Skip to main content

Application of Multicomponent Wear-Resistant Nanostructures Formed by Electrospark Allowing for Protecting Surfaces of Compression Joints Parts

  • Conference paper
  • First Online:

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 240))

Abstract

The paper discusses the specific features of the process for forming multicomponent wear-resistant nanostructures on the structural steel of 38X2MЮA grade using the method of electrospark alloying (ESA) in the course of simultaneously saturating the surface layers with carbon (carbonizing), sulfur (sulfidizing) and aluminum (aluminizing), which can be used to improve microhardness and wear resistance, prevent frictional seizure, increase resistance to atmospheric corrosion and, thus, protect the surfaces of the parts for compression joints against fretting corrosion. At processing steel using the ESA method by graphite electrode with the discharge energy of Wp = 0.13; 0.52 and 4.9 J and the productivity of 0.5–2.5 cm2/min, a consistent matter containing sulfur and an aluminum powder is applied to the surface of the part to be strengthened, and then, without waiting for the matter to dry, the alloying process is carried out, while the consistent matter with the content of the aluminum powder of not more than 56% is applied. There were conducted metallographic and durametric analyses of the surface layers of the structural steel after simultaneously aluminizing, sulfidizing, and carbonizing by the ESA method. It was shown that the layer structure consisted of three zones, namely, the white layer, the diffuse zone, and the base metal. While increasing the discharge energy, such surface layer qualitative parameters as thickness, microhardness, and continuity of the white layer as well as surface roughness thereof had been increasing. With increasing the discharge energy, the presence of the enhanced sulfur content in the coating had been increasing from 40 to 100 µm.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. M.S. Ostrovsky, in Collection of Scientific Reports (MSTU, Moscow, 2011), pp. 214–228

    Google Scholar 

  2. V.T., Lebed, A.A. Kulachenko, Progressive Technol. Syst. Mech. Eng. 28, 84 (2004)

    Google Scholar 

  3. L. Ropyak, I. Schuliar, O. Bohachenko, Influence of technological parameters of centrifugal reinforcement upon quality indicators of parts. Eastern-Eur. J. Enterp. Technol. 1(5), 53–62 (2016). https://doi.org/10.15587/1729-4061.2016.59850

    Article  Google Scholar 

  4. P.V. Skigoev, A.D. Petrov, A.I. Karmanov, Surveys NIIINFORMTYaZhMASh 1, 67 (1967)

    Google Scholar 

  5. M.V. Gedeon, Research, Design Improvement, Testing and Implementation of Manufacturing and Restoring Technologies for Large Back-up Rolls (State Registrations Number 0185.0046681, Kramatorsk, 1988) (in Ukrainian)

    Google Scholar 

  6. V.M. Minko et al., in Proceeding of XIII International Scientific and Engineering Conference “HERVICON+PUMPS” (Sumu State University, Sumy, 2011)

    Google Scholar 

  7. A.N. Petukhov, J. Aerospace Eng. Technol. 7(15), 128 (2004)

    Google Scholar 

  8. A.M. Smyslov, K.S. Selivanov, Increasing Durability of Machine Parts Under Fretting Conditions (Gilem, Ufa, 2005)

    Google Scholar 

  9. I.M. Panova, A.D. Panov, Naukovedenie 9, 1 (2017)

    Google Scholar 

  10. I.F. Malitsky, E.V. Chernyatina, Mach. Eng. 13, 149 (2014)

    Google Scholar 

  11. A. Panda, K. Dyadyura, J. Valíček, M. Harničárová, J. Zajac, V. Modrák, I. Pandová, P. Vrábel, E. Nováková-Marcinčínová, Z. Pavelek, Manufacturing technology of composite materials—principles of modification of polymer composite materials technology based on polytetrafluoroethylene. Materials 10(377), 1–20 (2017). https://doi.org/10.3390/ma10040377

    Article  Google Scholar 

  12. R.B. Waterhouse, Fretting—Corrosion (Mechanical Engineering, Leningrad, 1976)

    Google Scholar 

  13. O. Maksakova, S. Simoẽs, A. Pogrebnjak, O. Bondar, Y. Kravchenko, V. Beresnev, N. Erdybaeva, The influence of deposition conditions and bilayer thickness on physical-mechanical properties of CA-PVD multilayer ZrN/CrN coatings. Mater. Charact. 140, 189–196 (2018). https://doi.org/10.1016/j.matchar.2018.03.048

