Skip to main content

Involvement of Epigenetic Control and Non-coding RNAs in Cardiovascular System

  • Chapter
  • First Online:
Non-coding RNAs in Cardiovascular Diseases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1229))

  • 1361 Accesses

Abstract

Cardiovascular Diseases (CVDs) as a leading cause of death worldwide inflict major stress on morbidity and societal costs. Though the studies pertaining to pathophysiology and genetics of CVDs have helped in prevention, diagnosis and treatment of diseases, there are still lacunas in our knowledge. So, novel tools that can define genomic regulation under different conditions are needed to bridge this gap. ‘Epigenetic’ mechanism helps the cells to quickly respond to ever changing environment by molecular mechanisms like methylation, histone modifications, nc-RNAs. These mechanisms act as a new layer of regulation in CVDs. The role of epigenetics as a key regulatory player in prevention, diagnosis and treatment of CVDs is emerging. Thus, the focus of present chapter is to decipher the role of epigenetics in CVDs and its potential to be used in risk assessment or as biomarkers in devising and deploying better diagnosis and treatment for different CVDs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Murray C, Lopez A. Alternative projections of mortality and disability by cause1990–2020: global burden of disease study. Lancet. 1997;349:1498–504.

    Article  CAS  PubMed  Google Scholar 

  2. Mathers CD, Loncar D. Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med. 2006;3:e442.

    Article  PubMed  PubMed Central  Google Scholar 

  3. MacKinnon AU. The origin of the modern epidemic of coronary artery disease in England. J R Coll Gen Pract. 1987;37:174–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Azambuja MI, Levins R. Coronary heart disease (CHD)—one or several diseases? Changes in the prevalence and features of CHD. Perspect Biol Med. 2007;50:228–42.

    Article  PubMed  Google Scholar 

  5. GBD. Mortality and causes of death collaborators (2014) Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2013;385(9963):117–71.

    Google Scholar 

  6. GBD. Mortality and Causes of Death Collaborators (2017) Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet. 2015;388(10053):1459–544.

    Google Scholar 

  7. McGill HC, McMahan CA, Gidding SS. Preventing heart disease in the 21st century: implications of the Pathobiological Determinants of Atherosclerosis in Youth (PDAY) study. Circulation. 2008;117(9):1216–27.

    Article  PubMed  Google Scholar 

  8. O’Donnell MJ, Chin SL. Global and regional effects of potentially modifiable risk factors associated with acute stroke in 32 countries (INTERSTROKE): a case-control study. Lancet. 2016;388(10046):761–75.

    Article  PubMed  Google Scholar 

  9. Mendis S, Puska P, Norrving B, editors. Global atlas on cardiovascular disease prevention and control. Geneva: World Health Organization/World Heart Federation/World Stroke Organization; 2011.

    Google Scholar 

  10. GBD. Mortality and causes of death collaborators (2016) Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet. 2015;388(10053):1459–544.

    Google Scholar 

  11. Yusuf S, Hawken S, Ounpuu S, Dans T, Avezum A, Lanas F, Mc Queen M, Budaj A, Pais P, Varigos J, Lisheng L, INTERHEART Study Investigators. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. Lancet. 2004;364(9438):937–52.

    Article  PubMed  Google Scholar 

  12. Nikpay M, Goel A, Won H, Hall LM, Willenborg C, Kanoni S, Saleheen D, Kyriakou T, Nelson CP. A comprehensive 1000 Genomes–based genome-wide association meta-analysis of coronary artery disease. Nat Genet. 2015;47(10):1121–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. MacRae CA, Vasan RS. The future of genetics and genomics: closing the phenotype gap in precision medicine. Circulation. 2016;133(25):2634–9.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Finegold JA, Asaria P, Francis DP. Mortality from ischaemic heart disease by country, region, and age: statistics from World Health Organisation and United Nations. Int J Cardiol. 2012;168(2):934–45.

    Article  PubMed  Google Scholar 

  15. World Health Organization. The atlas of heart disease and stroke/Judith Mackay and George Mensah with Shanthi Mendis and Kurt Greenland. World Health Organization. 2004.

    Google Scholar 

  16. Jousilahti P, Vartiainen E, Tuomilehto J, Puska P. Sex, age, cardiovascular risk factors, and coronary heart disease. Circulation. 1999;99(9):1165–72.

    Article  CAS  PubMed  Google Scholar 

  17. Jani B, Rajkumar C. Ageing and vascular ageing. Postgrad Med J. 2006;82(968):357–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mukamal KJ, Chen CM, Rao SR, Breslow RA. Alcohol consumption and cardiovascular mortality among U.S. Adults, 1987 to 2002. J Am Coll Cardiol. 2010;55(13):1328–35.

