Skip to main content

Caenorhabditis elegans: Evaluation of Nanoparticle Toxicity

  • Chapter
  • First Online:
Model Organisms to Study Biological Activities and Toxicity of Nanoparticles

Abstract

The relevance of Caenorhabditis elegans (C. elegans) as an in vivo model organism in the study of nanoparticle/biological interactions and nanotoxicology has gained popularity recently. This is attributed to its short life cycle, a high degree of homology with higher organisms, and cost-effective maintenance. The ability of worms to self-fertilize and generate large numbers of progeny aided with the presence of complex tissue systems is ideal for nanotoxicological multiple endpoint study both in terms of mechanistic and high-throughput screening approaches. Nanoparticle-mediated toxicity in C. elegans can be assessed using different standard methods and protocols. For example, assays that determine worm growth, mortality rate, reproductive capability, and locomotion changes can provide accurate measurements and predictability when applied to higher mammalian systems. The use of reporter gene analysis such as green fluorescence protein (GFP) in transgenic strains and microRNAs studies in C. elegans has led to the discovery of different biomarkers for toxicity studies. Thus, researches on C. elegans model have contributed immensely to our realms of knowledge in nanoparticle-based toxicity, and this has allowed for elucidation of alterations at the cellular and molecular levels. In this chapter, discussions are directed toward our general outlook of C. elegans as a model organism to study nanoparticle-mediated toxicity and the different approaches and assays employed regularly in the measurement of nanotoxicity. Special emphasis is taken considering significances of different biomarkers and molecular responses involved in the process (e.g., oxidative stress, DNA damage, and apoptosis, endoplasmic reticulum stress). Finally, based on recent evidence, the roles of common and important signaling pathways in regulations of nanotoxicity formation in C. elegans (p38 MAPK signaling, insulin signaling, programmed cell death, and TGF-β signaling pathway) are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahn J-M, Eom H-J, Yang X, Meyer JN, Choi J (2014) Comparative toxicity of silver nanoparticles on oxidative stress and DNA damage in the nematode, Caenorhabditis elegans. Chemosphere 108:343–352

    Article  CAS  PubMed  Google Scholar 

  • Amrit FRG, Ratnappan R, Keith SA (2014) The C. elegans lifespan assay toolkit. Methods 68:465–475

    Article  CAS  PubMed  Google Scholar 

  • Anderson GL, Boyd WA, Williams PL (2001) Assessment of sublethal endpoints for toxicity testing with the nematode Caenorhabditis elegans. Environ Toxicol Chem 20:833–838

    Article  CAS  PubMed  Google Scholar 

  • Antebi A (2007) Genetics of aging in Caenorhabditis elegans. PLoS Genet 3:e129

    Article  CAS  PubMed Central  Google Scholar 

  • Ashrafi K, Chang FY, Watts JL, Fraser AG, Kamath RS, Ahringer J, Ruvkun G (2003) Genome-wide RNAi analysis of Caenorhabditis elegans fat regulatory genes. Nature 421:268–272

    Article  CAS  PubMed  Google Scholar 

  • Barsyte D, Lovejoy DA, Lithgow GJ (2001) Longevity and heavy metal resistance in daf-2 and age-1 long-lived mutants of Caenorhabditis elegans. FASEB J 15:627–634

    Article  CAS  PubMed  Google Scholar 

  • Baumeister R, Schaffitzel E, Hertweck M (2006) Endocrine signaling in Caenorhabditis elegans controls stress response and longevity. J Endocrinol 190:191–202

    Article  CAS  PubMed  Google Scholar 

  • Boyd WA, McBride SJ, Rice JR, Snyder DW, Freedman JH (2010) A high-throughput method for assessing chemical toxicity using a Caenorhabditis elegans reproduction assay. Toxicol Appl Pharmacol 245:153–159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Braeckman BP, Houthoofd K, De Vreese A, Vanfleteren JR (2002) Assaying metabolic activity in ageing Caenorhabditis elegans. Mech Ageing Dev 123:105–119

    Article  CAS  PubMed  Google Scholar 

  • Brar SK, Verma M, Tyagi RD, Surampalli RY (2010) Engineered nanoparticles in wastewater and wastewater sludge – evidence and impacts. Waste Manag 30:504–520

    Article  CAS  PubMed  Google Scholar 

  • Braungart E, Gerlach M, Riederer P, Baumeister R, Hoener MC (2004) Caenorhabditis elegans MPP+ model of Parkinson’s disease for high-throughput drug screening. Neurodegener Dis 1:175–183

    Article  CAS  PubMed  Google Scholar 

  • Brunk UT, Terman A (2002) The mitochondrial-lysosomal axis theory of aging. Eur J Biochem 269:1996–2002

    Article  CAS  PubMed  Google Scholar 

  • Burden N, Chapman K, Sewell F, Robinson V (2015) Pioneering better science through the 3Rs: an introduction to the national centre for the replacement, refinement, and reduction of animals in research (NC3Rs). J Am Assoc Lab Anim Sci 54(2):198–208

    PubMed  PubMed Central  Google Scholar 

  • Buzea C, Pacheco II, Robbie K (2007) Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2:MR17–MR71

    Article  PubMed  Google Scholar 

  • Castello PR, Drechsel DA, Patel M (2007) Mitochondria are a major source of paraquat-induced reactive oxygen species production in the brain. J Biol Chem 282:14186–14193

    Article  CAS  PubMed  Google Scholar 

  • Cha YJ, Lee J, Choi SS (2012) Apoptosis-mediated in vivo toxicity of hydroxylated fullerene nanoparticles in soil nematode Caenorhabditis elegans. Chemosphere 87:49–54

    Article  CAS  PubMed  Google Scholar 

  • Chalfie M, Tu Y, Euskirchen G, Ward W, Prasher D (1994) Green fluorescent protein as a marker for gene expression. Science 263:802–805

