Skip to main content

Drosophila melanogaster: A Model Organism to Understand Biological Activities of Nanoparticles

  • Chapter
  • First Online:

Abstract

Nanoparticles exhibit remarkable physicochemical features not inevitably found in bulk arrangements; their size or coating modifications distinctly alter their physical, chemical, and biological attributes. Owing to these unique properties, there is a general inclination to explore nanoparticles in numerous fields, viz., in medicine and food industry. To that end, our environment and human health are also affected by its toxicity. To study the reaction of nanoparticles with human cells and complex system, a thorough understanding of the parameters is necessary for the nanoparticles to react within the cells. As human-based trials are difficult with ethical barriers, one extensively exploited laboratory model organism, viz., Drosophila melanogaster, is used as an in vivo model organism for the study of developmental biology, genetics, and recently host pathogenicity. D. melanogaster is very much genetically malleable organism with its short life-cycle, clear developmental stages and availability. D. melanogaster, possessing completely the experimental features like inclination of investigational manipulation proportional to vertebrate models, significant gene homology with developed and complex organisms, and simplicity of gaining mutant phenotypes, seems to be an ideal model organism for the study of nanoparticles activities in cells and nanotoxicological trials. The molecular trails with numerous developmental and behavioral factors can be assessed expending this model in different modes of throughput type tests.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abinaya M, Vaseeharan B, Divya M, Sharmili A, Govindarajan M, Alharbi NS, Kadaikunnan S, Khaled JM, Benelli G (2018) Bacterial exopolysaccharide (EPS)-coated ZnO nanoparticles showed high antibiofilm activity and larvicidal toxicity against malaria and Zika virus vectors. J Trace Elem Med Biol 45:93–103

    Article  CAS  PubMed  Google Scholar 

  • Adams MD, Celniker SE, Holt RA, Evans CA, Gocayne JD, Amanatides PG (2000) The genome sequence of Drosophila melanogaster. Science 287(5461):2185–2195

    Article  PubMed  Google Scholar 

  • Adolfsson K, Schneider M, Hammarin G, Hacker U, Prinz CN (2013) Ingestion of gallium phosphide nanowires has no adverse effect on drosophila tissue function. Nanotechnol 24:285101

    Article  CAS  Google Scholar 

  • Ahamed M, Posgai R, Gorey TJ, Nielsen M, Hussain SM, Rowe JJ (2010) Silver nanoparticles induced heat shock protein 70, oxidative stress and apoptosis in Drosophila melanogaster. Toxicol Appl Pharmacol 242:263–269

    Article  CAS  PubMed  Google Scholar 

  • Alvarez D, Dieterich DT, Brau N, Moorehead L, Ball L, Sulkowski MS (2006) Zidovudine use but not weight-based ribavirin dosing impacts anaemia during HCV treatment in HIV-infected persons. J Viral Hepat 13(10):683–689

    Article  CAS  PubMed  Google Scholar 

  • Amanna IJ, Slifka MK (2016) Questions regarding the safety and duration of immunity following live yellow fever vaccination. Expert Rev Vaccines 15(12):1519–1533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Armstrong N, Ramamoorthy M, Lyon D, Jones K, Duttaroy A (2013) Mechanism of silver nanoparticles action on insect pigmentation reveals intervention of copper homeostasis. PLoS One 8(1):e53186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ashburner M, Golic KG, Hawley RS (2005) Drosophila: a laboratory handbook, 2nd edn. Cold Spring Harbor Laboratory Press, New York, pp 162–164

    Google Scholar 

  • Ashburner M, Thompson JN (1978) The laboratory culture of drosophila. In: Ashburner M, Wright TRF (eds) The genetics and biology of drosophila. 2A. Academic Press, Cambridge, pp 1–81

    Google Scholar 

  • Ax P (1989) Homologie in der Biologie ein Relationshcgriff im Vergleich von Arten. Zool Bcitr N F 32:487–496

    Google Scholar 

  • Banumathi B, Vaseeharan B, Ishwarya R, Govindarajan M, Alharbi NS, Kadaikunnan S, Khaled JM, Benelli G (2017a) Toxicity of herbal extracts used in ethno-veterinary medicine and green encapsulated ZnO nanoparticles against Aedes aegypti and microbial pathogens. Parasitol Res 116:1637–1651

    Article  PubMed  Google Scholar 

  • Banumathi B, Vaseeharan B, Periyannan R, Prabhu NM, Ramasamy P, Murugan K, Canale A, Benelli G (2017b) Exploitation of chemical, herbal and nanoformulated acaricides to control the cattle tick, Rhipicephalus (Boophilus) microplus—a review. Vet Parasitol 244:102–110

