Skip to main content

Evidence-Based Review on Clinical Potential of Thymoquinone in Breast Cancer

  • Chapter
  • First Online:
Nanomedicine for Bioactives

Abstract

Thymoquinone (TQ) is a plant-derived bioactive constituent isolated from the volatile oil of Nigella sativa seeds; it has been reported to possess significant biological actions. A few of its cellular actions such as anti-inflammatory, antineoplastic, antioxidant, antibacterial, antiviral, antidiabetic, and immunomodulatory effects have been demonstrated both in vivo and in vitro. It is proposed that TQ acts in conjunction with other clinically available anticancer drugs to inhibit signaling pathways that leads to cancer progression and also protects against the toxicities induced by conventional chemotherapies. There is an unmet need of study in depth to explore its bioavailability, pharmacokinetic, and clinical phase I toxicity profiling in humans. The conclusion drawn from the evidence-based research on TQ will be contributory in initiating the clinical trials of TQ, thus testing the therapeutic potentials of this primordial agent in the management of breast cancer. In this review, we summarize the available literature about TQ’s molecular mechanism of action, clinico-pharmaceutical aspect, and its potential targets for cancer prevention in preclinical models.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AGP:

α1-Acid glycoprotein

ALL:

Acute lymphoblastic leukemia

ALT:

Alanine transaminase

ALT:

Alanine aminotransferase

ASCO:

American Society of Clinical Oncology

AST:

Aspartate aminotransferase

BC:

Breast cancer

CEA:

Carcinoembryonic antigen

ER:

Estrogen receptor

GSH:

Glutathione

HER2:

Human epidermal growth factor receptor 2

LDH:

Lactate dehydrogenase

MDR:

Multidrug resistant

NPs:

Nanoparticles

PAI-1:

Plasminogen activator inhibitor 1

PBD:

Polo-box domain

Plk1:

Polo-like kinase 1

PR:

Progesterone receptor

ROS:

Reactive oxygen species

Se:

Selenium

SOD:

Superoxide dismutase

TQ:

Thymoquinone

UPA:

Urokinase plasminogen activator

Vas:

Volume of distribution at steady state

References

  1. Torre LA, Siegel RL, Ward EM, Jemal A (2016) Global cancer incidence and mortality rates and trends—an update. Cancer Epidemiol Biomarkers Prev 25(1):16–27

    Article  PubMed  Google Scholar 

  2. Alobaedi OH, Talib WH, Basheti IA (2017) Antitumor effect of TQ combined with resveratrol on mice transplanted with breast cancer. Asian Pac J Trop Med 10(4):400–408

    Article  CAS  PubMed  Google Scholar 

  3. Ghahramanloo KH, Noordin MI, Kamalidehghan B et al (2017) Involvement of NF-κB and HSP70 signaling pathways in the apoptosis of MDA-MB-231 cells induced by TQ: an in vitro study. Life Sci J 14(5):61–70

    Google Scholar 

  4. DeSantis CE, Fedewa SA, Sauer AG, Kramer JL, Smith RA, Jemal A (2016) Breast cancer statistics, 2015: convergence of incidence rates between black and white women. CA Cancer J Clin 66(1):31–42

    Article  PubMed  Google Scholar 

  5. American Cancer Society (2017) Cancer facts and figures 2017. American Cancer Society, Atlanta, GA

    Google Scholar 

  6. Kabel AM (2017) Tumor markers of breast cancer: new prospective. J Oncol Sci 3(1):5–11

    Google Scholar 

  7. Shapiro CL, Recht A (2001) Side effects of adjuvant treatment of breast cancer. N Engl J Med 344(26):1997–2008

    Article  CAS  PubMed  Google Scholar 

  8. Talib WH (2011) Anticancer and antimicrobial potential of plant-derived natural products. In: Rasooli I (ed) Phytochemicals: bioactivities and impact on health. IntechOpen, Croatia, pp 141–158

    Google Scholar 

  9. Razavi BM, Hosseinzadeh H (2014) A review of the effects of Nigella sativa L. and its constituent, TQ, in metabolic syndrome. J Endocrinol Invest 37:1031–1040

    Article  CAS  PubMed  Google Scholar 

  10. Darakhshan S, Pour AB, Colagar AH, Sisakhtnezhad S (2015) TQ and its therapeutic potentials. Pharmacol Res 95-96:138–158

    Article  CAS  PubMed  Google Scholar 

  11. Islam MT, Sultana N, Riaz TA et al (2016) TQ is knocking at the door of clinical trial. Int Arch Med 9(122):1–25

    Google Scholar 

  12. Banerjee S, Padhye S, Azmi A et al (2010) Review on molecular and therapeutic potential of TQ in cancer. Nutr Cancer 62(7):938–946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Motaghed M, Al-Hassan FM, Hamid SS (2014) TQ regulates gene expression levels in the estrogen metabolic and interferon pathways in MCF7 breast cancer cells. Int J Mol Med 33:8–16