    Article  CAS  PubMed  Google Scholar 

  • Charão MF, Souto C, Brucker N, Barth A, Jornada DS, Fagundez D, Ávila DS, Eifler-Lima VL, Guterres SS, Pohlmann AR, Garcia SC (2015) Caenorhabditis elegans as an alternative in vivo model to determine oral uptake, nanotoxicity, and efficacy of melatonin-loaded lipid-core nanocapsules on paraquat damage. Int J Nanomedicine 10:5093–5106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chatterjee N, Eom HJ, Choi J (2014) Effects of silver nanoparticles on oxidative DNA damage-repair as a function of p38 MAPK status: a comparative approach using human Jurkat T cells and the nematode Caenorhabditis elegans. Environ Mol Mutagen 55:122–133

    Article  CAS  PubMed  Google Scholar 

  • Chávez-Andrade GM, Tanomaru-Filho M, Rodrigues EM, Gomes-Cornélio AL, Faria G, Bernardi MIB, Guerreiro-Tanomaru JM (2017) Cytotoxicity, genotoxicity and antibacterial activity of poly(vinyl alcohol)-coated silver nanoparticles and farnesol as irrigating solutions. Arch Oral Biol 84:89–93

    Article  CAS  PubMed  Google Scholar 

  • Chen F, Hersh BM, Conradt B, Zhou Z, Riemer D, Gruenbaum Y, Horvitz HR (2000) Translocation of C. elegans CED-4 to nuclear membranes during programmed cell death. Science 287:1485–1489

    Article  CAS  PubMed  Google Scholar 

  • Chen C, Fenk LA, de Bono M (2013) Efficient genome editing in Caenorhabditis elegans by CRISPR-targeted homologous recombination. Nucleic Acids Res 41:e193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi HS, Ashitate Y, Lee JH, Kim SH, Matsui A, Insin N et al (2010) Rapid translocation of nanoparticles from the lung airspaces to the body. Nat Biotechnol 28:1300–1303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi J, Tsyusko OV, Unrine JM, Chatterjee N, Ahn J-M, Yang X, Thornton BL, Ryde IT, Starnes D, Meyer JN (2014) A micro-sized model for the in vivo study of nanoparticle toxicity: what has Caenorhabditis elegans taught us? Environ Chem 11:227

    Article  CAS  Google Scholar 

  • Cinar H, Keles S, Jin Y (2005) Expression profiling of GABAergic motor neurons in Caenorhabditis elegans. Curr Biol 15:340–346

    Article  CAS  PubMed  Google Scholar 

  • Conradt B, Horvitz HR (1998) The C. elegans protein EGL-1 is required for programmed cell death and interacts with the Bcl-2-like protein CED-9. Cell 93:519–529

    Article  CAS  PubMed  Google Scholar 

  • Conradt B, Horvitz HR (1999) The TRA-1A sex determination protein of C. elegans regulates sexually dimorphic cell deaths by repressing the egl-1 cell death activator gene. Cell 98:317–327

    Google Scholar 

  • Damoiseaux R, George S, Li M, Pokhrel S, Ji Z, France B, Xia T, Suarez E, Rallo R, Mädler L, Cohen Y, Hoek EM, Nel A (2011) No time to lose—high throughput screening to assess nanomaterial safety. Nanoscale 3:1345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dhawan R, Dusenbery DB, Williams PL (1999) Comparison of lethality, reproduction, and behavior as toxicological endpoints in the nematode Caenorhabditis elegans. J Toxicol Environ Health A 58:451–462

    Article  CAS  PubMed  Google Scholar 

  • Dong S, Qu M, Rui Q, Wang D (2018) Combinational effect of titanium dioxide nanoparticles and nanopolystyrene particles at environmentally relevant concentrations on nematode Caenorhabditis elegans. Ecotoxicol Environ Saf 161:444–450

    Article  CAS  PubMed  Google Scholar 

  • Duerr J (2006) Immunohistochemistry. WormBook

    Google Scholar 

  • Earls LR, Hacker ML, Watson JD, Miller DM III (2010) Coenzyme Q protects Caenorhabditis elegans GABA neurons from calcium-dependent degeneration. Proc Natl Acad Sci U S A 107:14460–14465

    Article  PubMed  PubMed Central  Google Scholar 

  • Fire A, Harrison SW, Dixon D (1990) A modular set of lacZ fusion vectors for studying gene expression in Caenorhabditis elegans. Gene 93:189–198

    Article  CAS  PubMed  Google Scholar 

  • Fisher RA (1990) Statistical methods, experimental design, and scientific inference. Oxford University Press, Oxford

    Google Scholar 

  • Gami MS, Wolkow CA (2006) Studies of Caenorhabditis elegans DAF-2/insulin signaling reveal targets for pharmacological manipulation of lifespan. Aging Cell 5:31–37

    Article  CAS  PubMed  Google Scholar 

  • Garigan D, Hsu AL, Fraser AG, Kamath RS, Ahringer J, Kenyon C (2002) Genetic analysis of tissue aging in Caenorhabditis elegans: a role for heatshock factor and bacterial proliferation. Genetics 161:1101–1112

    Google Scholar 

  • Gill MS, Olsen A, Sampayo JN, Lithgow GJ (2003) An automated high-throughput assay for survival of the nematode Caenorhabditis elegans. Free Radic Biol Med 35:558–565

    Article  CAS  PubMed  Google Scholar 

  • Gomez-Eyles JL, Svendsen C, Lister L, Martin H, Hodson ME, Spurgeon DJ (2009) Measuring and modelling mixture toxicity of imidacloprid and thiacloprid on Caenorhabditis elegans and Eisenia fetida. Ecotoxicol Environ Saf 72:71–79

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez L, Lison D, Kirsch-Volders M (2008) Genotoxicity of engineered nanomaterials: a critical review. Nanotoxicol 2:252–273

    Google Scholar 

  • Guix M, Carbonell C, Comenge J, García-Fernández L, Alarcón A, Casals E (2008) Nanoparticles for cosmetics. How safe is safe? Contrib Sci 4:213–217