    Article  CAS  PubMed  Google Scholar 

  • Banumathi B, Vaseeharan B, Suganya P, Citarasu T, Govindarajan M, Alharbi NS, Kadaikunnan S, Khaled JM, Benelli G (2017c) Toxicity of Camellia sinensis-fabricated silver nanoparticles on invertebrate and vertebrate organisms: morphological abnormalities and DNA damages. J Clust Sci 28:2027–2040

    Article  CAS  Google Scholar 

  • Barandeh F, Nguyen PL, Kumar R, Iacobucci GJ, Kuznicki ML, Kosterman A (2012) Organically modified silica nanoparticles are biocompatible and can be targeted to neurons in vivo. PLoS One 7:e29424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Batista Carlos AS, Larson RG, Kotov NA (2015) Non-additivity of nanoparticle interactions. Science 350(6257):1242477

    Article  CAS  PubMed  Google Scholar 

  • Benelli G (2016) Plant-mediated biosynthesis of nanoparticles as an emerging tool against mosquitoes of medical and veterinary importance: a review. Parasitol Res 115:23–34

    Article  PubMed  Google Scholar 

  • Benelli G (2018) Mode of action of nanoparticles against insects. Environ Sci Pollut Res 25:12329–12341

    Article  CAS  Google Scholar 

  • Bhatti Z, Berenson CS (2007) Adult systemic cat scratch disease associated with therapy for hepatitis C. BMC Infect Dis 7:8

    Article  PubMed  PubMed Central  Google Scholar 

  • Bircan K, Rahmet G (2017) Adverse effects of oral antiviral therapy in chronic hepatitis B. World J Hepatol 9(5):227–241

    Article  Google Scholar 

  • Blum JE, Fischer CN, Miles J, Handelsman J (2013) Frequent replenishment sustains the beneficial microbiome of Drosophila melanogaster. MBio 4(6):e00860–e00813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bol KF, Aarntzen EH, Pots JM, Olde Nordkamp MA, van de Rakt MW, Scharenborg NM, de Boer AJ, van Oorschot TG, Croockewit SA, Blokx WA, Oyen WJ, Boerman OC, Mus RD, van Rossum MM, van der Graaf CA, Punt CJ, Adema GJ, Figdor CG, de Vries IJ, Schreibelt G (2016) Prophylactic vaccines are potent activators of monocyte-derived dendritic cells and drive effective anti-tumor responses in melanoma patients at the cost of toxicity. Cancer Immunol Immunother 65(3):327–339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bower FO (1906) Plant morphology. Congress of arts and science: universal exposition, vol 1904. Houghton, Mifflin, St. Louis, p 64

    Google Scholar 

  • Buzea C, Pacheco II, Robbie K (2007) Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2(4):M17–M71

    Article  Google Scholar 

  • Carver PL (2004) Micafungin. Annal Pharmacother 38(10):1707–1721

    Article  CAS  Google Scholar 

  • Charpentier X, Kay E, Schneider D, Shuman HA (2011) Antibiotics and UV radiation induce competence for natural transformation in Legionella pneumophila. J Bacteriol 193(5):1114–1121

    Article  CAS  PubMed  Google Scholar 

  • Chaterjee K, Zhang J, Honbo N, Karliner JS (2010) Doxorubicin cardiomyopathy. Cardiology 115(2):155–162

    Article  CAS  Google Scholar 

  • Chiang HC, Hodson AC (1950) An analytical study of population growth in Drosophila melanogaster. Ecol Monogr 20(3):173–206

    Article  Google Scholar 

  • Connolly K, Cook R (1973) Rejection responses by female drosophila melanogaster: their ontogeny, causality and effects upon the behaviour of the courting male. Behaviour 44(1/2):142–166

    Google Scholar 

  • Dagaeff AC, Pocheville A, Nöbel S, Loyau A, Isabel G, Danchin E (2016) Drosophila mate copying correlates with atmospheric pressure in a speed learning situation. Anim Behav 121:163–174

    Article  Google Scholar 

  • Dziewięcka M, Karpeta-Kaczmarek J, Augustyniak M, Majchrzycki Ł, Augustyniak-Jabłokow MA (2016) Evaluation of in vivo grapheme oxide toxicity for Acheta domesticus in relation to nanomaterial purity and time passed from the exposure. J Hazard Mater 305:30–40