    Article  Google Scholar 

  14. A.D. Pogrebnjak, V.M. Beresnev, O.V. Bondar, B.O. Postolnyi, K. Zaleski, E. Coy, S. Jurga, M.O. Lisovenko, P. Konarski, L. Rebouta, J.P. Araujo, Mater. Des. 153, 47 (2018)

    Article  Google Scholar 

  15. V. Tarelnyk, V. Martsynkovskyy, Appl. Mech. Mater. 630, 397 (2014). http://doi.org/10.4028/www.scientific.net/AMM.630.397

    Article  Google Scholar 

  16. V.B. Tarel’nik, V.S. Martsinkovskii, A.N. Zhukov, Chem. Petrol. Eng. 53, 266 (2017). https://doi.org/10.1007/s10556-017-0333-7

    Article  Google Scholar 

  17. V. Martsinkovsky, V. Yurko, V. Tarelnik, Yu. Filonenko, Procedia Eng. 39, 157 (2012). https://doi.org/10.1016/j.proeng.2012.07.020

    Article  Google Scholar 

  18. B. Antoszewski, V. Tarelnyk, Appl. Mech. Mater. 630, 301 (2014). http://doi.org/10.4028/www.scientific.net/AMM.630.301

    Article  Google Scholar 

  19. A.D. Pogrebnjak, V.M. Beresnev, K.V. Smyrnova, Ya.O. Kravchenko, P.V. Zukowski, G.G. Bondarenko, Mater. Lett. 211, 316 (2018). https://doi.org/10.1016/j.matlet.2017.09.121

    Article  Google Scholar 

  20. R.B. Waterhouse, P.Α. Brook, G.M. Lee, Wear 5, 235 (1962)

    Article  Google Scholar 

  21. L.T. Balatsky, Strength of Compression Joints (Tehnika, Kiev, 1982)

    Google Scholar 

  22. B.R. Lazarenko, N.I. Lazarenko, Electrospark Processing of Conductive Materials (Izd. Academy of Sciences of the USSR, Moscow, 1968)

    Google Scholar 

  23. S.N. Khimukhin, K. Ri, EKh Ri, Structure and Properties of Metals and Alloys under Electrospark Effect (Pacific ocean State Univ. Pub, Khabarovsk, 2015)

    Google Scholar 

  24. Y.I. Mulin, A.D Verkhoturov, Electrospark Alloying of Working Surfaces of Tools and Machine Parts with Electrode Materials Obtained from Mineral Raw Materials (Dal’nauka, Vladivostok, 1999)

    Google Scholar 

  25. V.B. Tarelnyk, O.P. Gaponova, I.V. Konoplianchenko, M.Y. Dovzhyk, Metallofiz. Noveishie Tekhnol. 39, 363 (2017). https://doi.org/10.15407/mfint.39.03.0363

    Article  Google Scholar 

  26. V.B. Tarel’nyk, O.P. Gaponova, Y.V. Konoplyanchenko, M.Y. Dovzhyk, Metallofiz. Noveishie Tekhnol. 38, 1611 (2016). https://doi.org/10.15407/mfint.38.12.1611

    Article  Google Scholar 

  27. V. Tarelnyk, I. Konoplianchenko, N. Tarelnyk, A. Kozachenko, Mater. Sci. Forum 968, 131 (2019). http://doi.org/10.4028/www.scientific.net/MSF.968.131

    Article  Google Scholar 

  28. V.B. Tarelnyk, O.P. Gaponova, I.V. Konoplianchenko, V.A. Herasymenko, N.S. Evtushenko, Metallofiz. Noveishie Tekhnol. 40, 235 (2018). https://doi.org/10.15407/mfint.40.02.0235

    Article  Google Scholar 

  29. V.B. Tarel’nik, A.V. Paustovskii, Y.G. Tkachenko, V.S. MartsinkovskiiA. V. Belous, E.V. Konoplyanchenko, O.P. Gaponova, Surf. Eng. Appl. Electrochem. 54, 147 (2018). https://doi.org/10.3103/s106837551802014x

    Article  Google Scholar 

  30. G.V. Kirik, O.P. Gaponova, V.B. Tarelnyk, O.M. Myslyvchenko, B. Antoszewski, Powder Metall. Met. C+ 56, 688 (2018). https://doi.org/10.1007/s11106-018-9944-6

    Article  Google Scholar 

  31. V.D. Zozulya, E.L. Shvedkov, D.I. Rovinsky, E.D. Brown, Dictionary-Reference to Friction, Wear and Lubrication of Machine Parts, 2nd edn. (Sci. Dumka, Kiev, 1990)

