Skip to main content

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 240))

  • 471 Accesses

Abstract

Heterostructures n-MoOx/p-Cd3In2Te6 were manufactured by sputtering a thin film MoOx (n-type) onto Cd3In2Te6 substrates (p-type) by the method of reactive magnetron sputtering. I–V-characteristics of the structure were investigated in the temperature range 288–373 K. It is established that they have a straightening character. The height of the potential barrier φ0 varies from 0.34 to 0.09 eV, and the rectifying ratio RR is from 900 to 16 with increasing temperature. Investigation of current transfer mechanisms under direct inclusions showed that the generation and recombination process of current transfer dominates, and in the reverse inclusion, the tunneling mechanism of transport of charge carriers through a potential barrier is dominant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. X. Liu, Y. Chen, D. Li, S.-W. Wang, C.-C. Ting, L. Chen, K.-W. Ang, C.-W. Qiu, Y.-L. Chueh, X. Sun, H.-C. Kuo, Nearly lattice-matched molybdenum disulfide/gallium nitride heterostructure enabling high-performance phototransistors. Photonics Res. 7, 311 (2019). https://doi.org/10.1364/PRJ.7.000311

    Article  Google Scholar 

  2. M. Moun, M. Kumar, M. Garg, R. Pathak, R. Singh, Understanding of MoS2/GaN heterojunction diode and its photodetection properties. Sci. Rep. 8, 11799 (2018). https://doi.org/10.1038/s41598-018-30237-8

    Article  ADS  Google Scholar 

  3. F. Qian, Y. Li, S. Gradečak, D. Wang, C.J. Barrelet, C.M. Lieber, Gallium nitride-based nanowire radial heterostructures for nanophotonics. Nano Lett. 4, 1975–1979 (2004). https://pubs.acs.org/doi/full/10.1021/nl0487774

    Article  ADS  Google Scholar 

  4. M. Stutzmann, G. Steinhoff, M. Eickhoff, O. Ambacher, C.E. Nebel, J. Schalwig, R. Neuberger, G. Müller, GaN-based heterostructures for sensor applications. Diam. Relat. Mater. 11, 886–891 (2002). https://doi.org/10.1016/S0925-9635(02)00026-2

    Article  ADS  Google Scholar 

  5. C. Zhu, P. Yang, D. Chao, X. Wang, X. Zhang, S. Chen, B.K. Tay, H. Huang, H. Zhang, W. Mai, H.J. Fan, All metal nitrides solid-state asymmetric supercapacitors. Adv. Mater. 27, 4566–4571 (2015). https://doi.org/10.1002/adma.201501838

    Article  Google Scholar 

  6. D. Li, Z. Xiao, H.R. Golgir, L. Jiang, V.R. Singh, K. Keramatnejad, K.E. Smith, X. Hong, L. Jiang, J.-F. Silvain, Y. Lu, Large-area 2D/3D MoS2-MoO2 heterostructures with thermally stable exciton and intriguing electrical transport behaviors. Adv. Electron. Mater. 3, 1600335 (2017). https://doi.org/10.1002/aelm.201600335

    Article  Google Scholar 

  7. H. Liu, Recent progress in atomic layer deposition of multifunctional oxides and two-dimensional transition metal dichalcogenides. J. Mol. Eng. Mater. 4, 1640010 (2016). https://doi.org/10.1142/S2251237316400104

    Article  ADS  Google Scholar 

  8. C. Liu, E.F. Chor, L.S. Tan, Investigations of HfO2∕AlGaN∕GaN metal-oxide-semiconductor high electron mobility transistors. Appl. Phys. Lett. 88, 173504 (2006). https://doi.org/10.1063/1.2198507

    Article  ADS  Google Scholar 

  9. H. Qin, W. Li, Y. Xia, T. He, Photocatalytic activity of heterostructures based on ZnO and N-doped ZnO. ACS Appl. Mater. Interfaces. 3, 3152–3156 (2011). https://doi.org/10.1021/am200655h

    Article  Google Scholar 

  10. J. Shang, G. Liu, H. Yang, X. Zhu, X. Chen, H. Tan, B. Hu, L. Pan, W. Xue, R.-W. Li, Thermally stable transparent resistive random access memory based on all-oxide heterostructures. Adv. Funct. Mater. 24, 2171–2179 (2013). https://doi.org/10.1002/adfm.201303274

    Article  Google Scholar 

  11. T.T. Kovaliuk, M.M. Solovan, O.A. Parfenyuk, V.V. Brus, I.P. Koziarskyi, P.D. Maryanchuk, in Proceedings of SPIE. Thirteenth International Conference on Correlation Optics, vol 10612, ed. by O.V. Angelsky (SPIE, Bellingham, 2018). http://dx.doi.org/10.1117/12.2304772