    Article  CAS  PubMed  Google Scholar 

  • Fangueiro JF, Gonzalez-Mira E, Martins-Lopes P, Egea MA, Garcia ML, Souto SB, Souto EB (2013) A novel lipid nanocarrier for insulin delivery: production, characterization and toxicity testing. Pharm Dev Technol 18:545–549

    Article  CAS  PubMed  Google Scholar 

  • Fornari FA, Randolph JK, Yalowich JC, Ritke MK, Gewirtz DA (1994) Interference by doxorubicin with DNA unwinding in MCF-7 breast tumor cells. Mol Pharmacol 45(4):649–656

    CAS  PubMed  Google Scholar 

  • Foster W, Raoult A (1974) Early descriptions of antibiosis. J R Coll Gen Pract 24(149):889–894

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fouad H, Hongjie L, Hosni D, Wei J, Abbas G, Ga’al H, Jianchu M (2018) Controlling Aedes albopictus and Culex pipiens pallens using silver nanoparticles synthesized from aqueous extract of Cassia fistula fruit pulp and its mode of action. Artif Cell Nanomed Biotechnol 46:558–567

    Article  CAS  Google Scholar 

  • Ga'al H, Fouad H, Tian J, Hu Y, Abbas G, Mo J (2018) Synthesis, characterization and efficacy of silver nanoparticles against Aedes albopictus larvae and pupae. Pestic Biochem Physiol 144:49–56

    Article  CAS  PubMed  Google Scholar 

  • Galeone A, Vecchio G, Malvindi MA, Brunetti V, Cingolani R, Pompa PP (2012) In vivo assessment of CdSe-ZnS quantum dots: coating dependent bioaccumulation and genotoxicity. Nanoscale 4:6401–6407

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Bellido A, Lawrence PA, Morata G (1979) Compartments in animal development. Sci Am 241:102–110

    Article  Google Scholar 

  • Gegenbaur (1878) Grundriß der vergleichenden Anatomie. Engelmann, Leipzig

    Book  Google Scholar 

  • Gibbs PE, Bryan GW, Pascoe PL, Burt GR (1990) Reproductive abnormalities in female Ocrnehra erinczceu (Gastropoda) resulting from tributyltin-induced imposex. J Mar Biol Assoc UK 70:639–656

    Article  Google Scholar 

  • Gilbert SF (2006) Fertilization in drosophila. In: Developmental biology, 8th (ed.) edn. Sinauer Associates, Sunderland

    Google Scholar 

  • Gillies M, Ranakusuma A, Hoffmann T, Thorning S, McGuire T, Glasziou P, Del Mar C (2015) Common harms from amoxicillin: a systematic review and meta-analysis of randomized placebo-controlled trials for any indication. CMAJ 187(1):21–31

    Article  Google Scholar 

  • Gould K (2016) Antibiotics: from prehistory to the present day. J Antimicrob Chemother 71(3):572–575

    Article  CAS  PubMed  Google Scholar 

  • Goyal R, Tripathi SK, Tyagi S, Ram KR, Ansari KM, Kumar P (2011) Gellan gum-PEI nanocomposites as efficient gene delivery agents. J Biomed Nanotechnol 7:38–39

    Article  CAS  PubMed  Google Scholar 

  • Granqvist C, Buhrman R, Wyns J, Sievers A (1976) Far-infrared absorption in ultrafine al particles. Phys Rev Lett 37(10):625–629

    Article  CAS  Google Scholar 

  • Greenspan RJ (2004) Fly pushing: the theory and practice of drosophila genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor (NY)

    Google Scholar 

  • Guan H, Chi D, Yu J, Li X (2008) A novel photodegradable insecticide: preparation, characterization and properties evaluation of nano Imidacloprid. Pestic Biochem Physiol 92(2):83–91

    Article  CAS  Google Scholar 

  • Haartman LV (1951) Successive polygamy. Behaviour 3(1):256–273

    Article  Google Scholar 

  • Haberfeld H (2009) Austria-codex (in German). Österreichischer Apothekerverlag, Vienna. isbn:3-85200-196-X

    Google Scholar 

  • Harris C (1976) Biosynthesis of Griseofulvin. J Am Chem Soc 98(17):5380–5386

    Article  CAS  PubMed  Google Scholar 

  • Hassellöv M, Readman JW, Ranville JF, Tiede K (2008) Nanoparticle analysis and characterization methodologies in environmental risk assessment of engineered nanoparticles. Ecotoxicology 17(5):344–361