    Article  PubMed  Google Scholar 

  19. Hubert HB, Feinleib M, McNamara PM, Castelli WP. Obesity as an independent risk factor for cardiovascular disease: a 26-year follow-up of participants in the Framingham Heart Study. Circulation. 1983;67(5):968–77.

    Article  CAS  PubMed  Google Scholar 

  20. Anderson KM, Odell PM, Wilson PW, Kannel WB. Cardiovascular disease risk profiles. Am Heart J. 1991;121:293–8.

    Article  CAS  PubMed  Google Scholar 

  21. Kannel WB, McGee DL. Diabetes and cardiovascular disease. the Framingham study. J Am Med Assoc. 1979;241(19):2035–8.

    Article  CAS  Google Scholar 

  22. Finks SW, Airee A, Chow SL, Macaulay TE, Moranville MP, Rogers KC, Trujillo TC. Key articles of dietary interventions that influence cardiovascular mortality. Pharmacotherapy. 2012;32(4):e54–87.

    Article  PubMed  Google Scholar 

  23. Khallaf M. The impact of air pollution on health, economy, environment and agricultural sources. Rijeka: InTech; 2011. p. 69–92. ISBN 978-953-307-528-0

    Book  Google Scholar 

  24. Di Angelantonio E, Butterworth AS. Clinical utility of genetic variants for cardiovascular risk prediction: a futile exercise or insufficient data? Circ Cardiovasc Genet. 2012;5:387–90.

    Article  PubMed  Google Scholar 

  25. Egger G, Liang G, Aparicio A, Jones PA. Epigenetics in human disease and prospects for epigenetic therapy. Nature. 2004;429:457–63.

    Article  CAS  PubMed  Google Scholar 

  26. Kaikkonen MU, Lam MT, Glass CK. Non-coding RNAs as regulators of gene expression and epigenetics. Cardiovasc Res. 2011;90:430–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Udali S, Guarini P, Moruzzi S, Choi SW, Friso S. Cardiovascular epigenetics: from DNA methylation to microRNAs. Mol Asp Med. 2013;34:883–901.

    Article  CAS  Google Scholar 

  28. Abbott A. Project set to map marks ongenome. Nature. 2010;463:596–7.

    Article  PubMed  Google Scholar 

  29. Wilson PW, D’Agostino RB, Levy D, Belanger AM, Silbershatz H, Kannel WB. Prediction of coronary heart disease using risk factor categories. Circulation. 1998;97:1837–47.

    Article  CAS  PubMed  Google Scholar 

  30. Evans A, Salomaa V, Kulathinal S, Asplund K, Cambien F, Ferrario M, Perola M, Peltonen L, Shields D, Tunstall-Pedoe H, Kuulasmaa K. MORGAM (an international pooling of cardiovascular cohorts). Int J Epidemiol. 2005;34:21–7.

    Article  PubMed  Google Scholar 

  31. Turan N, Katari S, Coutifaris C, Sapienza C. Explaining inter-individual variability in phenotype:is epigenetics up to the challenge? Epigenetics. 2010;5:16–9.

    Article  CAS  PubMed  Google Scholar 

  32. Khalil CA. The emerging role of epigenetics in cardiovascular disease. Ther Adv Chronic Dis. 2014;5(4):178–87.

    Article  CAS  Google Scholar 

  33. Webster AL, Yan MS, Marsden PA. Epigenetics andcardiovascular disease. Can J Cardiol. 2013;29(1):46–57.

    Article  PubMed  Google Scholar 

  34. Muka T, Koromani F, Portilla E, O'Connor A, Bramer WM, Troup J, Chowdhury R, Dehghan A, Franco OH. The role of epigeneticmodifications in cardiovascular disease: a systematic review. Int J Cardiol. 2016;212:174–83.

    Article  PubMed  Google Scholar 

  35. Bird A. CpG-rich islands and the function of DNA methylation. Nature. 1986;321:209–13.

    Article  CAS  PubMed  Google Scholar 

  36. Deaton AM, Bird A. CpG islands and the regulation of transcription. Genes Dev. 2011;25(10):1010–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. McGhee JD, Ginder GD. Specific DNA methylation sites in the vicinity of the chicken beta-globin genes. Nature. 1979;280:419–20.

    Article  CAS  PubMed  Google Scholar 

  38. Han L, Su B, Li WH, Zhao Z. CpG island density and its correlations with genomic features in mammalian genomes. Genome Biol. 2008;9(5):R79.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Robertson KD. DNA methylation and human disease. Nat Rev Genet. 2005;6(8):597–610.