  12. I.P. Koziarskyi, E.V. Maistruk, D.P. Koziarskyi, P.D. Maryanchuk, in Proceedings of SPIE. Thirteenth International Conference on Correlation Optics, vol 10612, ed. by O.V. Angelsky (SPIE, Bellingham, 2018). https://doi.org/10.1117/12.2304879

  13. I.P. Koziarskyi, E.V. Maistruk, D.P. Koziarskyi, P.D. Maryanchuk, Electric properties of thin films Cu2ZnSnSe4 and Cu2ZnSnSe2Te2 (S2) obtained by thermal vacuum deposition. J. Nano Electron. Phys. 10, 01028 (2018).https://doi.org/10.21272/jnep.10(1).01028

    Article  Google Scholar 

  14. I.P. Koziarskyi, E.V. Maistruk, D.P. Koziarskyi, in Proceedings of 2019 IEEE 2nd Ukraine Conference on Electrical and Computer Engineering (UKRCON), vol. CFP19K03-ART, ed. by M.S. Antyufeyeva (IEEE, Danvers, 2019)

    Google Scholar 

  15. E.V. Maistruk, I.G. Orletsky, M.I. Ilashchuk, I.P. Koziarskyi, D.P. Koziarskyi, P.D. Marianchuk, O.A. Parfenyuk, Influence of heat treatment of the base material on the electrical properties of anisotyped heterojunctions n-ZnO:Al/p-CdZnTe. Semicond. Sci. Tech. 34, 045016 (2019). https://doi.org/10.1088/1361-6641/ab0a1c

    Article  ADS  Google Scholar 

  16. E.V. Maistruk, I.P. Koziarskyi, D.P. Koziarskyi, P.D. Marianchuk, V.V. Brus, in Proceedings of SPIE. Thirteenth International Conference on Correlation Optics, Chernivtsi, Ukraine, 11–15 Sept 2018. https://doi.org/10.1117/12.2304801

  17. J. Baltrusaitis, B. Mendoza-Sanchez, V. Fernandez, R. Veenstra, N. Dukstiene, A. Roberts, N. Fairley, Generalized molybdenum oxide surface chemical state XPS determination via informed amorphous sample model. Appl. Surf. Sci. 326, 151–161 (2015). https://doi.org/10.1016/j.apsusc.2014.11.077

    Article  ADS  Google Scholar 

  18. T. He, J. Yao, Photochromism of molybdenum oxide. J. Photochem. Photobiol 4, 125–143 (2003). https://doi.org/10.1016/S1389-5567(03)00025-X

    Article  Google Scholar 

  19. X. Ma, J. Gong, S. Wang, N. Gao, D. Wang, X. Yang, F. He, Reactivity and surface properties of silica supported molybdenum oxide catalysts for the transesterification of dimethyl oxalate with phenol. Catal. Commun. 5, 101–106 (2004). https://doi.org/10.1016/j.catcom.2003.12.001

    Article  Google Scholar 

  20. V.S. Saji, C.-W. Lee, Molybdenum, molybdenum oxides, and their electrochemistry. Chemsuschem 5, 1146–1161 (2012). https://doi.org/10.1002/cssc.201100660

    Article  Google Scholar 

  21. J. Zhou, N.-S. Xu, S.-Z. Deng, J. Chen, J.-C. She, Z.-L. Wang, Large-area nanowire arrays of molybdenum and molybdenum oxides: synthesis and field emission properties. Adv. Mater. 15, 1835–1840 (2003). https://doi.org/10.1002/adma.200305528

    Article  Google Scholar 

  22. S.Y. Davydov, On the electron affinity of silicon carbide polytypes. Semiconductors 41, 696–698 (2007). https://doi.org/10.1134/S1063782607060152

    Article  ADS  Google Scholar 

  23. F.C. Jamieson, E.B. Domingo, T. McCarthy-Ward, M. Heeney, N. Stingelin, J.R. Durrant, Fullerene crystallisation as a key driver of charge separation in polymer/fullerene bulk heterojunction solar cells. Chem. Sci. 3, 485–492 (2012). https://doi.org/10.1039/C1SC00674F

    Article  Google Scholar 

  24. J. Nelson, Polymer: fullerene bulk heterojunction solar cells. Mater. Today 14, 462–470 (2011). https://doi.org/10.1016/S1369-7021(11)70210-3

    Article  Google Scholar 

  25. M. Scharber, D. Mühlbacher, M. Koppe, P. Denk, C. Waldauf, A. Heeger, C. Brabec, Design rules for donors in bulk-heterojunction solar cells—towards 10% energy-conversion efficiency. Adv. Mater. 18, 789–794 (2006). https://doi.org/10.1002/adma.200501717