    Article  CAS  PubMed  Google Scholar 

  • Haszprunar G (1992) The types of homology and their significance for evolutionary biology and phylogenetics. J Evol Biol 5:13–24

    Article  Google Scholar 

  • Hayashi C, Uyeda R, Tasaki A (1997) Ultra-fine particles: exploratory science and technology (1997 Translation of the Japan report of the related ERATO Project 1981–86). Noyes Publications

    Google Scholar 

  • Hayden FG (2001) Perspectives on antiviral use during pandemic influenza. Philos Trans R Soc Lond Ser B Biol Sci 356(1416):1877–1884

    Article  CAS  Google Scholar 

  • Hayward A (2017) Origin of the retroviruses: when, where, and how? Curr Opin Virol 25:23–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirve S, Lambach P, Paget J, Vandemaele K, Fitzner J, Zhang W (2016) Seasonal influenza vaccine policy, use and effectiveness in the tropics and subtropics – a systematic literature review. Influenza Other Respir Viruses 10(4):254–267

    Article  PubMed  PubMed Central  Google Scholar 

  • Hitchings A, Lonsdale D, Burrage D, Baker E (2015) Top 100 drugs : clinical pharmacology and practical prescribing. Elsevier, Amsterdam, pp 174–181

    Google Scholar 

  • Houot B, Svetec N, Godoy-Herrera R, Ferveur JF (2010) Effect of laboratory acclimation on the variation of reproduction-related characters in Drosophila melanogaster. J Exp Biol 213:2322–2331

    Article  PubMed  Google Scholar 

  • Hsu AP, Tseng CH, Lee SH, Barrat J (2017) Safety, efficacy and immunogenicity evaluation of the SAG2 oral rabies vaccine in Formosan ferret badgers. PLoS One 12(10):e0184831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huls G, Ten Bokkel Huinink D (2012) Bleomycin and scuba diving: to dive or not to dive? Neth J Med 61(2):50–53

    Google Scholar 

  • Jaeger A, Weiss DG, Jonas L, Kriehuber R (2012) Oxidative stress- induced cytotoxic and genotoxic effects of nano-sized titanium dioxide particles in human HaCaT keratinocytes. Toxicology 296:27–36

    Article  CAS  PubMed  Google Scholar 

  • Kalimuthu K, Panneerselvam C, Chou C, Tseng LC, Murugan K, Tsai KH, Alarfaj AA, Higuchi A, Canale A, Hwang JS, Benelli G (2017) Control of dengue and Zika virus vector Aedes aegypti using the predatory copepod Megacyclops formosanus: synergy with Hedychium coronarium-synthesized silver nanoparticles and related histological changes in targeted mosquitoes. Process Saf Environ Protect 109:82–96

    Article  CAS  Google Scholar 

  • Lehmann FO (2001) Matching spiracle opening to metabolic need during flight in drosophila. Science 294:1926–1929

    Article  CAS  PubMed  Google Scholar 

  • Linsinger TPJ, Roebben G, Solans C, Ramsch R (2011) Reference materials for measuring the size of nanoparticles. Trends Anal Chem 30(1):18–27

    Article  CAS  Google Scholar 

  • Liu X, Vinson D, Abt D, Hurt RH, Rand DM (2009) Differential toxicity of carbon nanomaterials in drosophila: larval dietary uptake is benign, but adult exposure causes locomotor impairment and mortality. Environ Sci Technol 43:6357–6363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu W, Greytak, Lee AB, Wong J, Park CR, Marshall J, Jiang LF, Curtin W, Ting PN, Nocera AY, Daniel FG, Dai J, Rakesh BK, Moungi G (2010) Compact biocompatible quantum dots via RAFT-mediated synthesis of imidazole-based random copolymer ligand. J Am Chem Soc 132(2):472–483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loyau A, Cornuau JH, Clobert J, Danchin E (2012) Incestuous sisters: mate preference for brothers over unrelated males in Drosophila melanogaster. PLoS One 7(12):e51293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O'Reilly KM, Durry E, Ul Islam O, Quddus A, Abid N, Mir PT, Tangermann RH, Aylward RB, Grasslya NC (2012) The effect of mass immunisation campaigns and new oral poliovirus vaccines on the incidence of poliomyelitis in Pakistan and Afghanistan, 2001–11: a retrospective analysis. Lancet 380(9840):491–498

