Skip to main content

Investigation of Biological Activity of Nanoparticles Using Cell Lines

  • Chapter
  • First Online:
Model Organisms to Study Biological Activities and Toxicity of Nanoparticles

Abstract

This review is provided with a detailed overview of the types, structures, properties, nano-bio interactions, positive and negative biological effects, assays and models for identifying nanoparticles, and applications of nanoparticles in biological systems especially using the cell lines. Nanoparticles are tiny particles with a size range of 1–100 nm. Particles having similar structure will have similarity in their chemical and biological properties. There are different varieties of nanoparticles with varying physical and chemical properties and geometry. The properties varying are size, shape, morphology, surface area, aspect ratio, chemical composition, chemical reactivity, and zeta potential. Due to these properties, these particles are being used in commercial and domestic applications including medical, energy research, catalysis, imaging, and environmental applications. Interactions of nanoparticles with biological systems will lead to certain desirable and undesirable effects. The mechanisms of these biological effects are investigated thoroughly to understand the structure activity relationships. The present study will provide more information on the sustainable development of nanotechnology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adair J, Parette M, Erhan I, Kester M (2010) Nanoparticulate alternatives for drug delivery. ACS Nano 4(9):4967–4970

    Google Scholar 

  • Alaaldin M, Alkilany SE, Lohse CJ (2013) The Gold standard: gold nanoparticle libraries to understand the Nano-Bio interface. Acc Chem Res 46(3):650–666

    Article  CAS  Google Scholar 

  • Anirudh KVS, Viswanandan Bottu MM, Sarvamangala D (2018) Production of TiO2 nanoparticles by green and chemical synthesis—a short review. Int J Sci Eng Res 9(11):1633–1648

    Google Scholar 

  • Arati GK, Andrew CJ, Dmitri L, Richard CW, Randall Lee T (2013) Tuning the magnetic properties of nanoparticles. Int J Mol Sci 14:15977–16009

    Article  CAS  Google Scholar 

  • Asati A, Santimukul S, Charalambos K, Manuel JP (2010) Surface-charge-dependent cell localization and cytotoxicity of cerium oxide nanoparticles. ACS Nano 4(9):5321–5331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asha Rani PV, Low Kah Mun G, Hande MP, Valiyaveettil S (2009) Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 3(2):279–290

    Article  CAS  Google Scholar 

  • Bahadar H, Maqbool F, Niaz K, Mohammad A (2016) Toxicity of nanoparticles and an overview of current experimental models. Iranian Biomedical J 20(1):1–11

    Google Scholar 

  • Bhuiyan MHU, Saidur R, Amalina MA, Mostafizur RM, Islam AKMS (2015) Effect of nanoparticles concentration and their sizes on surface tension of nanofluids. Procedia Eng 105:431–437

    Article  CAS  Google Scholar 

  • Calum K (2017) Form follows function: nanoparticle shape and its implications for nanomedicine. Chem Rev 117:11476–11521

    Article  CAS  Google Scholar 

  • Chen Y, Pan C, Xuan A et al (2015) Treatment efficacy of NGF nanoparticles combining neural stem cell transplantation on Alzheimer’s disease model rats. Med Sci Monitor 21:3608–3615

    Article  CAS  Google Scholar 

  • Christian P, Von der Kammer F, Baalousha M, Hofmann T (2008) Structure, properties, preparation and behaviour in environmental media. Ecotoxicology 17:326–343

    Article  CAS  PubMed  Google Scholar 

  • Colognato R, Bonelli A, Ponti J, Farina M, Bergamaschi E, Sabbioni E, Migliore L (2008) Comparative genotoxicity of cobalt nanoparticles and ions on human peripheral leukocytes in vitro. Mutagenesis 23(5):377–382

    Article  CAS  PubMed  Google Scholar 

  • Connor EE, Mwamuka J, Gole A, Murphy CJ, Wyatt MD (2005) Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small 1:325–327

    Article  CAS  PubMed  Google Scholar 

  • Cornelia Loos TS, Anna M, Volker M, Katharina L, Ulrich Nienhaus G, Thomas S (2014) Functionalized polystyrene nanoparticles as a platform for studying bio–nano interactions. Beilstein J Nanotechnol 5:2403–2412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dan G, Guoxin X, Jianbin L (2014) Mechanical properties of nanoparticles: basics and applications. J Phys D Appl Phys 47:013001

