Skip to main content

Evaluation of Toxicity of Nanoparticles Using Brine Shrimp

  • Chapter
  • First Online:
Model Organisms to Study Biological Activities and Toxicity of Nanoparticles

Abstract

Nanoparticles (NPs) have a momentous role in disease healing and drug delivery system that leads to the development of a new field known as nanopharmacology. Nanoparticles are generally coated with polymers, metal ions, chemical surfactants, etc., owing to their properties, i.e., with the decrease in size they tend to evoke toxicity that is predominantly triggered by the environmental and human health risk. Therefore, it is imperative to evaluate the toxicity of nanoparticles using model systems. The purpose of the present chapter is to estimate the toxicity of nanoparticles against brine shrimp (Artemia). They are the essential part in the process of energy discharge of the food web in aquatic surroundings. Latterly, researchers have focal point on brine shrimp due to their accessibility, inexpensive and expeditious screening procedure. It is convenient to exemplify the toxicological impacts of nanoparticles toward brine shrimp, their mechanism, strategy and future prospective. The toxicity assay of NPs in Artemia are of low cost, continuously accessible, simple and steady. Researchers employed various types of nanoparticles to elucidate the toxicity and safety effects on brine shrimps. The green methods of synthesis have been attracted by scientists due to its low cost, ease of characterisation and capability to reduce NPs toxicity. In addition, researchers also used brine shrimp toxicity assay to evaluate the lethal effect of chemically synthesized nanoparticles. It also discusses the toxicological evaluation of NPs by in vitro and in vivo assessment and brief details on biology of brine shrimp.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adam N, Schmitt C, De Bruyn L, Knapen D, Blust R (2015) Aquatic acute species sensitivity distributions of ZnO and CuO nanoparticles. Sci Total Environ 526:233–242

    Article  CAS  PubMed  Google Scholar 

  • Ahamed M, Karns M, Goodson M, Rowe J, Hussain SM, Schlager JJ, Hong Y (2008) DNA damage response to different surface chemistry of silver nanoparticles in mammalian cells. Toxicol Appl Pharmacol 233(3):404–410

    Article  CAS  PubMed  Google Scholar 

  • Anand K, Tiloke C, Phulukdaree A, Ranjan B, Chuturgoon A, Singh S, Gengan RM (2016) Biosynthesis of palladium nanoparticles by using Moringa oleifera flower extract and their catalytic and biological properties. J Photochem Photobiol B 165:87–95

    Article  CAS  PubMed  Google Scholar 

  • Arulvasu C, Jennifer SM, Prabhu D, Chandhirasekar D (2014) Toxicity effect of silver nanoparticles in brine shrimp Artemia. Sci World J 2014:256919

    Article  CAS  Google Scholar 

  • Ates M, Daniels J, Arslan Z, Farah IO, Rivera HF (2013) Comparative evaluation of impact of Zn and ZnO nanoparticles on brine shrimp (Artemia salina) larvae: effects of particle size and solubility on toxicity. Environ Sci: Processes Impacts 15:225–233

    CAS  Google Scholar 

  • Baker GL, Gupta A, Clark ML, Venezuela BR, Staska LM, Harbo ST, Pierce JT, Dill JA (2008) Inhalation toxicity and lung toxicokinetics of C60 fullerene nanoparticles and microparticles. Toxicol Sci 101(1):122–131

    Article  CAS  PubMed  Google Scholar 

  • Balalakshmi C, Gopinath K, Govindarajan M, Lokesh R, Arumugam A, Alharbi NS, Kadaikunnan S, Khaled JM, Benelli G (2017) Green synthesis of gold nanoparticles using a cheap Sphaeranthus indicus extract: impact on plant cells and the aquatic crustacean Artemia nauplii. J Photochem Photobiol B 173:598–605

    Article  CAS  PubMed  Google Scholar 

  • Bali R, Razak N, Lumb A, Harris AT (2016) The synthesis of metallic nanoparticles inside live plants. Proceedings of the 2006 International Conference on Nanoscience and Nanotechnology, ICONN

    Google Scholar 

  • Balkrishna A, Sharma N, Sharma VK, Mishra ND, Joshi CS (2017) Green synthesis, characterisation and biological studies of AgNPs prepared using Shivlingi (Bryonia laciniosa) seed extract. IET Nanobiotechnol 12(3):371–375

    Article  Google Scholar 

  • Baxevanis AD, Kappas I, Abatzopoulus TJ (2006) Molecular phylogenetics and asexuality in the brine shrimp Artemia. Mol Phylogenet Evol 40:724–738

    Article  CAS  PubMed  Google Scholar 

  • Daglioglu Y, Altinok I, Ilhan H, Sokmen M (2016) Determination of the acute toxic effect of ZnO-TiO2 nanoparticles in brine shrimp (Artemia salina). Acta Biol Turcica 29(1):6–13