    Article  CAS  PubMed  Google Scholar 

  40. Gopalakrishnan S, Van Emburgh BO, Robertson KD. DNA methylation in development and human disease. Mutat Res. 2008;647(1–2):30–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Handy DE, Castro R, Loscalzo J. Epigenetic modifications: basic mechanisms and role in cardiovascular disease. Circulation. 2011;123:2145–56.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Huh I, Zeng J, Park T, Yi SV. DNA methylation and transcriptional noise. Epigenetics Chromatin. 2013;6(1):9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hsiung DT, Marsit CJ, Houseman EA, Eddy K, Furniss CS, McClean MD, Kelsey KT. Global DNA methylation level in whole blood as a biomarker in head and neck squamous cell carcinoma. Cancer Epidemiol Biomark Prev. 2007;16:108–14.

    Article  Google Scholar 

  44. Sharma P, Kumar J, Garg G, Kumar A, Patowary A, Karthikeyan G, Ramakrishnan L, Brahmachari V, Sengupta S. Detection of altered global DNA methylation in coronary artery disease patients. DNA Cell Biol. 2008;27:357–65.

    Article  CAS  PubMed  Google Scholar 

  45. Baccarelli A, Tarantini L, Wright RO, Bollati V, Litonjua AA, Zanobetti A, Sparrow D, Vokonas PS, Schwartz J. Repetitive element DNA methylation and circulating endothelial and inflammation markers in the VA normative aging study. Epigenetics. 2010;5(3):222–8.

    Article  CAS  PubMed  Google Scholar 

  46. Cash HL, McGarvey ST, Houseman EA, Marsit CJ, Hawley NL, Lambert-Messerlian GM, Viali S, Tuitele J, Kelsey KT. Cardiovascular disease risk factors and DNA methylation at the LINE-1 repeat region in peripheral blood from Samoan Islanders. Epigenetics. 2011;6:1257–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Turcot V, Tchernof A, Deshaies Y, Pérusse L, Bélisle A, Marceau S, Biron S, Lescelleur O, Biertho L, Vohl MC. LINE-1 methylation in visceral adipose tissue of severely obese individuals is associated with metabolic syndrome status and related phenotypes. Clin Epigenetics. 2012;4:10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bell CG, Finer S, Lindgren CM, Wilson GA, Rakyan VK, Teschendorff AE, Akan P, Stupka E, Down TA, Prokopenko I, Morison IM, Mill J, Pidsley R, International Type 2 Diabetes 1q Consortium, Deloukas P, Frayling TM, Hattersley AT, MI MC, Beck S, Hitman GA. Integrated genetic and epigenetic analysis identifies haplotype-specific methylation in the FTO type 2 diabetes and obesity susceptibility locus. PLoS One. 2010;5:e14040.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Liu C, Mou S, Pan C. The FTO gene rs9939609 polymorphism predicts risk of cardiovascular disease: a systematic review and meta-analysis. PLoS One. 2013;8:e71901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Breitling LP, Salzmann K, Rothenbacher D, Burwinkel B, Brenner H. Smoking, F2RL3 methylation, and prognosis in stable coronary heart disease. Eur Heart J. 2012;33:2841–8.

    Article  CAS  PubMed  Google Scholar 

  51. Talens RP, Jukema JW, Trompet S, Kremer D, Westendorp RG, Lumey LH, Sattar N, Putter H, Slagboom PE, Heijmans BT, PROSPER Group. Hypermethylation at loci sensitive to the prenatal environment is associated with increased incidence of myocardial infarction. Int J Epidemiol. 2012;41:106–15.

    Article  PubMed  Google Scholar 

  52. Jiang D, Zheng D, Wang L, Huang Y, Liu H, Xu L, Liao Q, Liu P, Shi X, Wang Z, Sun L, Zhou Q, Li N, Xu L, Le Y, Ye M, Shao G, Duan S. Elevated PLA2G7 gene promoter methylation as a gender-specific marker of aging increases the risk of coronary heart disease in females. PLoS One. 2013;8:e59752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Perkins E, Murphy SK, Murtha AP, Schildkraut J, Jirtle RL, Demark-Wahnefried W, Forman MR, Kurtzberg J, Overcash F, Huang Z, Hoyo C. Insulin-like growth factor 2/H19 methylation at birth and risk of overweight and obesity in children. J Pediatr. 2012;161:31–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Irvin MR, Zhi D, Joehanes R, Mendelson M, Aslibekyan S, Claas SA, Thibeault KS, Patel N, Day K, Jones LW, Liang L, Chen BH, Yao C, Tiwari HK, Ordovas JM, Levy D, Absher D, Arnett DK. Epigenome-wide association study of fasting blood lipids in the genetics of lipid lowering drugs and diet network study. Circulation. 2014;130(7):565–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Guay SP, Voisin G, Brisson D, Munger J, Lamarche B, Gaudet D, Bouchard L. Epigenome-wide analysis in familial hypercholesterolemia identified new loci associated with high-density lipoprotein cholesterol concentration. Epigenomics. 2012;4:623–39.