    Article  CAS  PubMed  Google Scholar 

  14. Ghosheh OA, Houdi AA, Crooks PA (1999) High performance liquid chromatographic analysis of the pharmacologically active quinones and related compounds in the oil of the black seed (Nigella sativa L.). J Pharm Biomed Anal 19:757–762

    Article  CAS  PubMed  Google Scholar 

  15. Rajput S, Kumar BN, Dey KK, Pal I, Parekh A, Mandal M (2013) Molecular targeting of Akt by TQ promotes G(1) arrest through translation inhibition of cyclin D1 and induces apoptosis in breast cancer cells. Life Sci 93:783–790

    Article  CAS  PubMed  Google Scholar 

  16. Alhosin M, Abusnina A, Achour M et al (2010) Induction of apoptosis by TQ in lymphoblastic leukemia Jurkat cells is mediated by a p73-dependent pathway which targets the epigenetic integrator UHRF1. Biochem Pharmacol 79:1251–1260

    Article  CAS  PubMed  Google Scholar 

  17. Abusnina A, Alhosin M, Keravis T et al (2011) Down-regulation of cyclic nucleotide phosphodiesterase PDE1A is the key event of p73 and UHRF1 deregulation in TQ-induced acute lymphoblastic leukemia cell apoptosis. Cell Signal 23:152–160

    Article  CAS  PubMed  Google Scholar 

  18. Salim LZ, Mohan S, Othman R et al (2013) TQ induces mitochondria-mediated apoptosis in acute lymphoblastic leukaemia in vitro. Molecules 18:11219–11240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dastjerdi MN, Mehdiabady EM, Iranpour FG, Bahramian H (2016) Effect of TQ on P53 gene expression and consequence apoptosis in breast cancer cell line. Int J Prev Med 7:66

    Article  PubMed  PubMed Central  Google Scholar 

  20. Bhattacharya S, Ahir M, Patra P et al (2015) PEGylated-TQ-nanoparticle mediated retardation of breast cancer cell migration by deregulation of cytoskeletal actin polymerization through miR-34a. Biomaterials 51:91–107

    Article  CAS  PubMed  Google Scholar 

  21. Ke X, Zhao Y, Lu X et al (2015) TQ inhibits hepatocellular carcinoma growth in vitro and in vivo via repression of Notch signaling. Oncotarget 6:32610–32621

    Article  PubMed  PubMed Central  Google Scholar 

  22. Woo CC, Kumar AP, Sethi G, Tan KH (2012) TQ: potential cure for inflammatory disorders and cancer. Biochem Pharmacol 83:443–451

    Article  CAS  PubMed  Google Scholar 

  23. Mansour MA (2000) Protective effects of TQ and desferrioxamine against hepatotoxicity of carbon tetrachloride in mice. Life Sci 66:2583–2591

    Article  CAS  PubMed  Google Scholar 

  24. Badary OA, Gamal El-Din AM (2001) Inhibitory effects of TQ against 20-methylcholanthrene-induced fibrosarcoma tumorigenesis. Cancer Detect Prev 25:362–368

    CAS  PubMed  Google Scholar 

  25. Gali-Muhtasib H, Kuester D, Mawrin C et al (2008) TQ triggers inactivation of the stress response pathway sensor CHEK1 and contributes to apoptosis in colorectal cancer cells. Cancer Res 68(14):5609–5618

    Article  CAS  PubMed  Google Scholar 

  26. Dergarabetian EM, Ghattass KI, El-Sitt SB et al (2013) TQ induces apoptosis in malignant T-cells via generation of ROS. Front Biosci (Elite Ed) 15(5):706–719

    Article  Google Scholar 

  27. Schneider-Stock R, Fakhoury IH, Zaki AM, El-Baba CO, Gali-Muhtasib HU (2014) TQ: fifty years of success in the battle against cancer models. Drug Discov Today 19(1):18–30

    Article  CAS  PubMed  Google Scholar 

  28. Reindl W, Yuan J, Krämer A, Strebhardt K, Berg T (2008) Inhibition of polo-like kinase 1 by blocking polo-box domain-dependent protein–protein interactions. Chem Biol 15:459–466

    Article  CAS  PubMed  Google Scholar 

  29. Khalife KH, Lupidi G (2007) Nonenzymatic reduction of TQ in physiological conditions. Free Radic Res 41(2):153–161

    Article  CAS  PubMed  Google Scholar 

  30. Yin Z, Song Y, Rehse PH (2013) TQ blocks pSer/pThr recognition by Plk1 Polo-box domain as a phosphate mimic. ACS Chem Biol 8(2):303–308