    Google Scholar 

  • Dhawan A, Sharma V (2010) Toxicity assessment of nanomaterials: methods and challenges. Anal Bioanal Chem 398:589–605

    Article  CAS  PubMed  Google Scholar 

  • Gajardo GM, Beardmore JA (2012) The brine shrimp artemia: adapted to critical life conditions. Front Physiol 3:185

    Article  PubMed  PubMed Central  Google Scholar 

  • Gambardella C, Mesarič T, Milivojević T, Sepčić K, Gallus L, Carbone S, Ferrando S, Faimali M (2014) Effects of selected metal oxide nanoparticles on Artemia salina larvae: evaluation of mortality and behavioural and biochemical responses. Environ Monit Assess 186(7):4249–4259

    Article  CAS  PubMed  Google Scholar 

  • Halliwell B, Whiteman M (2004) Measuring reactive species and oxidative damage in vivo and in cell culture: how should you do it and what do the results mean? Br J Pharmacol 142(2):231–255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamidi MR, Jovanova B, Panovska TK (2014) Toxicоlogical evaluation of the plant products using brine shrimp (Artemia salina L.) model. Maced Pharm Bull 60(1):9–18

    Article  Google Scholar 

  • Kanchenton S, Whangpurikul V, Kangwarangsan N, Tansalit T, Jiraungkoorskul W (2018) Siver nanoparticles toxicity in brine shrimp and its histopathological analysis. Int J Nanosci 17(6):1850007

    Article  CAS  Google Scholar 

  • Khoshnood R, Jaafarzadeh N, Jamili S, Farshchi P, Taghavi L (2016) Acute toxicity of TiO2, CuO and ZnO nanoparticles in brine shrimp, Artemia franciscana. Iran J Fish Sci 16(4):1287–1296

    Google Scholar 

  • Kim SC, Kim DW, Shim YH, Bang JS, Oh HS, Kim SW, Seo MH (2001) In vivo evaluation of polymeric micellar paclitaxel formulation: toxicity and efficacy. J Control Release 72(1):191–202

    Article  CAS  PubMed  Google Scholar 

  • Kumar D, Roy R, Parashar A, Raichur AM, Chandrasekaran N, Mukherjee A, Mukherjee A (2017a) Toxicity assessment of zero valent iron nanoparticles on Artemia salina. Environ Toxicol 32(5):1617–1627

    Article  CAS  PubMed  Google Scholar 

  • Kumar V, Sharma N, Maitra SS (2017b) In vitro and in vivo toxicity assessment of nanoparticles. Int Nano Lett 7(4):243–256

    Article  CAS  Google Scholar 

  • Li Y, Pei Y, Zhang X, Gu Z, Zhou Z, Yuan W, Zhou J, Zhu J, Gao X (2001) PEGylated PLGA nanoparticles as protein carriers: synthesis, preparation and biodistribution in rats. J Control Release 71(2):203–211

    Article  CAS  PubMed  Google Scholar 

  • Libralato G (2014) The case of Artemia spp. in nanoecotoxicology. Mar Environ Res 101:38–43

    Article  CAS  PubMed  Google Scholar 

  • Maccormack TJ, Clark RJ, Dang MK, Ma G, Kelly JA, Veinot JG, Goss GG (2012) Inhibition of enzyme activity by nanomaterials: potential mechanisms and implications for nanotoxicity testing. Nanotoxicology 6:514–525

    Article  CAS  PubMed  Google Scholar 

  • Magder S (2006) Reactive oxygen species: toxic molecules or spark of life? Crit Care 10(1):208

    Article  PubMed  PubMed Central  Google Scholar 

  • Maurer-Jones MA, Love SA, Meierhofer S, Marquis BJ, Liu Z, Haynes CL (2013) Toxicity of nanoparticles to brine shrimp: an introduction to nanotoxicity and interdisciplinary science. J Chem Educ 90(4):475–478

    Article  CAS  Google Scholar 

  • Meyer B, Ferrigni N, Putnam J, Jacobsen L, Nichols D, McLaughlin J (1982) Brine Shrimp: a convenient general bioassay for active plant constituents. Planta Med 45(05):31–34

    Article  CAS  PubMed  Google Scholar 

  • Michael AS, Thampson CG, Abramoritz M (1956) Artemia salina as a test organism for bioassay. Science 123:464

    Article  CAS  PubMed  Google Scholar 

  • Mo Y, Lim LY (2005) Paclitaxel-loaded PLGA nanoparticles: potentiation of anticancer activity by surface conjugation with wheat germ agglutinin. J Control Release 108(2–3):244–262

    Article  CAS  PubMed  Google Scholar 

  • Montes MO, Hanna SK, Lenihan HS, Keller AA (2012) Uptake, accumulation and biotransformation of metal oxide nanoparticles by a marine suspension-feeder. J Hazard Mater 225–226:139–145