    Google Scholar 

  • Gulson B, McCall M, Korsch M, Gomez L, Casey P, Oytam Y, Taylor A, McCulloch M, Trotter J, Kinsley L, Greenoak G (2010) Small amounts of zinc from zinc oxide particles in sunscreens applied outdoors are absorbed through human skin. Toxicol Sci 118:140–149

    Article  CAS  PubMed  Google Scholar 

  • Hae-Eun HP, Yoonji J, Seung-Jae VL (2017) Survival assays using Caenorhabditis elegans. Mol Cells 40:90–99

    Article  CAS  Google Scholar 

  • Hall SE, Beverly M, Russ C, Nusbaum C, Sengupta P (2010) A cellular memory of developmental history generates phenotypic diversity in C. elegans. Curr Biol 20:149–155

    Google Scholar 

  • Handy RD, Cornelis G, Fernandes T, Tsyusko O, Decho A, Sabo-Attwood T, Metcalfe C, Steevens JA, Klaine SJ, Koelmans AA, Horne N (2012) Ecotoxicity test methods for engineered nanomaterials: practical experiences and recommendations from the bench. Environ Toxicol Chem 31:15–31

    Article  CAS  PubMed  Google Scholar 

  • Harada H, Kurauchi M, Hayashi R, Eki T (2007) Shortened lifespan of nematode Caenorhabditis elegans after prolonged exposure to heavy metals and detergents. Ecotoxicol Environ Saf 66:378–383

    Article  CAS  PubMed  Google Scholar 

  • Harris TW, Chen N, Cunningham F, Tello-Ruiz M, Antoshechkin I, Bastiani C, Bieri T, Blasiar D, Bradnam K, Chan J, Chen C-K, Chen WJ, Davis P, Kenny E, Kishore R, Lawson D, Lee R, Muller H-M, Nakamura C, Ozersky P, Petcherski A, Rogers A, Sabo A, Schwarz EM, Van Auken K, Wang Q, Durbin R, Spieth J, Sternberg PW, Stein LD (2004) WormBase: a multi-species resource for nematode biology and genomics. Nucleic Acids Res 32:D411–D417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hartung T, Corsini E, Hartung T (2013) Immunotoxicology: challenges in the 21st century and in vitro opportunities. ALTEX 30:411–426

    Article  PubMed  Google Scholar 

  • Haskins K, Russell J, Gaddis N, Dressman HK, Aballay A (2008) Unfolded protein response genes regulated by CED-1 are required for Caenorhabditis elegans innate immunity. Dev Cell 15(1):87–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Helmcke KJ, Avila DS, Aschner M (2010) Utility of Caenorhabditis elegans in high throughput neurotoxicological research. Neurotoxicol Teratol 32:62–67

    Article  CAS  PubMed  Google Scholar 

  • Hengartner MO, Horvitz HR (1994) C. elegans cell survival gene ced-9 encodes a functional homolog of the mammalian proto-oncogene bcl-2. Cell 76:665–676

    Article  CAS  PubMed  Google Scholar 

  • Hengartner MO, Ellis R, Horvitz R (1992) Caenorhabditis elegans gene ced-9 protects cells from programmed cell death. Nature 356:494–499

    Article  CAS  PubMed  Google Scholar 

  • Hobert O (2010) Neurogenesis in the nematode Caenorhabditis elegans. WormBook

    Google Scholar 

  • Hsu PC, O’Callaghan M, Al-Salim N, Hurst MR (2012) Quantum dot nanoparticles affect the reproductive system of Caenorhabditis elegans. Environ Toxicol Chem 31:2366–2374

    Article  CAS  PubMed  Google Scholar 

  • Hu C-C, Wu G-H, Hua T-E, Wagner OI, Yen T-J (2018a) Uptake of TiO2 nanoparticles into C. elegans neurons negatively affects axonal growth and worm locomotion behavior. ACS Appl Mater Interfaces 10:8485–8495

    Article  CAS  PubMed  Google Scholar 

  • Hu C-C, Wu G-H, Lai S-F, Muthaiyan Shanmugam M, Hwu Y, Wagner OI, Yen T-J (2018b) Toxic effects of size-tunable gold nanoparticles on Caenorhabditis elegans development and gene regulation. Sci Rep 8:15245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hunt PR (2017) The C. elegans model in toxicity testing. J Appl Toxicol 37:50–59

    Article  CAS  PubMed  Google Scholar 

  • Hunt PR, Olejnik N, Sprando RL (2012) Toxicity ranking of heavy metals with screening method using adult Caenorhabditis elegans and propidium iodide replicates toxicity ranking in rat. Food Chem Toxicol 50:3280–3290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hunter SE, Gustafson MA, Margillo KM, Lee SA, Ryde IT, Meyer JN (2012) In vivo repair of alkylating and oxidative DNA damage in the mitochondrial and nuclear genomes of wild-type and glycosylase-deficient Caenorhabditis elegans. DNA Repair (Amst) 11:857–863

    Article  CAS  Google Scholar 

  • Hussain SM, Hess KL, Gearhart JM, Geiss KT, Schlager JJ (2005) In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol In Vitro 19:975–983

    Article  CAS  PubMed  Google Scholar 

  • Inoue H, Hisamoto N, An JH, Oliveira RP, Nishida E, Blackwell TK, Matsumoto K (2005) The C. elegans p38 MAPK pathway regulates nuclear localization of the transcription factor SKN-1 in oxidative stress response. Genes Dev 19:2278–2283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jat D, Nahar M (2010) Oxidative stress and antioxidants. J Equine Vet Sci 20:499

    Google Scholar 

  • Jiang Y, Chen J, Wu Y, Wang Q, Li H (2016) Sublethal toxicity endpoints of heavy metals to the nematode Caenorhabditis elegans. PLoS One 11:e0148014