    Google Scholar 

  • De Jong WH, Borm PJA (2008) Drug delivery and nanoparticles: applications and hazards. Int J Nanomedicine 3(2):133–149

    Article  PubMed  PubMed Central  Google Scholar 

  • Dhermendra KT, Jin T, Behari J et al (2011) Dose- dependent in-vivo toxicity assessment of silver nanoparticles in Wistar rats. Toxicol Mech Methods 21(1):13–24

    Article  CAS  Google Scholar 

  • Ding X, Yuan P, Gao N, Zhu H, Yang YY, Xu QH (2017) Au-Ag core-shell nanoparticles for simultaneous bacterial imaging and synergistic antibacterial activity. Nanomed 3(1):297–305

    Article  CAS  Google Scholar 

  • Dobrovolskaia MA, McNeil SE (2007) Immunological properties of engineered nanomaterials. Nat Nanotechnol 2:469–478

    Article  CAS  PubMed  Google Scholar 

  • Dorota N, Leen CJT, Virginie R, Dominique L, Laetitia G, Micheline KV, Johan AM, Peter HH (2009) Cytotoxicity of silica nanoparticles. Small 5(7):846–853

    Article  CAS  Google Scholar 

  • Duncan R (2003) The dawning area of polymer therapeutics. Nat Rev Drug Discov 2(5):347–360

    Article  CAS  PubMed  Google Scholar 

  • Elena P, Federica R, Mario R, Isabella DD, Graziano C, Aldo M, Giovanni B, Rosalba G (2009) Engineered cobalt oxide nanoparticles readily enter cells. Toxicol Lett 189:253–259

    Article  CAS  Google Scholar 

  • Erico RC, Escobar B, Vales G et al (2015) Genotoxicity testing of titanium anatase nanoparticles using the wing-spot test and the comet assay in Drosophila. Mutat Res 778:12–21

    Article  CAS  Google Scholar 

  • Fen W, Feng G, Minbo L, Huihui Y, Yongping H, Jianwen L (2009) Oxidative stress contributes to silica nanoparticle-induced cytotoxicity in human embryonic kidney cells. Toxicol In Vitro 23(5):808–815

    Article  CAS  Google Scholar 

  • Ferrari M (2005) Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer 5(3):161–171

    Article  CAS  PubMed  Google Scholar 

  • Ghaderi S, Ramesh B, Seifalian AM (2011) Fluorescence nanoparticles “quantum dots” as drug delivery system and their toxicity: a review. J Drug Target 19(7):475–486

    Article  CAS  PubMed  Google Scholar 

  • Ghosh CR, Paria S (2012) Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chem Rev 112:2373–2433

    Article  CAS  Google Scholar 

  • Gilbert B, Huang F, Zhang H, Waychunas GA, Banfield JF (2004) Nanoparticles: strained and stiff. Science 305:651–654

    Article  CAS  PubMed  Google Scholar 

  • Hanada S, Fujioka K, Inoue Y et al (2014) Cell-based in vitro blood-brain barrier model can rapidly evaluate nanoparticles’ brain permeability in association with particle size and surface modification. Int J Mol Sci 15:1812–1825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harries M, Ellis P, Harper P (2005) Nanoparticle albumin–bound paclitaxel for metastatic breast cancer. J Clin Oncol 23:7768–7771

    Article  CAS  PubMed  Google Scholar 

  • Hasan S (2015) A review on nanoparticles: their synthesis and types. Res J Recent Sci 4:1–3

    Article  Google Scholar 

  • Hawkins MJ, Soon-Shiong P, Desai N (2008) Protein nanoparticles as drug carriers in clinical medicine. Adv Drug Deliv Rev 60:876–885

    Article  CAS  PubMed  Google Scholar 

  • Hoelting L, Scheinhardt B, Bondarkenko O, Schildknecht S, Kapitza M, Tanavde V, Tan B, Lee QY, Mecking S, Leist M, Kadereit S (2013) A 3-dimensional human embryonic stem cell(hESC)-derived model to detect development neurotoxicity of nanoparticles. Arch Toxicol 87:721–733