    Article  CAS  PubMed  Google Scholar 

  • Muhammad W, Ullah N, Khan M, Ahmad W, Khan MQ, Abbasi BH (2019) Why brine shrimp (Artemia salina) larvae is used as a screening system for nanomaterials? The science of procedure and nano-toxicology: a review. Int J Biosci 14(5):156–176

    CAS  Google Scholar 

  • Nel A, Xia T, Madler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 11:622–627

    Article  CAS  Google Scholar 

  • Ozkan Y, Altinok I, Ilhan H, Sokmen M (2015) Determination of TiO2 and AgTiO2 nanoparticles in Artemia salina: toxicity, morphological changes, uptake and depuration. Bull Environ Contam Toxicol 96(1):36–42

    Article  CAS  PubMed  Google Scholar 

  • Parra AL (2001) Comparative study of the assay of and the estimate of the medium lethal dose (LD50 value) in mice, to determine oral acute toxicity of plant extracts. Phytomedicine 8(5):395–400

    Article  Google Scholar 

  • Phull AR, Abbas Q, Ali A, Raza H, Zia M, Haq IU (2016) Antioxidant, cytotoxic and antimicrobial activities of green synthesized silver nanoparticles from crude extract of Bergenia ciliata. Fut J Pharm Sci 2(1):31–36

    Google Scholar 

  • Radhika Rajasree SR, Ganesh Kumar V, Stanley Abraham L, Inbakandan D (2010) Studies on the toxicological effects of engineered nanoparticles in environment—a review. Int J Appl Bioeng 4(2):44–53

    Article  Google Scholar 

  • Rajabi S, Ramazani A, Hamidi M, Naji T (2015) Artemia salina as a model organism in toxicity assessment of nanoparticles. Daru J Pharm Sci 23:20

    Article  CAS  Google Scholar 

  • Sarah QS, Anny FC, Misbahuddin M (2017) Brine shrimp lethality assay. Bangladesh J Pharmacol 12:186–189

    Article  Google Scholar 

  • Selvi CK (2016) Brine shrimp lethality assay of some medicinal plants using Artemia franciscana and Artemia salina. Int J Sci Res 7(3)

    Google Scholar 

  • Suh WH, Suslick KS, Stucky GD, Suh YH (2009) Nanotechnology, nanotoxicology, and neuroscience. Prog Neurobiol 87:133–170

    Article  CAS  PubMed  Google Scholar 

  • Sumitha S, Vasanthi S, Shalini S, Chinni SV, Gopinath SCB, Anbu P, Bahari MB, Harish R, Kathiresan S, Ravichandran V (2018) Phyto-mediated photo catalysed green synthesis of silver nanoparticles using Durio zibethinus seed extract: antimicrobial and cytotoxic activity and photocatalytic applications. Molecules 23(12):3311

    Article  CAS  PubMed Central  Google Scholar 

  • Supraja N, Prasad TNVKV, Gandhi AD, Anbumani D, Kavitha P, Babujanarthanam R (2018) Synthesis, characterization and evaluation of antimicrobial efficacy and brine shrimp lethality assay of Alstonia scholarisstem bark extract mediated ZnONPs. Biochem Biophys Rep 14:69–77

    PubMed  PubMed Central  Google Scholar 

  • Taghavi SM, Momenpour M, Azarian M, Ahmadian M, Souri F, Taghavi SA, Sadeghain M, Kachani M (2013) Effects of nanoparticles on the environment and outdoor workplaces. Electron Physician 5(4):706–712

    PubMed  PubMed Central  Google Scholar 

  • Yazhiniprabha M, Vaseeharan B, Sonawane A, Behera A (2019) In vitro and In vivo toxicity assessment of phytofabricated ZnO nanoparticles showing bacteriostatic effect and larvicidal efficacy against Culex quinquefasciatus. J Photochem Photobiol B 192:158–169

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Lu Y (2018) Artemia spp. model - a well-established method for rapidly assessing the toxicity on an environmental perspective. Med Res Arch 6(2):1–15

    Google Scholar 

  • Zhu MT, Feng WY, Wang B, Wang TC, Gu YQ, Wang M, Wang Y, Ouyang H, Zhau YL, Chai ZF (2008) Comparative study of pulmonary responses to nano-and submicron-sized ferric oxide in rats. Toxicology 247(2):102–111

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hnamte, S., Kaviyarasu, K., Siddhardha, B. (2020). Evaluation of Toxicity of Nanoparticles Using Brine Shrimp. In: Siddhardha, B., Dyavaiah, M., Kasinathan, K. (eds) Model Organisms to Study Biological Activities and Toxicity of Nanoparticles. Springer, Singapore. https://doi.org/10.1007/978-981-15-1702-0_19

Download citation

Publish with us

Policies and ethics