    Google Scholar 

  • Jung S-K, Qu X, Aleman-Meza B, Wang T, Riepe C, Liu Z, Li Q, Zhong W (2015) Multi-endpoint, high-throughput study of nanomaterial toxicity in Caenorhabditis elegans. Environ Sci Technol 49:2477–2485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaletta T, Hengartner MO (2006) Finding function in novel targets: C. elegans as a model organism. Nat Rev Drug Discov 5:387–399

    Article  CAS  PubMed  Google Scholar 

  • Kaplan EL, Meier P (1958) Nonparametric estimation from incomplete observations. Nonparametric estimation from incomplete observations. J Am Stat Assoc 53:457–481

    Article  Google Scholar 

  • Keith SA, Amrit FRG, Ratnappan R, Ghazi A (2014) The C. elegans healthspan and stress-resistance assay toolkit. Methods 68:476–486

    Article  CAS  PubMed  Google Scholar 

  • Kelly KO, Dernburg AF, Stanfield GM, Villeneuve AM (2000) Caenorhabditis elegans msh-5 is required for both normal and radiation-induced meiotic crossing over but not for completion of meiosis. Genetics 156:617–630

    CAS  PubMed  PubMed Central  Google Scholar 

  • Khare P, Sonane M, Nagar Y, Moin N, Ali S, Gupta KC, Satish A (2014) Size dependent toxicity of zinc oxide nano-particles in soil nematode. Nanotoxicology 9(4):423–432

    Article  CAS  PubMed  Google Scholar 

  • Khare P, Sonane M, Nagar Y, Moin N, Ali S, Gupta KC, Satish A (2015) Size dependent toxicity of zinc oxide nano-particles in soil nematode Caenorhabditis elegans. Nanotoxicol 9:423–432

    Google Scholar 

  • Kim J, Sharma RP (2004) Calcium-mediated activation of c-Jun NH2-terminal kinase (JNK) and apoptosis in response to cadmium in murine macrophages. Toxicol Sci 81:518–527

    Article  CAS  PubMed  Google Scholar 

  • Kim DH, Feinbaum R, Alloing G, Emerson FE, Garsin DA, Inoue H, Tanaka-Hino M, Hisamoto N, Matsumoto K, Tan M-W, Ausubel FM (2002) A conserved p38 MAP kinase pathway in Caenorhabditis elegans innate immunity. Science 297:623–626

    Article  CAS  PubMed  Google Scholar 

  • Kim H, Jeong J, Chatterjee N, Roca CP, Yoon D, Kim S, Kim Y, Choi J (2017a) JAK/STAT and TGF-β activation as potential adverse outcome pathway of TiO2NPs phototoxicity in Caenorhabditis elegans. Sci Rep 7:17833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim JH, Lee SH, Cha YJ, Hong SJ, Chung SK, Park TH, Choi SS (2017b) C. elegans-on-a-chip for in situ and in vivo Ag nanoparticles’ uptake and toxicity assay. Sci Rep 7:40225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim HM, Lee D-K, Long NP, Kwon SW, Park JH (2019) Uptake of nanopolystyrene particles induces distinct metabolic profiles and toxic effects in Caenorhabditis elegans. Environ Pollut 246:578–586

    Article  CAS  PubMed  Google Scholar 

  • Klass MR (1977) Aging in the nematode Caenorhabditis elegans: major biological and environmental factors influencing life span. Mech Ageing Dev 6:413–429

    Article  CAS  PubMed  Google Scholar 

  • Kokura S, Handa O, Takagi T, Ishikawa T, Naito Y, Yoshikawa T (2010) Silver nanoparticles as a safe preservative for use in cosmetics. Nanomedicine 6:570–574

    Article  CAS  PubMed  Google Scholar 

  • Lai E, Teodoro T, Volchuk A (2007) Endoplasmic reticulum stress: signaling the unfolded protein response. Physiology 22:193–201

    Article  CAS  PubMed  Google Scholar 

  • Lant B, Derry WB (2013) Methods for detection and analysis of apoptosis signaling in the C. elegans germline. Methods 61:174–182

    Article  CAS  PubMed  Google Scholar 

  • Lee RY, Sawin ER, Chalfie M, Horvitz HR, Avery L (1999) EAT-4, a homolog of a mammalian sodium-dependent inorganic phosphate cotransporter, is necessary for glutamatergic neurotransmission in caenorhabditis elegans. J Neurosci 19:159–167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lettre G, Hengartner MO (2006) Developmental apoptosis in C. elegans: a complex CEDnario. Nat Rev Mol Cell Biol 7(2):97–108

    Article  CAS  PubMed  Google Scholar 

  • Leung MCK, Williams PL, Benedetto A, Au C, Helmcke KJ, Aschner M, Meyer JN (2008) Caenorhabditis elegans: an emerging model in biomedical and environmental toxicology. Toxicol Sci 106:5–28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levitan D, Doyle TG, Brousseau D, Lee MK, Thinakaran G, Slunt HH, Sisodia SS, Greenwald I (1996) Assessment of normal and mutant human presenilin function in Caenorhabditis elegans. Proc Natl Acad Sci U S A 93:14940–14944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li JJ, Zou L, Hartono D, Ong C-N, Bay B-H, Lanry Yung L-Y (2008) Gold nanoparticles induce oxidative damage in lung fibroblasts in vitro. Adv Mater 20:138–142

    Article  CAS  Google Scholar 

  • Li Y, Wang W, Wu Q, Li Y, Tang M, Ye B, Wang D (2012) Molecular control of TiO2-NPs toxicity formation at predicted environmental relevant concentrations by Mn-SODs proteins. PLoS One 7:e44688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Libina N, Berman JR, Kenyon C (2003) Tissue-specific activities of C. elegans DAF-16 in the regulation of lifespan. Cell 115:489–502