    Article  CAS  PubMed  Google Scholar 

  31. Yuan J, Sanhaji M, Krämer A et al (2011) Polo-box domain inhibitor poloxin activates the spindle assembly checkpoint and inhibits tumor growth in vivo. Am J Pathol 179(4):2091–2099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pathan SA, Jain GK, Zaidi SM et al (2011) Stability-indicating ultra-performance liquid chromatography method for the estimation of TQ and its application in biopharmaceutical studies. Biomed Chromatogr 25(5):613–620

    Article  CAS  PubMed  Google Scholar 

  33. Salem ML (2005) Immunomodulatory and therapeutic properties of the Nigella sativa L. seed. Int Immunopharmacol 5(13–14):1749–1770

    Article  CAS  PubMed  Google Scholar 

  34. Salmani JM, Asghar S, Lv H, Zhou J (2014) Aqueous solubility and degradation kinetics of the phytochemical anticancer TQ; probing the effects of solvents, pH and light. Molecules 19:5925–5939

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Parbin S, Shilpi A, Kar S et al (2015) Insights into the molecular interactions of TQ with histone deacetylase: evaluation of the therapeutic intervention potential against breast cancer. Mol Biosyst 12(1):48–58

    Article  CAS  Google Scholar 

  36. Rajput S, Puvvada N, Kumar BN et al (2015) Overcoming Akt induced therapeutic resistance in breast cancer through siRNA and TQ encapsulated multilamellar gold niosomes. Mol Pharm 12:4214–4225

    Article  CAS  PubMed  Google Scholar 

  37. Şakalar C, İzgi K, İskender B et al (2016) The combination of TQ and paclitaxel shows anti-tumor activity through the interplay with apoptosis network in triple-negative breast cancer. Tumour Biol 37(4):4467–4477

    Article  PubMed  CAS  Google Scholar 

  38. Ganea GM, Fakayode SO, Losso JN, van Nostrum CF, Sabliov CM, Warner IM (2010) Delivery of phytochemical TQ using molecular micelle modified poly(D,L lactide-co-glycolide) (PLGA) nanoparticles. Nanotechnology 21(28):285104

    Article  PubMed  CAS  Google Scholar 

  39. Asaduzzaman Khan M, Tania M, Fu S, Fu J (2017) Thymoquinone, as an anticancer molecule: from basic research to clinical investigation. Oncotarget 8(31):51907–51919

    Article  PubMed  PubMed Central  Google Scholar 

  40. Odeh F, Ismail SI, Abu-Dahab R, Mahmoud IS, Al BA (2012) TQ in liposomes: a study of loading efficiency and biological activity towards breast cancer. Drug Deliv 19(8):371–377

    Article  CAS  PubMed  Google Scholar 

  41. Effenberger K, Breyer S, Schobert R (2010) Terpene conjugates of the Nigella sativa seed-oil constituent TQ with enhanced efficacy in cancer cells. Chem Biodivers 7(1):129–139

    Article  CAS  PubMed  Google Scholar 

  42. Barkat MA, Abul H, Ahmad J, Khan MA, Beg S, Ahmad FJ (2017) Insights into the targeting potential of thymoquinone for therapeutic intervention against triple-negative breast cancer. Curr Drug Targets 19(1):70–80

    Google Scholar 

  43. Woo CC, Loo SY, Gee V et al (2011) Anticancer activity of TQ in breast cancer cells: possible involvement of PPAR-γ pathway. Biochem Pharmacol 82(5):464–475

    Article  CAS  PubMed  Google Scholar 

  44. Abdel-Fattah AM, Matsumoto K, Watanabe H (2000) Antinociceptive effects of Nigella sativa oil and its major component, TQ, in mice. Eur J Pharmacol 400(1):89–97

    Article  CAS  PubMed  Google Scholar 

  45. El Gazzar M, El Mezayen R, Marecki JC, Nicolls MR, Canastar A, Dreskin SC (2006) Anti-inflammatory effect of thymoquinone in a mouse model of allergic lung inflammation. Int Immunopharmacol 6(7):1135–1142

    Article  PubMed  CAS  Google Scholar 

  46. El-Mahmoudy A, Shimizu Y, Shiina T, Matsuyama H, El-Sayed M, Takewaki T (2005) Successful abrogation by TQ against induction of diabetes mellitus with streptozotocin via nitric oxide inhibitory mechanism. Int Immunopharmacol 5(1):195–207

    Article  CAS  PubMed  Google Scholar 

  47. Hosseinzadeh H, Parvardeh S (2004) Anticonvulsant effects of TQ, the major constituent of Nigella sativa seeds, in mice. Phytomedicine 11:56–64