    Article  PubMed  PubMed Central  Google Scholar 

  • Mahmoudi M, Hofmann H, Rothen-Rutishauser B, Petri-Fink A (2012) Assessing the in vitro and in vivo toxicity of superparamagnetic iron oxide nanoparticles. Chem Rev 112(4):2323–2338

    Article  CAS  PubMed  Google Scholar 

  • Malcolm R, Moore CB (2017) Superficial and subcutaneous fungal pathogens. Infect Dis 2:1710–1724

    Google Scholar 

  • Meiselman M, Lee SS, Tran RT, Dai H, Ding Y, Rivera-Perez C, Wijesekera TP, Dauwalder B, Noriega FG, Adams ME (2017) Drosophila melanogaster. Proc Nat Acad Sci 114(19):E3849–E3858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Melief CJ, van Hall T, Arens R, Ossendorp F, van der Burg SH (2015) Therapeutic cancer vaccines. J Clin Invest 125(9):3401–3412

    Article  PubMed  PubMed Central  Google Scholar 

  • Mommaerts V, Jodko K, Thomassen LC, Martens JA, Kirsch-Volders M, Smagghe G (2012) Assessment of side-effects by Ludox TMA silica nanoparticles following a dietary exposure on the bumblebee Bombus terrestris. Nanotoxicology 6:554–561

    Google Scholar 

  • Morgan TH (1910) Sex limited inheritance in Drosophila. Science 32:120–122

    Google Scholar 

  • Nel A, Xia T, Mädler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311(5761):622–627

    Article  CAS  PubMed  Google Scholar 

  • Ng CT, Li JJ, Gurung RL, Hande MP, Ong CN, Bay BH, Yung LYL (2013) Toxicological profile of small airway epithelial cells exposed to gold nanoparticles. Exp Biol Med (Maywood) 238:1355–1361

    Article  CAS  Google Scholar 

  • Owen R (1843) Lectures on the comparative anatomy and physiology of the invertebrate animals, delivered at the Royal College of surgeons in 1843. Longman, Brown, Green, and Longmans, Harlow, pp 374–379

    Google Scholar 

  • Pandey UB, Nichols CD (2011) Human disease models in Drosophila melanogaster and the role of the fly in therapeutic drug discovery. Pharmacol Rev 63:411–436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pitnick S (1996) Investment in testes and the cost of making long sperm in Drosophila. Am Nat 148:57–80

    Google Scholar 

  • Pompa P, Vecchio G, Galeone A, Brunetti V, Sabella S, Maiorano G (2011) In vivo toxicity assessment of gold nanoparticles in Drosophila melanogaster. Nano Res 4:405–413

    Article  CAS  Google Scholar 

  • Powers KW, Brown SC, Krishna VB, Wasdo SC, Moudgil BM, Roberts SM (2006) Research strategies for safety evaluation of nanomaterials. Part vi. Characterization of nanoscale particles for toxicological evaluation. Toxicol Sci 90(2):296–303

    Article  CAS  PubMed  Google Scholar 

  • Price CS, Dyer KA, Coyne JA (1999) Sperm competition between drosophila males involves both displacement and incapacitation. Nature 400(6743):449–452

    Article  CAS  PubMed  Google Scholar 

  • Prime KL, Whitesides GM (1991) Self-assembled organic monolayers: model systems for studying adsorption of proteins at surfaces. Science 252(5009):1164–1167

    Article  CAS  PubMed  Google Scholar 

  • Stachel SE, Zambryski PC (1989) Generic tram-kingdom sex? Nature 340(6230):190–191

    Article  CAS  PubMed  Google Scholar 

  • Rand MD (2010) Drosophotoxicology: the growing potential for drosophila in neurotoxicology. Neurotoxicol Teratol 32:74–83

    Article  CAS  PubMed  Google Scholar 

  • Regalado ME, Rodríguez Nieves B, Ghersy MT, Amilachwari M, Nieto JR, Velásquez G (1990) Side effects of the vaccine against diphtheria, tetanus and whooping cough. West J Med 47(5):295–303

    CAS  Google Scholar 

  • Rossi S (ed) (2013) Australian medicines handbook, 3rd edn. The Australian Medicines Handbook Unit Trust, Adelaide

    Google Scholar 

  • Rossignol JF (2014) Nitazoxanide: a first-in-class broad-spectrum antiviral agent. Antivir Res 110:94–103

    Article  CAS  PubMed  Google Scholar 

  • Ruppert EE, Smith PR (1988) The functional organization of filtration nephridia. Biol Rev 63:231–258