    Article  CAS  PubMed  Google Scholar 

  • Lim D, Roh J, Eom H, Choi J-Y, Hyun J, Choi J (2012) Oxidative stress-related PMK-1 P38 MAPK activation as a mechanism for toxicity of silver nanoparticles to reproduction in the nematode Caenorhabditis elegans. Environ Toxicol Chem 31:585–592

    Article  CAS  PubMed  Google Scholar 

  • Ludwig KL, Wick P, Manser P, Grass RN, Bruinink A, Stark WJ (2007) Exposure of engineered nanoparticles to human lung epithelial cells: influence of chemical composition and catalytic activity on oxidative stress. Environ Sci Technol 41:4158–4163

    Article  CAS  Google Scholar 

  • Luo X, Xu S, Yang Y, Li L, Chen S, Xu A, Wu L (2016) Insights into the ecotoxicity of silver nanoparticles transferred from Escherichia coli to Caenorhabditis elegans. Sci Rep 6:36465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma Q (2010) Transcriptional responses to oxidative stress: pathological and toxicological implications. Pharmacol Ther 125:376–393

    Article  CAS  PubMed  Google Scholar 

  • Ma H, Bertsch PM, Glenn TC, Kabengi NJ, Williams PL (2009) Toxicity of manufactured zinc oxide nanoparticles in the nematode Caenorhabditis elegans. Environ Toxicol Chem 28:1324

    Article  CAS  PubMed  Google Scholar 

  • Mak HY, Nelson LS, Basson M, Johnson CD, Ruvkun G (2006) Polygenic control of Caenorhabditis elegans fat storage. Nat Genet 38:363–368

    Article  CAS  PubMed  Google Scholar 

  • Mallo GV, Kurz CL, Couillault C, Pujol N, Pujol N, Granjeaud S, Kohara Y, Ewbank JJ (2002) Inducible antibacterial defense system in C. elegans. Curr Biol 12:1209–1214

    Article  CAS  PubMed  Google Scholar 

  • Mantel N (1966) Evaluation of survival data and two new rank order statistics arising in its consideration. Cancer Chemother Rep 50:163–170

    CAS  PubMed  Google Scholar 

  • Marano F, Hussain S, Rodrigues-Lima F, Baeza-Squiban A, Boland S (2011) Nanoparticles: molecular targets and cell signalling. Arch Toxicol 85:733–741

    Article  CAS  PubMed  Google Scholar 

  • Markaki M, Tavernarakis N (2010) Modeling human diseases in Caenorhabditis elegans. Biotechnol J 5:1261–1276

    Article  CAS  PubMed  Google Scholar 

  • Mashock MJ, Zanon T, Kappell AD, Petrella LN, Andersen EC, Hristova KR (2016) Copper oxide nanoparticles impact several toxicological endpoints and cause neurodegeneration in Caenorhabditis elegans. PLoS One 11:e0167613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meyer JN, Leung MCK, Rooney JP, Sendoel A, Hengartner MO, Kisby GE, Bess AS (2013) Mitochondria as a target of environmental toxicants. Toxicol Sci 134:1–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohan N, Chen C-S, Hsieh H-H, Wu Y-C, Chang H-C (2010) In vivo imaging and toxicity assessments of fluorescent nanodiamonds in Caenorhabditis elegans. Nano Lett 10:3692–3699

    Article  CAS  PubMed  Google Scholar 

  • Moon J, Kwak JI, Kim SW, An YJ (2016) Multigenerational effects of gold nanoparticles in Caenorhabditis elegans: continuous versus intermittent exposures. Environ Pollut 220:46–52

    Article  CAS  PubMed  Google Scholar 

  • Nadeem M, Tungmunnithum D, Hano C, Abbasi BH, Hashmi SS, Ahmad W, Zahir A (2018) The current trends in the green syntheses of titanium oxide nanoparticles and their applications. Green Chem Lett Rev 11:492–502

    Article  CAS  Google Scholar 

  • Nass R, Hall DH, Miller DM, Blakely RD (2002) Neurotoxin-induced degeneration of dopamine neurons in Caenorhabditis elegans. Proc Natl Acad Sci U S A 99:3264–3269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nel A (2006) Toxic potential of materials at the nanolevel. Science 311:622–627

    Article  CAS  PubMed  Google Scholar 

  • Nel AE, Mädler L, Velegol D, Xia T, Hoek EM, Somasundaran P, Klaessig F, Castranova V, Thompson M (2009) Understanding biophysicochemical interactions at the nano–bio interface. Nat Mater 8:543–557

    Article  CAS  PubMed  Google Scholar 

  • O’Donnell B, Huo L, Polli JR, Qiu L, Collier DN, Zhang B, Pan X (2017) From the cover: ZnO nanoparticles enhanced germ cell apoptosis in Caenorhabditis elegans, in comparison with ZnCl2. Toxicol Sci 156:336–343

    PubMed  Google Scholar 

  • Ogg S, Paradis S, Gottlieb S, Patterson G, Nature LL (1997) The Fork head transcription factor DAF-16 transduces insulin-like metabolic and longevity signals in C. elegans. Nature 389(6654):994–999

    Article  CAS  PubMed  Google Scholar 

  • Olson H, Betton G, Robinson D, Thomas K, Monro A, Kolaja G, Lilly P, Sanders J, Sipes G, Bracken W, Dorato M, Van Deun K, Smith P, Berger B, Heller A (2000) Concordance of the toxicity of pharmaceuticals in humans and in animals. Regul Toxicol Pharmacol 32:56–67

    Article  CAS  PubMed  Google Scholar 

  • Peterson RT, Nass R, Boyd WA, Freedman JH, Dong K, Narahashi T (2008) Use of non-mammalian alternative models for neurotoxicological study. Neurotoxicol 29:546–555

    Google Scholar 

  • Piechulek A, von Mikecz A (2018) Life span-resolved nanotoxicology enables identification of age-associated neuromuscular vulnerabilities in the nematode Caenorhabditis elegans. Environ Pollut 233:1095–1103