    Article  Google Scholar 

  26. M.C. Scharber, N.S. Sariciftci, Efficiency of bulk-heterojunction organic solar cells. Prog. Polym. Sci. 38, 1929–1940 (2013). https://doi.org/10.1016/j.progpolymsci.2013.05.001

    Article  Google Scholar 

  27. L. Zhao, C.L. Zhou, H.L. Li, H.W. Diao, W.J. Wang, Role of the work function of transparent conductive oxide on the performance of amorphous/crystalline silicon heterojunction solar cells studied by computer simulation. Phys. Stat. Sol. A 205, 1215–1221 (2008). https://doi.org/10.1002/pssa.200723276

    Article  ADS  Google Scholar 

  28. I.P. Koziarskyi, E.V. Maistruk, D.P. Koziarskyi, in Proceedings of SPIE. Eleventh International Conference on Correlation Optics, vol 9066, ed. by O.V. Angelsky (SPIE, Bellingham, 2013). https://doi.org/10.1117/12.2053538

  29. I.P. Koziarskyi, E.V. Maistruk, D.P. Koziarskyi, P.D. Maryanchuk, Charge transport and mechanisms of electron scattering in (HgSe)3(In2Se3) crystals doped with 3d transition metals. Inorg. Mater. 50, 447–451 (2014). https://doi.org/10.1134/S0020168514050070

    Article  Google Scholar 

  30. I.P. Koziarskyi, V.T. Maslyuk, P.D. Maryanchuk, E.V. Maistruk, D.P. Koziarskyi, I.G. Megela, G.V. Lashkarev, Radiation Resistance of (HgSe)3(In2Se3) <Mn>. Russ. Phys. J. 61, 1189–1193 (2018).https://link.springer.com/article/10.1007/s11182-018-1516-1

  31. P.D. Maryanchuk, D.P. Kozyarskii, Mechanisms of electron scattering in (3HgSe)1−x(Al2Se3)x crystals doped with manganese. Russ. Phys. J. 52, 1355–1357 (2009). https://doi.org/10.1007/s11182-010-9377-2

    Article  Google Scholar 

  32. P.D. Maryanchuk, D.P. Kozyarskii, Electrical and optical properties of manganese-doped (3HgSe)1−-x(Al2Se3)x crystals. Inorg. Mater. 46, 460–463 (2010). https://doi.org/10.1134/S0020168510050043

    Article  Google Scholar 

  33. J.A. Aranovich, D. Golmayo, A.L. Fahrenbruch, R.H. Bube, Photovoltaic properties of ZnO/CdTe heterojunctions prepared by spray pyrolysis. J. Appl. Phys. 51, 4260–4268 (1980). https://doi.org/10.1063/1.328243

    Article  ADS  Google Scholar 

  34. P.P. Edwards, A. Porch, M.O. Jones, D.V. Morgan, R.M. Perks, Basic materials physics of transparent conducting oxides. Dalton Trans. 19, 2995–3002 (2004). https://doi.org/10.1039/B408864F

    Article  Google Scholar 

  35. J.D. Major, R. Tena-Zaera, E. Azaceta, L. Bowen, K. Durose, Development of ZnO nanowire based CdTe thin film solar cells. Sol. Energ. Mat. Sol. C 160, 107–115 (2017). https://doi.org/10.1016/j.solmat.2016.10.024

    Article  Google Scholar 

  36. U.N. Roy, R.M. Mundle, G.S. Camarda, Y. Cui, R. Gul, A. Hossain, G. Yang, A.K. Pradhan, R.B. James, Novel ZnO: Al contacts to CdZnTe for X- and gamma-ray detectors. Sci. Rep. 6, 26384 (2016). https://doi.org/10.1038/srep26384

    Article  ADS  Google Scholar 

  37. F. Ruske, in Physics and Technology of Amorphous-Crystalline Heterostructure Silicon Solar Cells. Engineering Materials, ed. by W.G.J.H.M. van Sark, L. Korte, F. Roca (Springer, Berlin, Heidelberg, 2012), pp. 301–330. https://doi.org/10.1007/978-3-642-22275-7_9

    Chapter  Google Scholar 

  38. F. Wang, Z. Tan, Y. Li, Solution-processable metal oxides/chelates as electrode buffer layers for efficient and stable polymer solar cells. Energ. Environ. Sci. 8, 1059–1091 (2015). https://doi.org/10.1039/C4EE03802A

