoffman JR, Faigenbaum AD, Kang J (2007) The effect of rest interval length on metabolic responses to the bench press exercise. Eur J Appl Physiol 100(1):1–17

    Article  PubMed  Google Scholar 

  57. Kraemer WJ, Spiering BA, Volek JS, Ratamess NA, Sharman MJ, Rubin MR, French DN, Silvestre R, Hatfield DL, Van Heest JL, Vingren JL, Judelson DA, Deschenes MR, Maresh CM (2006) Androgenic responses to resistance exercise: effects of feeding and L-carnitine. Med Sci Sports Exerc 38(7):1288–1296

    Article  CAS  PubMed  Google Scholar 

  58. Fleck SJ (1988) Cardiovascular adaptations to resistance training. Med Sci Sports Exerc 20(5):146–151

    Article  Google Scholar 

  59. Häkkinen K, Komi PV, Alén M (1985) Effect of explosive type strength training on isometric force- and relaxation-time, electromyographic and muscle fiber characteristics of leg extensor muscles. Acta Physiol Scand 125(4):587–600

    Article  PubMed  Google Scholar 

  60. Mazzetti S, Douglass M, Yocum A, Harber M (2007) Effect of explosive versus slow contractions and exercise intensity on energy expenditure. Med Sci Sports Exerc 39(8):1291–1301

    Article  PubMed  Google Scholar 

  61. Shepstone TN, Tang JE, Dallaire S, Schuenke MD, Staron RS, Phillips SM (2005) Short-term high- vs. low-velocity isokinetic lengthening training results in greater hypertrophy of the elbow flexors in young men. J Appl Physiol 98(5):1768–1776

    Article  PubMed  Google Scholar 

  62. Hather BM, Tesch PA, Buchanan P, Dudley GA (1991) Influence of eccentric actions on skeletal muscle adaptations to resistance training. Acta Physiol Scand 143(2):177–185

    Article  CAS  PubMed  Google Scholar 

  63. Lasevicius T, Ugrinowitsch C, Schoenfeld BJ, Roschel H, Tavares LD, De Souza EO, Laurentino G, Tricoli V (2018) Effects of different intensities of resistance training with equated volume load on muscle strength and hypertrophy. Eur J Sport Sci 18(6):772–780

    Article  PubMed  Google Scholar 

  64. Herda TJ, Costa PB, Walter AA, Ryan ED, Hoge KM, Kerksick CM, Stout JR, Cramer JT (2011) Effects of two modes of static stretching on muscle strength and stiffness. Med Sci Sports Exerc 43(9):1777–1784

    Article  PubMed  Google Scholar 

  65. Sady SP, Wortman M, Blanke D (1982) Flexibility training: ballistic, static or proprioceptive neuromuscular facilitation? Arch Phys Med Rehabil 63(6):261–263

    CAS  PubMed  Google Scholar 

  66. Cheatham SW, Kolber MJ, Cain M, Lee M (2015) The effects of self-myofascial release using a foam roll or roller massager on joint range of motion, muscle recovery, and performance: a systematic review. Int J Sports Phys Ther 10(6):827–837

    PubMed  PubMed Central  Google Scholar 

  67. Beardsley C, Škarabot J (2015) Effects of self-myofascial release: a systematic review. J Bodyw Mov Ther 19(4):747–758

    Article  PubMed  Google Scholar 

  68. Nishiwaki M, Yonemura H, Kurobe K, Matsumoto N (2015) Four weeks of regular static stretching reduces arterial stiffness in middle-aged men. Springerplus 4:55

    Article  Google Scholar 

  69. Yamamoto K (2017) Human flexibility and arterial stiffness. J Phys Fitness Sports Med 6(1):1–5

    Article  Google Scholar 

  70. Ketelhut S, Möhle M, Pilarski F, Sterl C, Hottenrott K (2018) Effekte eines Faszientrainings auf hämodynamische Parameter bei gesunden Erwachsenen. Nieren Hochdruck 47(11):546

    Google Scholar 

  71. Okamoto T, Masuhara M, Ikuta K (2013) Acute effects of self-myofascial release using a foam roller on arterial function. J Strength Cond Res 28(1):69–73

    Article  Google Scholar 

  72. Amako M, Oda T, Masuoka K, Yokoi H, Campisi P (2003) Effect of static stretching on prevention of injuries for military recruits. Mil Med 168(6):442–446

    Article  PubMed  Google Scholar 

  73. Wessel J, Wan A (1994) Effect of stretching on the intensity of delayed-onset of muscle soreness. Clin J Sport Med 4(2):83–87

    Article  Google Scholar 

  74. Simic L, Sarabon N, Markovic G (2013) Does pre-exercise static stretching inhibit maximal muscular performance? A meta-analytical review. Scand J Med Sci Sports 23(2):131–148

    Article  CAS  PubMed  Google Scholar 

  75. Kay AD, Blazevich AJ (2012) Effect of acute static stretch on maximal muscle performance: a systematic review. Med Sci Sports Exerc 44(1):154–164

    Article  PubMed  Google Scholar 

  76. Fowles JR, Sale DG, MacDougall JD (2000) Reduced strength after passive stretch of the human plantarflexors. J Appl Physiol 89(3):1179–1188

    Article  CAS  PubMed  Google Scholar 

  77. Jones BH, Knapik JJ (1999) Physical training and exercise-related injuries. Surveillance, research and injury prevention in military populations. Sports Med 27(2):111–125

    Article  CAS  PubMed  Google Scholar 

  78. Mc Neal JR, Sands WA (2006) Stretching for performance enhancement. Curr Sports Med Rep 5(3):141–146

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ketelhut, S., Ketelhut, R.G. (2020). Type of Exercise Training and Training Methods. In: Xiao, J. (eds) Physical Exercise for Human Health. Advances in Experimental Medicine and Biology, vol 1228. Springer, Singapore. https://doi.org/10.1007/978-981-15-1792-1_2

Download citation

Publish with us

Policies and ethics