    Article  CAS  PubMed  Google Scholar 

  • Pluskota A, Horzowski E, Bossinger O, von Mikecz A (2009) In Caenorhabditis elegans nanoparticle-bio-interactions become transparent: silica-nanoparticles induce reproductive senescence. PLoS One 4:e6622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qiao Y, Zhao Y, Wu Q, Sun L, Ruan Q, Chen Y, Wang M, Duan J, Wang D (2014) Full toxicity assessment of Genkwa Flos and the underlying mechanism in nematode Caenorhabditis elegans. PLoS One 9:e91825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qu Y, Li W, Zhou Y, Liu X, Zhang L, Wang L, Li Y, Iida A, Tang Z, Zhao Y, Chai Z, Chen C (2011) Full assessment of fate and physiological behavior of quantum dots utilizing Caenorhabditis elegans as a model organism. Nano Lett 11:3174–3183

    Article  CAS  PubMed  Google Scholar 

  • Qu M, Liu Y, Xu K, Wang D (2019) Activation of p38 MAPK signaling-mediated endoplasmic reticulum unfolded protein response by nanopolystyrene particles. Adv Biosyst 3:1800325

    Article  CAS  Google Scholar 

  • Ren M, Zhao L, Lv X, Wang D (2017) Antimicrobial proteins in the response to graphene oxide in Caenorhabditis elegans. Nanotoxicol 11:578–590

    Google Scholar 

  • Rogers S, Rice KM, Manne ND, Shokuhfar T, He K, Selvaraj V, Blough ER (2015) Cerium oxide nanoparticle aggregates affect stress response and function in Caenorhabditis elegans. SAGE Open Med 3:2050312115575387

    Article  PubMed  PubMed Central  Google Scholar 

  • Roh J-Y, Choi J (2008) Ecotoxicological evaluation of chlorpyrifos exposure on the nematode Caenorhabditis elegans. Ecotoxicol Environ Saf 71:483–489

    Article  CAS  PubMed  Google Scholar 

  • Roh J-Y, Lee J, Choi J (2006) Assessment of stress-related gene expression in the heavy metal–exposed nematode Caenorhabditis elegans: a potential biomarker for metal-induced toxicity monitoring and environmental risk assessment. Environ Toxicol Chem 25:2946

    Article  CAS  PubMed  Google Scholar 

  • Roh J, Sim SJ, Yi J, Park K, Chung KH, Ryu D, Choi J (2009) Ecotoxicity of silver nanoparticles on the soil nematode Caenorhabditis elegans using functional ecotoxicogenomics. Environ Sci Technol 43:3933–3940

    Article  CAS  PubMed  Google Scholar 

  • Roh J-Y, Eom H-J, Choi J (2012) Involvement of Caenohabditis elegans MAPK signaling pathways in oxidative stress response induced by silver nanoparticles exposure. Toxicol Res 28:19–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roth BL, Poot M, Yue ST, Millard PJ (1997) Bacterial viability and antibiotic susceptibility testing with SYTOX green nucleic acid stain. Appl Environ Microbiol 63:2421–2431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rudel D, Douglas CD, Huffnagle IM, Besser JM, Ingersoll CG (2013) Assaying environmental nickel toxicity using model nematodes. PLoS One 8:e77079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruzanov P, Riddle DL (2010) Deep SAGE analysis of the Caenorhabditis elegans transcriptome. Nucleic Acids Res 38:3252–3262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Savage-Dunn C, Padgett RW (2017) The TGF-b family in Caenorhabditis elegans. Cold Spring Harb Perspect Biol 9(6):a022178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scharf A, Piechulek A, von Mikecz A (2013) Effect of nanoparticles on the biochemical and behavioral aging phenotype of the nematode Caenorhabditis elegans. ACS Nano 7:10695–10703

    Article  CAS  PubMed  Google Scholar 

  • Scharf A, Gührs K-H, von Mikecz A (2016) Anti-amyloid compounds protect from silica nanoparticle-induced neurotoxicity in the nematode C. elegans. Nanotoxicol 10:426–435

    Google Scholar 

  • Shakoor S, Sun L, Wang D (2016) Multi-walled carbon nanotubes enhanced fungal colonization and suppressed innate immune response to fungal infection in nematodes. Toxicol Res (Camb) 5:492–499

    Article  CAS  Google Scholar 

  • Shao H, Han Z, Krasteva N, Wang D (2019) Identification of signaling cascade in the insulin signaling pathway in response to nanopolystyrene particles. Nanotoxicol 13:174–188

    Google Scholar 

  • Shashikumar S, Rajini PS (2010) Cypermethrin elicited responses in heat shock protein and feeding in Caenorhabditis elegans. Ecotoxicol Environ Saf 73:1057–1062

    Article  CAS  PubMed  Google Scholar 

  • Shen L, Xiao J, Ye H, Wang D (2009) Toxicity evaluation in nematode Caenorhabditis elegans after chronic metal exposure. Environ Toxicol Pharmacol 28:125–132

    Article  CAS  PubMed  Google Scholar 

  • Singh J (2012) The national centre for the replacement, refinement, and reduction of animals in research. J Pharmacol Pharmacother 3:87–89

    PubMed  PubMed Central  Google Scholar 

  • Smith MA, Zhang Y, Polli JR, Wu H, Zhang B, Xiao P, Farwell MA, Pan X, Pan X (2013) Impacts of chronic low-level nicotine exposure on Caenorhabditis elegans reproduction: identification of novel gene targets. Reprod Toxicol 40:69–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soenen SJ, Rivera-Gil P, Montenegro J-M, Parak WJ, De Smedt SC, Braeckmans K (2011) Cellular toxicity of inorganic nanoparticles: common aspects and guidelines for improved nanotoxicity evaluation. Nano Today 6:446–465

    Article  CAS  Google Scholar 

  • Sonnhammer ELL, Durbin R (1997) Analysis of protein domain families in Caenorhabditis elegans. Genomics 46:200–216

    Article  CAS  PubMed  Google Scholar 

  • Stergiou L, Hengartner MO (2004) Death and more: DNA damage response pathways in the nematode C. elegans. Cell Death Differ 11:21–28

    Article  CAS  PubMed  Google Scholar 

  • Sulston JE, Horvitz HR (1981) Abnormal cell lineages in mutants of the nematode Caenorhabditis elegans. Dev Biol 82:41–55

    Article  CAS  PubMed  Google Scholar 

  • Sulston JE, Schierenberg E, White JG, Thomson JN (1983) The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev Biol 100:64–119

    Article  CAS  PubMed  Google Scholar 

  • Susman KM, Chou EL, Lemoine H (2016) Use of model organism Caenorhabditis elegans to elucidate neurotoxic and behavioral effects of commercial fungicides. In: Neurotoxins. Intech, Rijeka, p 13

    Google Scholar 

  • Swain SC, Keusekotten K, Baumeister R, Stürzenbaum SR (2004) C. elegans metallothioneins: new insights into the phenotypic effects of cadmium toxicosis. J Mol Biol 341:951–959

    Article  CAS  PubMed  Google Scholar 

  • Sze JY, Victor M, Loer C, Shi Y, Ruvkun G (2000) Food and metabolic signalling defects in a Caenorhabditis elegans serotonin-synthesis mutant. Nature 403:560–564

    Article  CAS  PubMed  Google Scholar 

  • Tan BL, Norhaizan ME, Liew W-P-P, Sulaiman Rahman H (2018) Antioxidant and oxidative stress: a mutual interplay in age-related diseases. Front Pharmacol 9:1162

    Article  PubMed  PubMed Central  Google Scholar 

  • Thomas KV, Farkas J, Farmen E, Christian P, Langford K, Wu Q, Tollefsen K-E (2011) Effects of dispersed aggregates of carbon and titanium dioxide engineered nanoparticles on rainbow trout hepatocytes. J Toxicol Environ Health A 74:466–477

    Article  CAS  PubMed  Google Scholar 

  • Tsyusko OV, Unrine JM, Spurgeon D, Blalock E, Starnes D, Tseng M, Joice G, Bertsch PM (2012) Toxicogenomic responses of the model organism Caenorhabditis elegans to gold nanoparticles. Environ Sci Technol 46:4115–4124

    Article  CAS  PubMed  Google Scholar 

  • Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M (2006) Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact 160:1–40

    Article  CAS  PubMed  Google Scholar 

  • Van Voorhies WA, Ward S (1999) Genetic and environmental conditions that increase longevity in Caenorhabditis elegans decrease metabolic rate. Proc Natl Acad Sci U S A 96:11399–11403

    Article  PubMed  PubMed Central  Google Scholar 

  • Vanduyn N, Settivari R, Wong G, Nass R (2010) SKN-1/Nrf2 inhibits dopamine neuron degeneration in a Caenorhabditis elegans model of methylmercury toxicity. Toxicol Sci 118:613–624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vaux D, Weissman I, Kim S (1992) Prevention of programmed cell death in Caenorhabditis elegans by human bcl-2. Science 258:1955–1957

    Article  CAS  PubMed  Google Scholar 

  • Velculescu VE, Zhang L, Vogelstein B, Kinzler KW (1995) Serial analysis of gene expression. Science 270:484–487

    Article  CAS  PubMed  Google Scholar 

  • Vidal-Gadea A, Topper S, Young L, Crisp A, Kressin L, Elbel E, Maples T, Brauner M, Erbguth K, Axelrod A, Gottschalk A, Siegel D, Pierce-Shimomura JT (2011) Caenorhabditis elegans selects distinct crawling and swimming gaits via dopamine and serotonin. Proc Natl Acad Sci U S A 108:17504–17509

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang D-Y, Wang Y (2008) Phenotypic and behavioral defects caused by barium exposure in nematode Caenorhabditis elegans. Arch Environ Contam Toxicol 54:447–453

    Article  CAS  PubMed  Google Scholar 

  • Wang D, Xing X (2009) Pre-treatment with mild metal exposure suppresses the neurotoxicity on locomotion behavior induced by the subsequent severe metal exposure in Caenorhabditis elegans. Environ Toxicol Pharmacol 28:459–464

    Article  CAS  PubMed  Google Scholar 

  • Wang D-Y, Yang P (2007) Silver exposure causes transferable defects of phenotypes and behaviors in nematode Caenorhabditis elegans. Environ Bioindicators 2:89–98

    Article  CAS  Google Scholar 

  • Wang D, Shen L, Wang Y (2007) The phenotypic and behavioral defects can be transferred from zinc-exposed nematodes to their progeny. Environ Toxicol Pharmacol 24:223–230

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Farr GW, Hall DH, Li F, Furtak K, Dreier L, Horwicet AL (2009) An ALS-linked mutant SOD1 produces a locomotor defect associated with aggregation and synaptic dysfunction when expressed in neurons of Caenorhabditis elegans. PLoS Genet 5(1):e1000350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang D, Liu P, Yang Y, Shen L (2010) Formation of a combined Ca/Cd toxicity on lifespan of nematode Caenorhabditis elegans. Ecotoxicol Environ Saf 73:1221–1230

    Article  CAS  PubMed  Google Scholar 

  • White JG, Southgate E, Thomson JN, Brenner S (1986) The structure of the nervous system of the nematode Caenorhabditis elegans. Philos Trans R Soc B: Biol Sci 314:1–340

    Google Scholar 

  • Williams PL, Dusenbery DB (1988) Using the nematode Caenorhabditis elegans to predict mammalian acute lethality to metallic salts. Toxicol Ind Health 4:469–478

    Article  CAS  PubMed  Google Scholar 

  • Williams PL, Dusenbery DB (2016) Using the nematode Caenorhabditis elegans to predict mammalian acute lethality to metallic salts. Toxicol Ind Health 4(4):469–478