    Article  CAS  PubMed  Google Scholar 

  • Irfan A, Cauchi M, Edmands W, Gooderham NJ, Njuguna J, Zhu H (2014) Assessment of temporal dose-toxicity relationship of fumed silica nanoparticle in human lung A549 cells by conventional cytotoxicity and H-NMR-based extracellular metabonomic assays. Toxicol Sci 138(2):354–364

    Article  CAS  PubMed  Google Scholar 

  • Ivan M-T, El-Hussein A, Abdel-Harith M, Abrahamse H (2014) Photodynamic ability of silver nanoparticles in inducing cytotoxic effects in breast and lung cancer cell lines. Int J Nanomedicine 9:3771–3780

    Google Scholar 

  • Jae WH, Sangiliyandi G, Jae-Kyo J, Yun-Jung C, Deug-Nam K, Jin-Ki P, Jin-Hoi K et al (2014) Oxidative stress mediated cytotoxicity of biologically synthesized silver nanoparticles in human lung epithelial adenocarcinoma cell line. Nanoscale Res Lett 9:459

    Article  CAS  Google Scholar 

  • Jin P, Chen Y, Zhang SB, Chen Z (2011) Interactions between Al(12)X (X = Al, C, N and P) nanoparticles and DNA nucleobases/base pairs: implications for nanotoxicity. J Mol Model 18(2):559–568

    Article  CAS  PubMed  Google Scholar 

  • Justin SJ, Finub JS, Anand N (2012) Synthesis of silver nanoparticles using Piperlongum leaf extracts and its cytotoxic activity against Hep-2 cell line. Colloid Surf B Biointerfaces 91:212–214

    Article  CAS  Google Scholar 

  • Kathleen T, Carolyn AH et al (2011) Standardization of models and methods used to assess nanoparticles in cardiovascular applications. Small 7(6):705–717

    Article  CAS  Google Scholar 

  • Khan I, Saeed K, Khan I (2017) Nanoparticles: properties, applications and toxicities. Arab J Chem 12(7):908–931. https://doi.org/10.1016/j.arabjc.2017.05.011

    Article  CAS  Google Scholar 

  • Laura C, Marina C, Maurizio G (2014) Nickel oxide nanoparticles induce inflammation and genotoxic effect in lung epithelial cells. Toxicol Lett 226:28–34

    Article  CAS  Google Scholar 

  • Li-Feng Q, Zi-Rong X, Yan L, Xia J, Han X-Y (2005) In vitro effects of chitosan nanoparticles on proliferation of human gastric carcinoma cell line MGC803 cells. World J Gastroenterol 11(33):5136–5141

    Google Scholar 

  • Lima R, Seabra AB, Duran N (2012) Silver nanoparticles: a brief review of cytotoxicity and genotoxicity of chemically and biogenically synthesized nanoparticles. J Appl Toxicol 32(11):867–879

    Article  CAS  PubMed  Google Scholar 

  • Lin L, Pederson FA, Greeley J, Norskov JK (2015) Surface tension effects on the reactivity of metal nanoparticles. J Phys Chem Lett 6(19):3797–3801

    Article  CAS  Google Scholar 

  • Liu WT (2006) Nanoparticles and their biological and environmental applications. J Biosci Bioeng 102:1–7

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Li X, Bao S, Lu Z, Li Q, Li CM (2013) Plastic protein microarray to investigate the molecular pathways of magnetic nanoparticle-induced nanotoxicity. Nanotechnology 24:175501

    Article  CAS  PubMed  Google Scholar 

  • Magdolenova Z, Andrew RC, Ashutosh K, Alok D, Vicki S, Maria D (2014) Mechanisms of genotoxicity. Review of recent in vitro and in vivo studies with engineered nanoparticles. Nanotoxicology 8(3):233–278

    Article  CAS  PubMed  Google Scholar 

  • Makadia HK, Siegel SJ (2011) Poly lactic-co-glycolic acid (PLGA) as bio-degradable controlled drug delivery carrier. Polymers 3:1377–1397

    Article  CAS  PubMed  Google Scholar 

  • Manning TD, Hurst GR, Nichol GR et al (2011) PCT Int Pat, WO2013014423 A1

    Google Scholar 

  • Maqusood A, Maqsood AS, Mohd JA, Iqbal A, Aditya BP, Hisham A, Alhadlaq MA et al (2010) Genotoxic potential of copper oxide nanoparticles in human lung epithelial cells. Biochem Biophys Res Commun 396:578–583

    Article  CAS  Google Scholar 

  • Mayur V, Ravirajsinh NJ, Menaka CT, Ranjitsinh VD, Sonal T (2011) Synthesis and characterization of bionanocomposites of natural rubber. Mater Chem Phys 128:83–89

    Article  CAS  Google Scholar 

  • Mc Shan D, Paresh CR, Hongtao Y (2014) Molecular toxicity mechanism of nanosilver. J Food Drug Anal 22:116–127

    Article  CAS  Google Scholar 

  • McCarthy J, Iwona IS, Jose Corbalan J, Marek WR (2012) Mechanisms of toxicity of amorphous silica nanoparticles on human lung submucosal cells in vitro: protective effects of fisetin. Chem Res Toxicol 25:2227–2235

    Article  CAS  PubMed  Google Scholar 

  • Medina SH, El-Sayed MEH (2009) Dendrimers as carriers for delivery of chemotherapeutic agents. Chem Rev 109:3141–3157

    Article  CAS  PubMed  Google Scholar 

  • Min Y, Akbulut M, Kristiansen K, Golan Y, Israelachvili J (2008) The role of interparticle and external forces in nanoparticle assembly. Nat Mater 7:527–538

    Article  CAS  PubMed  Google Scholar 

  • Mohammad JH, Fromm KM, Ashkarran AA, Jimenez de Aberasturi D, de Larramendi IR, RojoT SV, Parak WJ, Mahmoudi M (2012) Antibacterial properties of nanoparticles. Trends Biotechnol 30(10):499–511

    Article  CAS  Google Scholar 

  • Mohl M, Dobo D, Kukovecz A, Konya Z, Kordas K, Wei J, Vajtai R, Ajayan PM (2011) Synthesis of catalytic porous metallic nanorods by galvanic exchange reaction. J Phys Chem C 114:389–393

    Google Scholar 

  • Moyu W, Rachel MK, Manuel V, Gabriel A, Yeong AS, Xiaowen S, Gang X, Xiaojing H, Ross H, Ian R (2011) Differential stress induced by thiol adsorption on facetted nanocrystals. Nat Mater 10:862–866

    Article  CAS  Google Scholar 

  • Muthu IS, Selvaraj BMK, Kalimuthu K, Sangiliyandi G (2010) Antitumor activity of silver nanoparticles in Dalton’s lymphoma ascites tumor model. Int J Nanomedicine 5:753–762

    Google Scholar 

  • Oberdorster E (2004) Manufactured nanomaterials (Fullerenes, C60) induce oxidative stress in the brain of juvenile Largemouth Bass. Environ Health Perspect 112:1058–1062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orive G, Anitua E, Pedraz J, Emerich D (2009) Biomaterials for promoting brain protection, repair and regeneration. Nat Rev Neurosci 10(9):682–692

    Article  CAS  PubMed  Google Scholar 

  • Pan B, Daxiang C, Yuan S, Cengiz O, Feng G, Rong H, Qing L, Ping X, Tuo H (2007) Dendrimer-modified magnetic nanoparticles enhance efficiency of gene delivery system. Cancer Res 67(17):8156–8163

    Article  CAS  PubMed  Google Scholar 

  • Prasad M et al (2018) Nanotherapeutics: an insight into healthcare and multi-dimensional applications in medical sector of the modern world. Biomed Pharmacother 97:1521–1537

    Article  CAS  PubMed  Google Scholar 

  • Rai M, Ingle AP, Birla S, Yadav A, Dos Santos CA (2016) Strategic role of selected noble metal nanoparticles in medicine. Crit Rev Microbiol 42(5):696–719

    CAS  PubMed  Google Scholar 

  • Rasmus F, Duy AD, Herman A (2011) Silver nanoparticles—wolves in sheeps clothing? Arch Toxicol 85:743–750

    Article  CAS  Google Scholar 

  • Rastar A, Mohammad EY, Rashidi A, Bidoki SM (2012) Theoretical review of optical properties of nanoparticles. J Eng Fiber Fabr 8(2):85–96

    Google Scholar 

  • Rathi Sre PR, Reka M, Poovazhagi R, Arul Kumar M, Murugesan K (2015) Antibacterial and cytotoxic effect of biologically synthesized silver nanoparticles using aqueous root extract of Erythrina indica lam. Spectrochim Acta A Mol Biomol Spectrosc 135:1137–1144

    Article  CAS  PubMed  Google Scholar 

  • Renu G, Divya Rani VV, Nair SV, Subramanian KRV, Vinoth-kumar L (2012) Development of cerium oxide nanoparticles and its cytotoxicity in prostate cancer cells. Adv Sci Lett 5:1–9

    Article  CAS  Google Scholar 

  • Ritesh KS, Vyom S, Alok KP, Shashi S, Sarwat S, Alok D, Shukla RK (2011) ROS-mediated genotoxicity induced by titanium dioxide nanoparticles in human epidermal cells. Toxicol In Vitro 25:231–241

    Article  CAS  Google Scholar 

  • Rongfa G, Tianshu K, Fei L, Zhiguo Z, Haitao S, Mingqi L (2012) Cytotoxicity, oxidative stress, and genotoxicity in human hepatocyte and embryonic kidney cells exposed to ZnO nanoparticles. Nanoscale Res Lett 7:602

    Article  CAS  Google Scholar 

  • Roslyn T, Christopher M, May L, Rose A (2011) Biological impacts of TiO2 on human lung cell lines A549 and H1299: particle size distribution effects. J Nanopart Res 13:3801–3813

    Article  CAS  Google Scholar 

  • Sanjay S, Pitamber P, Swarna J, Prabhune AA, Ramana CV, Prasad BLV (2009) A direct method for the preparation of glycolipid–metal nanoparticle conjugates: sophorolipids as reducing and capping agents for the synthesis of water re-dispersible silver nanoparticles and their antibacterial activity. New J Chem 33:646–652

    Article  Google Scholar 

  • Santos FSD, Fernanda RL, Lídia Y, Fabiana VF (2017) Synthesis and characterization of zero valent iron nanoparticles supported on SBA-15. J Mater Res Technol 6(2):178–183

    Article  CAS  Google Scholar 

  • Schanen BC, Karakoti AS, Seal S, Drake DR, Warren WL, Self WT (2009) Exposure to titanium dioxide nanomaterials provokes inflammation of an in vitro human immune construct. ACS Nano 3:2523–2532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schubert D, Richard D, Joan R, Siu-Wai C (2006) Cerium and yttrium oxide nanoparticles are neuroprotective. Biochem Biophys Res Commun 342:86–89

    Article  CAS  PubMed  Google Scholar 

  • Shabarovaa LV, Snopatina GE, Ketkovaa LA, Yu PK, Churbanov MF (2018) Effect of the surface tension on the distribution impurity nanoparticles in a double-layer stream of glass melts. Math Model Comput Simul 10(4):441–449

    Article  Google Scholar 

  • Shah M, Derek F, Shashi S, Suraj Kumar T, Gérrard EJP (2015) Green synthesis of metallic nanoparticles via biological entities. Materials 8(11):7278–7308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma VK, Ria AY, Lin Y (2015) Silver nanoparticles: green synthesis and their antimicrobial activities. Adv Colloid Interf Sci 145:83–96

    Article  CAS  Google Scholar 

  • Shi Z, Xin H, Yurong C, Ruikang T, Disheng Y (2009) Size effect of hydroxyapatite nanoparticles on proliferation and apoptosis of osteoblast-like cells. Acta Biomater 5:338–345

    Article  CAS  PubMed  Google Scholar 

  • Stark WJ, Stoessel PR, Wohlleben W et al (2015) Industrial applications of nanoparticles. Royal Society Chem J 44:5793–5805

    CAS  Google Scholar 

  • Stefania S, Randy PC, Virgilio B, Maria AM, Noura AJ, Giuseppe V, Sam MJ, Osman MB, Roberto C, Francesco S, Pier PP (2014) A general mechanism for intracelular toxicity of metal containing nanoparticle. Nanoscale 6:7052–7061

    Article  CAS  Google Scholar 

  • Stella O, Gila K, Aharon G, Chaya B (2009) Selective cytotoxic effect of ZnO nanoparticles on glioma cells. Nano Res 2:882 890

    Google Scholar 

  • Veronesi G, Deniaud A, Gallon T et al (2016) Visualization, quantification and coordination of Ag+ ions released from silver nanoparticles in hepatocytes. Nanoscale 8(38):17012–17021

    Article  CAS  PubMed  Google Scholar 

  • Vinita V, Subhranshu SS, Manoharan N (2010) Safety and risk associated with nanoparticles—a review. J Miner Mater Char Eng 9(5):455–459

    Google Scholar 

  • Vyom S, Diana A, Alok D (2011) Zinc oxide nanoparticles induce oxidative stress and genotoxicity in human liver cells (HepG2). J Biomed Nanotechnol 7(1):98–99

    Article  CAS  Google Scholar 

  • Wan NR, Nour B, Trevor A, Cheng FH, Price J, Christopher W, Robert D, Moshi G (2009) Enhancement of radiation effects by gold nanoparticles for superficial radiation therapy. Nanomedicine-Nanotechnol Biol Med 5:136–142

    Article  CAS  Google Scholar 

  • Wang EC, Wang AZ (2014) Nanoparticles and their applications in cell and molecular biology. Integr Biol 6(1):9–26

    Article  CAS  Google Scholar 

  • Wang A, Pu K, Dong B et al (2013) Role of surface charge and oxidative stress in cytotoxicity and genotoxicity of graphene oxide towards human lung fibroblast cells. J Appl Toxicol 33(10):1156–1164

    Article  CAS  PubMed  Google Scholar 

  • Ward DA, Ko EI (1995) Preparing catalytic materials by the sol-gel method. Ind Eng Chem Res 34(2):421–433

    Article  CAS  Google Scholar 

  • Weissleder R (2006) Molecular imaging in cancer. Science 312:1168–1171

    Article  CAS  PubMed  Google Scholar 

  • Wesselinova D (2011) Current major cancer targets for nanoparticle systems. Curr Cancer Drug Targ 11(2):164–183

    Article  CAS  Google Scholar 

  • Xia T, Michael K, Monty L, Lutz M, Benjamin G, Haibin S, Joanne IY, Jeffrey IZ, Andre EN (2008) Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano 2(10):2121–2134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiong S, Weihong Q, Cheng Y, Haung B, Wang M, Li Y (2011) Universal relation for size dependent thermodynamic properties of metallic nanoparticles. Phys Chem Chem Phys 13:10652–10660

    Article  CAS  PubMed  Google Scholar 

  • Yang X, Jianjun L, Haowei H, Li Z, Chunmei G, Xiaomei W, Lingqing Y, Jianhui Y, Haiyan H, Lianhua H, Bing Z, Zhixiong Z et al (2010) SiO2 nanoparticles induce cytotoxicity and protein expression alteration in HaCaT cells. Particle Fibre Toxicol 7:1

    Article  CAS  Google Scholar 

  • Zeltner WA, Anderson MA (1996) The use of nanoparticles in environmental applications. In: Pelizzetti E (ed) Fine particles science and technology, NATO ASI series (series 3: high technology), vol 12. Springer, Dordrecht, pp 643–656

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tejaswi, J., Anirudh, K.V.S., Majeti, L.R., Kotagiri, D., Shaik, K.B., Chaitanya, K.V. (2020). Investigation of Biological Activity of Nanoparticles Using Cell Lines. In: Siddhardha, B., Dyavaiah, M., Kasinathan, K. (eds) Model Organisms to Study Biological Activities and Toxicity of Nanoparticles. Springer, Singapore. https://doi.org/10.1007/978-981-15-1702-0_7

Download citation

Publish with us

Policies and ethics