    Article  Google Scholar 

  39. E.V. Maistruk, I.P. Koziarskyi, D.P. Koziarskyi, G.O. Andrushchak, in Proceedings of the 2017 IEEE 7th International Conference on Nanomaterials: Applications & Properties (NAP-2017), Zatoka, Ukraine, 10–15 Sept 2017. https://doi.org/10.1109/NAP.2017.8190163

  40. E.V. Maistruk, I.P. Koziarskyi, D.P. Koziarskyi, G.O. Andrushchak, in Proceedings of SPIE. Thirteenth International Conference on Correlation Optics, Chernivtsi, Ukraine, 11–15 Sept 2018. https://doi.org/10.1117/12.2304328

  41. K. Alfaramawi, A. Sweyllam, S. Abboudy, N.G. Imam, H.A. Motaweh, Interface states-induced-change in the energy band diagram and capacitance-voltage characteristics of isotype ZnTe/CdTe heterojunctions. Int. J. Mod. Phys. B 24, 4717–4725 (2010). https://doi.org/10.1142/S0217979210056165

    Article  ADS  Google Scholar 

  42. V. Consonni, S. Renet, J. Garnier, P. Gergaud, L. Artús, J. Michallon, L. Rapenne, E. Appert, A. Kaminski-Cachopo, Improvement of the physical properties of ZnO/CdTe core-shell nanowire arrays by CdCl2 heat treatment for solar cells. Nanoscale Res. Lett. 9, 222 (2014). https://doi.org/10.1186/1556-276X-9-222

  43. A. Crossay, S. Buecheler, L. Kranz, J. Perrenoud, C.M. Fella, Y.E. Romanyuk, A.N. Tiwari, Spray-deposited Al-doped ZnO transparent contacts for CdTe solar cells. Sol. Energ. Mat. Sol. C 101, 283–288 (2012). https://doi.org/10.1016/j.solmat.2012.02.008

    Article  Google Scholar 

  44. S.M. Sze, K.N. Kwok, Physics of Semiconductor Devices (Wiley, 2006)

    Google Scholar 

  45. L. Vasanelli, A. Valentini, A. Quirini, A.M. Mancini, A. Losacco, in Proceedings of the 7th E. C. Photovoltaic Solar Energy Conference, Sevilla, Spain, 27–31 Oct 1986. https://doi.org/10.1007/978-94-009-3817-5

    Google Scholar 

  46. G. Wary, A. Rahman, Indian J. Pure Ap. Phy. 41, 474 (2003)

    Google Scholar 

  47. J. Zhu, Y. Yang, Y. Gao, D. Qin, H. Wu, L. Hou, W. Huang, Enhancement of open-circuit voltage and the fill factor in CdTe nanocrystal solar cells by using interface materials. Nanotechnology 25, 365203 (2014). https://doi.org/10.1088/0957-4484/25/36/365203

    Article  Google Scholar 

  48. I.P. Koziarskyi, E.V. Maistruk, D.P. Koziarskyi, in Advances in Thin Films, Nanostructured Materials, and Coatings. Lecture Notes in Mechanical Engineering, ed. by A. Pogrebnjak, V. Novosad (Springer, Singapore, 2019), pp. 267–275. https://doi.org/10.1007/978-981-13-6133-3_26

    Google Scholar 

  49. J.-J. Wang, T. Ling, S.-Z. Qiao, X.-W. Du, Double open-circuit voltage of three-dimensional ZnO/CdTe solar cells by a balancing depletion layer. ACS Appl. Mater. Interfaces. 6, 14718–14723 (2014). https://doi.org/10.1021/am5041219

    Article  Google Scholar 

  50. I.P. Koziarskyi, E.V. Maistruk, D.P. Koziarskyi, P.D. Maryanchuk, Electrical properties of the Cu2O/Cd1−xZnxTe heterostructure. J. Nano Electron. Phys. 11, 02007 (2019). https://doi.org/10.21272/jnep.11(2).02007

    Article  Google Scholar 

  51. B.L. Sharma, R.K. Purohit, Semiconductor Heterojunctions (Pergamon Press, 1974)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. P. Koziarskyi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Koziarskyi, I.P., Maistruk, E.V., Koziarskyi, D.P., Mostovyi, A.I., Sydor, O.M., Potsiluiko-Hryhoriak, H.V. (2020). Electrical Properties of Heterojunction n-MoOx/p-Cd3In2Te6. In: Pogrebnjak, A., Bondar, O. (eds) Microstructure and Properties of Micro- and Nanoscale Materials, Films, and Coatings (NAP 2019). Springer Proceedings in Physics, vol 240. Springer, Singapore. https://doi.org/10.1007/978-981-15-1742-6_2

Download citation

Publish with us

Policies and ethics