    Article  Google Scholar 

  • Winnier AR, Meir JY-J, Ross JM, Tavernarakis N, Driscoll M, Ishihara T, Katsura I, Miller DM (1999) UNC-4/UNC-37-dependent repression of motor neuron-specific genes controls synaptic choice in Caenorhabditis elegans. Genes Dev 13:2774–2786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu Q, He K, Liu P, Li Y, Wang D (2011a) Association of oxidative stress with the formation of reproductive toxicity from mercury exposure on hermaphrodite nematode Caenorhabditis elegans. Environ Toxicol Pharmacol 32:175–184

    Article  CAS  PubMed  Google Scholar 

  • Wu S, Lu J, Rui Q, Yu S, Cai T, Wang D (2011b) Aluminum nanoparticle exposure in L1 larvae results in more severe lethality toxicity than in L4 larvae or young adults by strengthening the formation of stress response and intestinal lipofuscin accumulation in nematodes. Environ Toxicol Pharmacol 31:179–188

    Article  CAS  PubMed  Google Scholar 

  • Wu Q, Li Y, Tang M, Wang D (2012) Evaluation of environmental safety concentrations of DMSA coated Fe2O3-NPs using different assay systems in nematode Caenorhabditis elegans. PLoS One 7:e43729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu Q, Nouara A, Li Y, Zhang M, Wang W, Tang M, Ye B, Ding J, Wang D (2013) Comparison of toxicities from three metal oxide nanoparticles at environmental relevant concentrations in nematode Caenorhabditis elegans. Chemosphere 90:1123–1131

    Article  CAS  PubMed  Google Scholar 

  • Wu Q, Zhao Y, Li Y, Wang D (2014) Susceptible genes regulate the adverse effects of TiO2-NPs at predicted environmental relevant concentrations on nematode Caenorhabditis elegans. Nanomedicine 10:1263–1271

    Article  CAS  PubMed  Google Scholar 

  • Xia T, Kovochich M, Brant J, Hotze M, Sempf J, Oberley T, Sioutas C, Yeh JI, Wiesner MR, Nel AE (2006) Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett 6:1794–1807

    Article  CAS  PubMed  Google Scholar 

  • Xia T, Kovochich M, Liong M, Mädler L, Gilbert B, Shi H, Yeh JI, Zink JI, Nel AE (2008) Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano 2:2121–2134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Y, Park Y (2018) Application of Caenorhabditis elegans for research on endoplasmic reticulum stress. Prev Nutr food Sci 23:275–281

    Google Scholar 

  • Yan N, Gu L, Kokel D, Chai J, Li W, Han A, Chen L, Xue D, Shi Y (2004) Structural, biochemical, and functional analyses of CED-9 recognition by the proapoptotic proteins EGL-1 and CED-4. Mol Cell 15:999–1006

    Article  CAS  PubMed  Google Scholar 

  • Yang R, Zhao Y, Yu X, Lin Z, Xi Z, Rui Q, Wang D (2015) Insulin signaling regulates the toxicity of traffic-related PM2.5 on intestinal development and function in nematode Caenorhabditis elegans. Toxicol Res (Camb) 4:333–343

    Article  CAS  Google Scholar 

  • Yang Y-F, Lin Y-J, Liao C-M (2017) Toxicity-based toxicokinetic/toxicodynamic assessment of bioaccumulation and nanotoxicity of zerovalent iron nanoparticles in Caenorhabditis elegans. Int J Nanomed 12:4607–4621

    Google Scholar 

  • Yu S, Rui Q, Cai T, Wu Q, Li Y, Wang D (2011) Close association of intestinal autofluorescence with the formation of severe oxidative damage in intestine of nematodes chronically exposed to Al2O3-nanoparticle. Environ Toxicol Pharmacol 32:233–241

    Article  CAS  PubMed  Google Scholar 

  • Yu X, Guan X, Wu Q, Zhao Y, Wang D (2015) Vitamin E ameliorates neurodegeneration related phenotypes caused by neurotoxicity of Al2O3-nanoparticles in C. elegans. Toxicol Res (Camb) 4:1269–1281

    Article  CAS  Google Scholar 

  • Zhao Y, Wu Q, Li Y, Wang D (2013) Translocation, transfer, and in vivo safety evaluation of engineered nanomaterials in the non-mammalian alternative toxicity assay model of nematode Caenorhabditis elegans. RSC Adv 3:5741

    Article  CAS  Google Scholar 

  • Zhao YL, Wu QL, Wang DY (2016) An epigenetic signal encoded protection mechanism is activated by graphene oxide to inhibit its induced reproductive toxicity in Caenorhabditis elegans. Biomaterials 79:15–24

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Yang J, Wang D (2016a) A microRNA-mediated insulin signaling pathway regulates the toxicity of multi-walled carbon nanotubes in nematode Caenorhabditis elegans. Sci Rep 6:23234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Yang R, Rui Q, Wang D (2016b) Intestinal insulin signaling encodes two different molecular mechanisms for the shortened longevity induced by graphene oxide in Caenorhabditis elegans. Sci Rep 6:24024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao L, Wan H, Liu Q, Wang D (2017) Multi-walled carbon nanotubes-induced alterations in microRNA let-7 and its targets activate a protection mechanism by conferring a developmental timing control. Part Fibre Toxicol 14:27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhuang Z, Zhao Y, Wu Q, Li M, Liu H, Sun L, Gao W, Wang D (2014) Adverse effects from clenbuterol and ractopamine on nematode Caenorhabditis elegans and the underlying mechanism. PLoS One 9:e85482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, S., Suchiang, K. (2020). Caenorhabditis elegans: Evaluation of Nanoparticle Toxicity. In: Siddhardha, B., Dyavaiah, M., Kasinathan, K. (eds) Model Organisms to Study Biological Activities and Toxicity of Nanoparticles. Springer, Singapore. https://doi.org/10.1007/978-981-15-1702-0_17

Download citation

Publish with us

Policies and ethics