    Article  Google Scholar 

  • Schrand AM, Rahman MF, Hussain SM, Schlager JJ, Smith DA, Syed AF (2010) Metal-based nanoparticles and their toxicity assessment. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2(5):544–568

    Article  CAS  PubMed  Google Scholar 

  • Seabra AB, Durán N (2015) Nanotoxicology of metal oxide nanoparticles. Metals 5(2):934–975

    Article  CAS  Google Scholar 

  • Singhal KC, Rahman SZ (2002) Stevens Johnson syndrome induced by amantadine. Ration Drug Bull 12(1):6

    Google Scholar 

  • Stocker H, Gallant P (2008) Getting started: an overview on raising and handling drosophila. Methods Mol Biol 420:27–44

    Article  PubMed  Google Scholar 

  • Sultana N, Raul PK, Goswami D, Das B, Gogoi HK, Raju PS (2018) Nanoweapon: control of mosquito breeding using carbon-dot-silver nanohybrid as a biolarvicide. Environ Chem Lett 16(3):1017–1023

    Article  CAS  Google Scholar 

  • Sundararajan B, Kumari BR (2017) Novel synthesis of gold nanoparticles using Artemisia vulgaris L. leaf extract and their efficacy of larvicidal activity against dengue fever vector Aedes aegypti L. J Trace Elem Med Biol 43:187–196

    Article  CAS  PubMed  Google Scholar 

  • Suzuki KGN, Fujiwara TK, Edidin M, Kusumi A (2007) Dynamic recruitment of phospholipase Cγ at transiently immobilized GPI-anchored receptor clusters induces IP3–Ca2+ signaling: single-molecule tracking study 2. J Cell Biol 177(4):731–742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tian H, Eom HJ, Moon S, Lee J, Choi J, Chung YD (2013) Development of biomarker for detecting silver nanoparticles exposure using a GAL4 enhancer trap screening in drosophila. Environ Toxicol Pharmacol 36:548–556

    Article  CAS  PubMed  Google Scholar 

  • Tiede K, Boxall AB, Tear SP, Lewis J, David H, Hassellov M (2008) Detection and characterization of engineered nanoparticles in food and the environment. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 25(7):795–821

    Article  CAS  PubMed  Google Scholar 

  • Tong MJ, Co RL, Bellak C (1993) Hepatitis a vaccination. West J Med 158(6):602–605

    CAS  PubMed  PubMed Central  Google Scholar 

  • Turrens JF (2003) Mitochondrial formation of reactive oxygen species. J Physiol 552:335–344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vecchio G, Galeone A, Brunetti V, Maiorano G, Rizzello L, Sabella S (2012) Mutagenic effects of gold nanoparticles induces aberrant phenotypes in Drosophila melanogaster. Nanomedicine 8:1–7

    Article  CAS  PubMed  Google Scholar 

  • Wagner GP, Laubichler MD (2000) Character identification in evolutionary biology: the role of the organism. Theory Biosci 119(1):20–40

    Article  Google Scholar 

  • Wagner GP, Chiu C, Laubichler M (2000) Developmental evolution as a mechanistic science. The inference from developmental mechanisms to evolutionary processes. Integr Comp Biol 40(5):819–831

    Google Scholar 

  • Webster R (1913) Webster’s revised unabridged dictionary. G. & C. Merriam, Springfield

    Google Scholar 

  • Williams DM, Forey P (2004) Milestones in systematics. CRC Press, Boca Raton, p 198

    Book  Google Scholar 

  • Zai X, Zhang J, Liu J, Liu J, Li L, Yin Y, Fu L, Xu J, Chen W (2016) Quantitative determination of lethal toxin proteins in culture supernatant of human live anthrax vaccine bacillus anthracis A16R. Toxins (Basel) 8(3):56

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Bijayata Patra, Poulomi Ghosh, and Saprativ P. Das are thankful to Brainware University for providing the necessary funding for research. Bijayata Patra and Poulomi Ghosh have contributed equally toward the successful completion of the manuscript. The authors gratefully acknowledge Prof. Subrata Kumar Dey for providing the essential infrastructural facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saprativ P. Das .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Patra, B., Ghosh, P., Das, S.P. (2020). Drosophila melanogaster: A Model Organism to Understand Biological Activities of Nanoparticles. In: Siddhardha, B., Dyavaiah, M., Kasinathan, K. (eds) Model Organisms to Study Biological Activities and Toxicity of Nanoparticles. Springer, Singapore. https://doi.org/10.1007/978-981-15-1702-0_10

Download citation

Publish with us

Policies and ethics