    Article  CAS  PubMed  Google Scholar 

  56. Haas J, Frese KS, Park YJ, Keller A, Vogel B, Lindroth AM, Weichenhan D, Franke J, Fischer S, Bauer A, Marquart S, Sedaghat-Hamedani F, Kayvanpour E, Köhler D, Wolf NM, Hassel S, Nietsch R, Wieland T, Ehlermann P, Schultz JH, Dösch A, Mereles D, Hardt S, Backs J, Hoheisel JD, Plass C, Katus HA, Meder B. Alterations in cardiac DNA methylation in human dilated cardiomyopathy. EMBO Mol Med. 2013;5:413–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Movassagh M, Choy MK, Knowles DA, Cordeddu L, Haider S, Down T, Siggens L, Vujic A, Simeoni I, Penkett C, Goddard M, Lio P, Bennett MR, Foo RS. Distinct epigenomic features in end-stage failing human hearts. Circulation. 2011;124:2411–22.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Han P, Hang CT, Yang J, Chang CP, Bruneau B. Chromatin remodeling in cardiovascular development and physiology. Circ Res. 2011;108:378–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Cardinale JP, Sriramula S, Pariaut R, Guggilam A, Mariappan N, Elks CM, Francis J. HDAC inhibition attenuates inflammatory, hypertrophic, and hypertensive responses in spontaneously hypertensive rats. Hypertension. 2010;56:437–44.

    Article  CAS  PubMed  Google Scholar 

  60. Okamoto H, Fujioka Y, Takahashi A, Takahashi T, Taniguchi T, Ishikawa Y, Yokoyama M. Trichostatin A, an inhibitor of histone deacetylase, inhibits smooth muscle cell proliferation via induction of p21(WAF1). J Atheroscler Thromb. 2006;13:183–91.

    Article  CAS  PubMed  Google Scholar 

  61. Kong X, Fang M, Li P, Fang F, Xu Y. HDAC2 deacetylates class II transactivator and suppresses its activity in macrophages and smooth muscle cells. J Mol Cell Cardiol. 2009;46:292–9.

    Article  CAS  PubMed  Google Scholar 

  62. Matsushima S, Sadoshima J. The role of sirtuins in cardiac disease. Am J Physiol Heart Circ Physiol. 2015;309:H1375–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zhang Y, Qiu J, Wang X, Zhang Y, Xia M. AMP-activated protein kinase suppresses endothelial cell inflammation through phosphorylation of transcriptional coactivator p300. Arterioscler Thromb Vasc Biol. 2011;31:2897–908.

    Article  CAS  PubMed  Google Scholar 

  64. Franklin S, Kimball T, Rasmussen TL, Rosa-Garrido M, Chen H, Tran T, Miller MR, Gray R, Jiang S, Ren S, Wang Y, Tucker HO, Vondriska TM. The chromatin-binding protein Smyd1 restricts adult mammalian heart growth. Am J Physiol Heart Circ Physiol. 2016;311:H1234–47.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Ai S, Yu X, Li Y, Peng Y, Li C, Yue Y, Tao G, Li C, Pu WT, He A. Divergent requirements for EZH1 in heart development versus regeneration. Circ Res. 2017;121:106–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Guo H, Ingolia NT, Weissman JS, Bartel DP. Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature. 2010;466(7308):835–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Fichtlscherer S, Zeiher AM, Dimmeler S. Circulating microRNAs: biomarkers or mediators of cardiovascular diseases? Arterioscler Thromb Vasc Biol. 2011;31(11):2383–90.

    Article  CAS  PubMed  Google Scholar 

Download references

Competing Financial Interests

The authors declare no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Zahid Ashraf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sharma, S., Mishra, A., Ashraf, M.Z. (2020). Involvement of Epigenetic Control and Non-coding RNAs in Cardiovascular System. In: Xiao, J. (eds) Non-coding RNAs in Cardiovascular Diseases. Advances in Experimental Medicine and Biology, vol 1229. Springer, Singapore. https://doi.org/10.1007/978-981-15-1671-9_6

Download citation

Publish with us

Policies and ethics