    Google Scholar 

  32. N.E. Denisova, V.A. Shorin, I.N. Gontar, N.I. Volchihina, N.S. Shorina, Tribotehnicheskoe materialovedenie i tribotehnologiya (Tribotechnical Materials Science and Tribotechnology) (Penz. State University Publ, Penza, 2006)

    Google Scholar 

  33. N.I. Lazarenko, Electrospark Alloying of Metal Surfaces (Machine Eng, Moscow, 1976)

    Google Scholar 

  34. A.E. Gitlevich, V.V. Mikhailov, N.Ya. Parkanskii, V.M. Revutskii, Electrospark Alloying of Metal Surfaces (Shtintsa, Chisinau, 1985)

    Google Scholar 

  35. A.G. Shcherbinsky, SU Patent 139336, 30 Dec 1961

    Google Scholar 

  36. L. Ropyak, V. Ostapovych, Eastern-Eur. J. Enterp. Technol. 2(5), 50 (2016). https://doi.org/10.15587/1729-4061.2016.65719

    Article  Google Scholar 

  37. M.A. Elizavetin, E.A. Satel, Technological Ways to Increase Durability of Machines (Mach. Eng, Moscow, 1969)

    Google Scholar 

  38. L.Y. Ropyak, I.P. Shatskyi, M.V. Makoviichuk, Metallofiz. Noveishie Tekhnol. 39(4), 517–524 (2017). https://doi.org/10.15407/mfint.39.04.0517

    Article  Google Scholar 

  39. L.Y. Ropyak, I.P. Shatskyi, M.V. Makoviichuk, Metallofiz. Noveishie Tekhnol. 41(5), 647 (2019)

    Article  Google Scholar 

  40. A.D. Pogrebnjak, V.I. Ivashchenko, P.L. Skrynskyy, O.V. Bondar, P. Konarski, K. Załęski, S. Jurga, E. Coy, Compos. Part B Eng. 142, 85 (2018)

    Article  Google Scholar 

  41. A.D. Pogrebnjak, A.A. Bagdasaryan, A. Pshyk, K. Dyadyura, Usp. Phys. Nauk 60, 586 (2017)

    Article  Google Scholar 

  42. S.A. Pyachin, A.A. Burkov, V.S. Komarova, J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 6, 16–24 (2013). https://doi.org/10.1134/s1027451013030336

    Article  Google Scholar 

  43. T.M. Radchenko, V.A. Tatarenko, H. Zapolsky, Solid State Phenom. 138, 283 (2008). http://doi.org/10.4028/www.scientific.net/SSP.138.283

  44. S.N. Khimukhin, I.A. Astapov, M.A. Teslina et al., in Formation of heat-resistant coatings by method of electrospark alloying using Ni-Al intermetallic alloys. Paper presented at the 15th International Scientific—Practical Conference Technical Sciences—From Theory to Practice, SibAK, Novosibirsk, 12 Nov 2012

    Google Scholar 

  45. N.L. Golego, A.Y. Alyabyev, V.V. Shevel, Fretting Corrosion of Metals (Technika, Kiev, 1974)

    Google Scholar 

  46. M.S. Ostrovsky, Tribotechnical Bases for Providing Quality of Functioning of Mining Machines (MGI, Moscow, 1993)

    Google Scholar 

  47. A. Pogrebnjak, K. Smyrnova, O. Bondar, Coatings 9(3), 155 (2019)

    Article  Google Scholar 

  48. L.S. Saakiyan, A.P. Efremov, L.Y. Ropyak, A.V. Gorbatskii, Sov. Mater. Sci. 23(3), 267 (1987)

    Article  Google Scholar 

  49. L.S. Saakiyan, A.P. Efremov, L.Y. Ropyak, Prot. Met 25(2), 185 (1989)

    Google Scholar 

  50. A.D. Verkhoturov, I.S. Anfimov, Phys. Chem. Mater. Process. 3, 93 (1978)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Tarelnyk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tarelnyk, V. et al. (2020). Application of Multicomponent Wear-Resistant Nanostructures Formed by Electrospark Allowing for Protecting Surfaces of Compression Joints Parts. In: Pogrebnjak, A., Bondar, O. (eds) Microstructure and Properties of Micro- and Nanoscale Materials, Films, and Coatings (NAP 2019). Springer Proceedings in Physics, vol 240. Springer, Singapore. https://doi.org/10.1007/978-981-15-1742-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-1742-6_18

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-1741-9

  • Online ISBN: 978-981-15-1742-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics