Skip to main content

Biological Activities of Nanoparticles and Mechanism of Action

  • Chapter
  • First Online:

Abstract

This chapter covers nanoparticles (NPs) of gold, silver, zinc oxide, copper oxide, zirconium oxide, iron oxide, and yttrium oxide, which have been recently used for antimicrobial and anticancer activity with plausible mechanism for their activity. Eco-friendly syntheses of smart metal NPs (size, shape, and morphology controlled NPs with desired modifications) through a bottom-up approach have greater selectivity and biological activity toward targeted cells without any harm to the normal cells. Selectivity is the key feature of NPs that makes possible the future use of NPs as replacements for drugs in biomedical applications. Generation of reactive oxygen species (ROS) which causes damage to cell components and membrane, interaction of released metal ions with proteins causes inhibition of enzymes activity and physiological processes, and nonoxidative mechanism are the major proposed mechanisms behind antimicrobial and anticancer activity of metal NPs which results in cell apoptosis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Al-Sheddi ES, Farshori NN, Al-Oqail MM, Al-Massarani SM, Saquib Q, Wahab R, Musarrat J, Al-Khedhairy AA, Siddiqui MA (2018) Anticancer potential of green synthesized silver nanoparticles using extract of Nepeta deflersiana against human cervical cancer cells (HeLA). Bioinorg Chem Appl 2018:9390784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anoop NV, Jacob R, Paulson JM, Dineshkumar B, Narayana CR (2018) Mango leaf extract synthesized silver nanorods exert anticancer activity on breast cancer and colorectal carcinoma cells. J Drug Delivery Sci Tech 44:8–12

    Article  CAS  Google Scholar 

  • Armentano I, Arciola CR, Fortunati E, Ferrari D, Mattioli S, Amoroso CF, Rizzo J, Kenny JM, Imbriani M, Visai L (2014) The interaction of bacteria with engineered nanostructured polymeric materials: a review. Sci World J 2014:410423

    Article  CAS  Google Scholar 

  • Barai AC, Paul K, Dey A, Manna S, Roy S, Bag BG, Mukhopadhyay C (2018) Green synthesis of Nerium oleander-conjugated gold nanoparticles and study of its in vitro anticancer activity on MCF-7 cell lines and catalytic activity. Nano Converg 5(1):10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhattacharyya S, Kudgus RA, Bhattacharya R, Mukherjee P (2011) Inorganic nanoparticles in cancer therapy. Pharm Res 28(2):237–259

    Article  CAS  PubMed  Google Scholar 

  • Buzea C, Pacheco II, Robbie K (2007) Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2(4):MR17–MR71

    Article  PubMed  Google Scholar 

  • Cheloni G, Marti E, Slaveykova VI (2016) Interactive effects of copper oxide nanoparticles and light to green alga Chlamydomonas reinhardtii. Aquat Toxicol 170:120–128

    Article  CAS  PubMed  Google Scholar 

  • Dizaj SM, Lotfipour F, Barzegar-Jalali M, Zarrintan MH, Adibkia K (2014) Antimicrobial activity of the metals and metal oxide nanoparticles. Mater Sci Eng C 44:278–284

    Article  CAS  Google Scholar 

  • Doble M, Rollins K, Kumar A (2010) Green chemistry and engineering. Academic, London

    Google Scholar 

  • Garcia-Garcia E, Andrieux K, Gil S, Kim HR, Le Doan T, Desmaële D, d’Angelo J, Taran F, Georgin D, Couvreur P (2005) A methodology to study intracellular distribution of nanoparticles in brain endothelial cells. Int J Pharm 298(2):310–314

    Article  CAS  PubMed  Google Scholar 

  • Geiser M, Rothen-Rutishauser B, Kapp N, Schürch S, Kreyling W, Schulz H, Semmler M, Hof VI, Heyder J, Gehr P (2005) Ultrafine particles cross cellular membranes by nonphagocytic mechanisms in lungs and in cultured cells. Environ Health Perspect 113(11):1555–1560

    Article  PubMed  PubMed Central  Google Scholar 

  • Gurunathan S, Han JW, Dayem AA, Eppakayala V, Kim J-H (2012) Oxidative stress-mediated antibacterial activity of graphene oxide and reduced graphene oxide in Pseudomonas aeruginosa. Int J Nanomedicine 7:5901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hariharan A, Begum TN, Ilyas MHM, Jahangir HS, Kumpati P, Mathew S, Govindaraju A, Qadri I (2016) Synthesis of plant mediated gold nanoparticles using Azima tetracantha Lam. leaves extract and evaluation of their antimicrobial activities. J Pharmacogn 8(5)

    Google Scholar 

  • Horikoshi S, Serpone N (2013) Microwaves in nanoparticle synthesis: fundamentals and applications. Wiley, Weinheim

    Book  Google Scholar 

  • Hsueh P-R (2010) New Delhi metallo-β-lactamase-1 (NDM-1): an emerging threat among Enterobacteriaceae. J Formos Med Assoc 109(10):685–687

    Article  CAS  PubMed  Google Scholar 

  • Hübler AW, Osuagwu O (2010) Digital quantum batteries: energy and information storage in nanovacuum tube arrays. Complexity 15(5):48–55

    Google Scholar 

  • Jayaraman R (2009) Antibiotic resistance: an overview of mechanisms and a paradigm shift. Curr Sci 96:1475–1484

    CAS  Google Scholar 

  • Jeyaraj M, Arun R, Sathishkumar G, MubarakAli D, Rajesh M, Sivanandhan G, Kapildev G, Manickavasagam M, Thajuddin N, Ganapathi A (2014) An evidence on G2/M arrest, DNA damage and caspase mediated apoptotic effect of biosynthesized gold nanoparticles on human cervical carcinoma cells (HeLa). Mater Res Bull 52:15–24

    Article  CAS  Google Scholar 

  • Kaushik M, Niranjan R, Thangam R, Madhan B, Pandiyarasan V, Ramachandran C, Oh D-H, Venkatasubbu GD (2019) Investigations on the antimicrobial activity and wound healing potential of ZnO nanoparticles. Appl Surf Sci 479:1169–1177

    Article  CAS  Google Scholar 

  • Khandanlou R, Murthy V, Saranath D, Damani H (2018) Synthesis and characterization of gold-conjugated Backhousia citriodora nanoparticles and their anticancer activity against MCF-7 breast and HepG2 liver cancer cell lines. J Mater Sci 53(5):3106–3118

    Article  CAS  Google Scholar 

  • Kim H-Y, Sofo JO, Velegol D, Cole MW, Lucas AA (2007) Van der Waals dispersion forces between dielectric nanoclusters. Langmuir 23(4):1735–1740

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Song KB (2018) Antimicrobial activity of buckwheat starch films containing zinc oxide nanoparticles against Listeria monocytogenes on mushrooms. Int J Food Sci Technol 53(6):1549–1557

    Article  CAS  Google Scholar 

  • Knetsch ML, Koole LH (2011) New strategies in the development of antimicrobial coatings: the example of increasing usage of silver and silver nanoparticles. Polymers 3(1):340–366

    Article  CAS  Google Scholar 

  • Kumaresan M, Anand KV, Govindaraju K, Tamilselvan S, Kumar VG (2018) Seaweed Sargassum wightii mediated preparation of zirconia (ZrO2) nanoparticles and their antibacterial activity against gram positive and gram negative bacteria. Microb Pathog 124:311–315

    Article  CAS  PubMed  Google Scholar 

  • Leung YH, Ng AM, Xu X, Shen Z, Gethings LA, Wong MT, Chan CM, Guo MY, Ng YH, Djurišić AB (2014) Mechanisms of antibacterial activity of MgO: non-ROS mediated toxicity of MgO nanoparticles towards Escherichia coli. Small 10(6):1171–1183

    Article  CAS  PubMed  Google Scholar 

  • Li H, Chen Q, Zhao J, Urmila K (2015) Enhancing the antimicrobial activity of natural extraction using the synthetic ultrasmall metal nanoparticles. Sci Rep 5:11033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luan B, Huynh T, Zhou R (2016) Complete wetting of graphene by biological lipids. Nanoscale 8(10):5750–5754

    Article  CAS  PubMed  Google Scholar 

  • Malka E, Perelshtein I, Lipovsky A, Shalom Y, Naparstek L, Perkas N, Patick T, Lubart R, Nitzan Y, Banin E (2013) Eradication of multi-drug resistant bacteria by a novel Zn-doped CuO nanocomposite. Small 9(23):4069–4076

    Article  CAS  PubMed  Google Scholar 

  • Mamonova I, Babushkina I, Norkin I, Gladkova E, Matasov M, Puchin’yan D (2015) Biological activity of metal nanoparticles and their oxides and their effect on bacterial cells. Nanotechnol In Russia 10(1–2):128–134

    Article  CAS  Google Scholar 

  • Marković D, Deeks C, Nunney T, Radovanović Ž, Radoičić M, Šaponjić Z, Radetić M (2018) Antibacterial activity of Cu-based nanoparticles synthesized on the cotton fabrics modified with polycarboxylic acids. Carbohydr Polym 200:173–182

    Article  CAS  PubMed  Google Scholar 

  • Min Y, Akbulut M, Kristiansen K, Golan Y, Israelachvili J (2010) The role of interparticle and external forces in nanoparticle assembly. In: Nanoscience and technology: a collection of reviews from nature journals. World Scientific, p. 38–49. https://doi.org/10.1142/9789814287005_0005

  • Mittal AK, Chisti Y, Banerjee UC (2013) Synthesis of metallic nanoparticles using plant extracts. Biotechnol Adv 31(2):346–356

    Article  CAS  PubMed  Google Scholar 

  • Moodley JS, Krishna SBN, Pillay K, Govender P (2018) Green synthesis of silver nanoparticles from Moringa oleifera leaf extracts and its antimicrobial potential. Adv Nat Sci 9(1):015011

    Google Scholar 

  • Nabila MI, Kannabiran K (2018) Biosynthesis, characterization and antibacterial activity of copper oxide nanoparticles (CuO NPs) from actinomycetes. Biocatal Agric Biotechnol 15:56–62

    Article  Google Scholar 

  • Nagajyothi P, Pandurangan M, Veerappan M, Kim DH, Sreekanth T, Shim J (2018) Green synthesis, characterization and anticancer activity of yttrium oxide nanoparticles. Mater Lett 216:58–62

    Article  CAS  Google Scholar 

  • Nakkala JR, Mata R, Raja K, Chandra VK, Sadras SR (2018) Green synthesized silver nanoparticles: catalytic dye degradation, in vitro anticancer activity and in vivo toxicity in rats. Mater Sci Eng C 91:372–381

    Article  CAS  Google Scholar 

  • Nel AE, Mädler L, Velegol D, Xia T, Hoek EM, Somasundaran P, Klaessig F, Castranova V, Thompson M (2009) Understanding biophysicochemical interactions at the nano–bio interface. Nat Mater 8(7):543

    Article  CAS  PubMed  Google Scholar 

  • Nosrati H, Rashidi N, Danafar H, Manjili HK (2018) Anticancer activity of tamoxifen loaded tyrosine decorated biocompatible Fe3O4 magnetic nanoparticles against breast cancer cell lines. J Inorg Organomet Polym Mater 28(3):1178–1186

    Article  CAS  Google Scholar 

  • Onitsuka S, Hamada T, Okamura H (2019) Preparation of antimicrobial gold and silver nanoparticles from tea leaf extracts. Colloids Surf B Biointerfaces 173:242–248

    Article  CAS  PubMed  Google Scholar 

  • Orel V, Shevchenko A, Romanov A, Tselepi M, Mitrelias T, Barnes CH, Burlaka A, Lukin S, Shchepotin I (2015) Magnetic properties and antitumor effect of nanocomplexes of iron oxide and doxorubicin. Nanomedicine 11(1):47–55

    Article  CAS  PubMed  Google Scholar 

  • Otari S, Pawar S, Patel SK, Singh RK, Kim S-Y, Lee JH, Zhang L, Lee J-K (2017) Canna edulis leaf extract-mediated preparation of stabilized silver nanoparticles: characterization, antimicrobial activity, and toxicity studies. J Microbiol Biotechnol 27:731–738

    Article  CAS  PubMed  Google Scholar 

  • Padmavathy N, Vijayaraghavan R (2011) Interaction of ZnO nanoparticles with microbes—a physio and biochemical assay. J Biomed Nanotech 7(6):813–822

    Article  CAS  Google Scholar 

  • Pantidos N, Horsfall LE (2014) Biological synthesis of metallic nanoparticles by bacteria, fungi and plants. J Nanomed Nanotech 5(5):1

    Article  CAS  Google Scholar 

  • Parida UK, Biswal SK, Bindhani BK (2014) Green synthesis and characterization of gold nanoparticles: study of its biological mechanism in human SUDHL-4 cell line. Adv Biolog Chem 4(06):360

    Article  CAS  Google Scholar 

  • Patil MP, Kim G-D (2017) Eco-friendly approach for nanoparticles synthesis and mechanism behind antibacterial activity of silver and anticancer activity of gold nanoparticles. Appl Microbiol Biotechnol 101(1):79–92

    Article  CAS  PubMed  Google Scholar 

  • Patil MP, Ngabire D, Thi HHP, Kim M-D, Kim G-D (2017) Eco-friendly synthesis of gold nanoparticles and evaluation of their cytotoxic activity on cancer cells. J Clust Sci 28(1):119–132

    Article  CAS  Google Scholar 

  • Poole K (2002) Mechanisms of bacterial biocide and antibiotic resistance. J Appl Microbiol 92:55S–64S

    Article  PubMed  Google Scholar 

  • Ramalingam B, Parandhaman T, Das SK (2016) Antibacterial effects of biosynthesized silver nanoparticles on surface ultrastructure and nanomechanical properties of gram-negative bacteria viz. Escherichia coli and Pseudomonas aeruginosa. ACS Appl Mater Interfaces 8(7):4963–4976

    Article  CAS  PubMed  Google Scholar 

  • Ranjan Sarker S, Polash SA, Boath J, Kandjani AE, Poddar A, Dekiwadia C, Shukla R, Sabri YM, Bhargava SK (2019) Functionalization of elongated tetrahexahedral Au nanoparticles and their antimicrobial activity assay. ACS Appl Mater Interfaces 11:13450–13459

    Article  CAS  PubMed  Google Scholar 

  • Saravanan M, Barik SK, MubarakAli D, Prakash P, Pugazhendhi A (2018) Synthesis of silver nanoparticles from Bacillus brevis (NCIM 2533) and their antibacterial activity against pathogenic bacteria. Microb Pathog 116:221–226

    Article  CAS  PubMed  Google Scholar 

  • Shen C, James SA, de Jonge MD, Turney TW, Wright PF, Feltis BN (2013) Relating cytotoxicity, zinc ions, and reactive oxygen in ZnO nanoparticle–exposed human immune cells. Toxicol Sci 136(1):120–130

    Article  CAS  PubMed  Google Scholar 

  • Singh J, Dutta T, Kim K-H, Rawat M, Samddar P, Kumar P (2018) ‘Green’ synthesis of metals and their oxide nanoparticles: applications for environmental remediation. J Nanobiotech 16(1):84

    Article  CAS  Google Scholar 

  • Taton TA (2002) Nanostructures as tailored biological probes. Trends Biotechnol 20(7):277–279

    Article  CAS  PubMed  Google Scholar 

  • Vaseghi Z, Nematollahzadeh A, Tavakoli O (2018) Green methods for the synthesis of metal nanoparticles using biogenic reducing agents: a review. Rev Chem Eng 34(4):529–559

    Article  Google Scholar 

  • Vinardell M, Mitjans M (2015) Antitumor activities of metal oxide nanoparticles. Nano 5(2):1004–1021

    CAS  Google Scholar 

  • Wason MS, Colon J, Das S, Seal S, Turkson J, Zhao J, Baker CH (2013) Sensitization of pancreatic cancer cells to radiation by cerium oxide nanoparticle-induced ROS production. Nanomedicine 9(4):558–569

    Article  CAS  PubMed  Google Scholar 

  • Wu B, Zhuang W-Q, Sahu M, Biswas P, Tang YJ (2011) Cu-doped TiO2 nanoparticles enhance survival of Shewanella oneidensis MR-1 under Ultraviolet Light (UV) exposure. Sci Total Environ 409(21):4635–4639

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Zhang W, Li Y, Wang G, Yang L, Jin J, Chen Q, Huang M (2014) Synthesis, characterization, antimicrobial activity and mechanism of a novel hydroxyapatite whisker/nano zinc oxide biomaterial. Biomed Mater 10(1):015001

    Article  CAS  PubMed  Google Scholar 

  • Zakharova OV, Godymchuk AY, Gusev AA, Gulchenko SI, Vasyukova IA, Kuznetsov DV (2015) Considerable variation of antibacterial activity of Cu nanoparticles suspensions depending on the storage time, dispersive medium, and particle sizes. Biomed Res Int 2015:412530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang A-P, Sun Y-P (2004) Photocatalytic killing effect of TiO2 nanoparticles on Ls-174-t human colon carcinoma cells. World J Gastroenterol 10(21):3191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chaudhary, K., Masram, D.T. (2020). Biological Activities of Nanoparticles and Mechanism of Action. In: Siddhardha, B., Dyavaiah, M., Kasinathan, K. (eds) Model Organisms to Study Biological Activities and Toxicity of Nanoparticles. Springer, Singapore. https://doi.org/10.1007/978-981-15-1702-0_2

Download citation

Publish with us

Policies and ethics