    Article  CAS  PubMed  Google Scholar 

  48. Pari L, Sankaranarayanan C (2009) Beneficial effects of TQ on hepatic key enzymes in streptozotocin-nicotinamide induced diabetic rats. Life Sci 85:830–834

    Article  CAS  PubMed  Google Scholar 

  49. Nagi MN, Almakki HA (2009) TQ supplementation induces quinone reductase and glutathione transferase in mice liver: possible role in protection against chemical carcinogenesis and toxicity. Phytother Res 23:1295–1298

    Article  CAS  PubMed  Google Scholar 

  50. El-Dakhakhny M (1965) Studies on the Egyptian Nigella sativa L. Some pharmacological properties of the seeds’ active principle in comparison to its dihydro compound and its polymer. Arzneimittelforschung 15(10):1227–1229

    CAS  PubMed  Google Scholar 

  51. Mansour MA, Ginawi OT, El-Hadiyah T, El-Khatib AS, Al-Shabanah OA, Al-Sawaf HA (2001) Effects of volatile oil constituents of Nigella sativa on carbon tetrachloride-induced hepatotoxicity in mice: evidence for antioxidant effects of TQ. Res Commun Mol Pathol Pharmacol 110(3–4):239–251

    CAS  PubMed  Google Scholar 

  52. Nagi MN, Alam K, Badary OA, al-Shabanah OA, al-Sawaf HA, al-Bekairi AM (1999) TQ protects against carbon tetrachloride hepatotoxicity in mice via an antioxidant mechanism. Biochem Mol Biol Int 47(1):153–159

    CAS  PubMed  Google Scholar 

  53. Kanter M (2008) Nigella sativa and derived TQ prevents hippocampal neurodegeneration after chronic toluene exposure in rats. Neurochem Res 33:579–588

    Article  CAS  PubMed  Google Scholar 

  54. Al-Majed AA, Al-Omar FA, Nagi MN (2006) Neuroprotective effects of TQ against transient forebrain ischemia in the rat hippocampus. Eur J Pharmacol 543(1–3):40–47

    Article  CAS  PubMed  Google Scholar 

  55. Kanter M (2011) TQ attenuates lung injury induced by chronic toluene exposure in rats. Toxicol Ind Health 27:387–395

    Article  CAS  PubMed  Google Scholar 

  56. Abukhader MM (2012) The effect of route of administration in TQ toxicity in male and female rats. Indian J Pharm Sci 74:195–200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Alkharfy KM, Ahmad A, Khan RM, Al-Shagha WM (2015) Pharmacokinetic plasma behaviors of intravenous and oral bioavailability of TQ in a rabbit model. Eur J Drug Metab Pharmacokinet 40(3):319–323

    Article  CAS  PubMed  Google Scholar 

  58. Lupidi G, Scire A, Camaioni E et al (2010) TQ, a potential therapeutic agent of Nigella sativa, binds to site I of human serum albumin. Phytomedicine 17(10):714–720

    Article  CAS  PubMed  Google Scholar 

  59. Lupidi G, Camaioni E, Khalifé H et al (2012) Characterization of TQ binding to human α acid glycoprotein. J Pharm Sci 101:2564–2573

    Article  CAS  PubMed  Google Scholar 

  60. El-Najjar N, Ketola RA, Nissilä T et al (2011) Impact of protein binding on the analytical detectability and anticancer activity of TQ. J Chem Biol 4(3):97–107

    Article  PubMed  PubMed Central  Google Scholar 

  61. AbuKhader MM (2013) TQ in the clinical treatment of cancer: fact or fiction? Pharmacogn Rev 7(14):117–120

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Ravindran J, Nair HB, Sung B, Prasad S, Tekmal RR, Aggarwal BB (2010) TQ poly (lactide-co-glycolide) nanoparticles exhibit enhanced antiproliferative, anti-inflammatory, and chemosensitization potential. Biochem Pharmacol 79:1640–1647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Dehghani H, Hashemi M, Entezari M, Mohsenifar A (2015) The comparison of anticancer activity of TQ and nanoTQ on human breast adenocarcinoma. Iran J Pharm Res 14:539–546

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Al-Ali A, Alkhawajah AA, Randhawa MA, Shaikh NA (2008) Oral and intraperitoneal LD50 of TQ, an active principle of Nigella sativa, in mice and rats. J Ayub Med Coll Abbottabad 20:25–27

    PubMed  Google Scholar 

  65. Khan MA, Tania M, Wei C et al (2015) TQ inhibits cancer metastasis by downregulating TWIST1 expression to reduce epithelial to mesenchymal transition. Oncotarget 6:19580–19591

    Article  PubMed  PubMed Central  Google Scholar 

  66. Badary OA, Nagi MN, al-Shabanah OA et al (1997) TQ ameliorates the nephrotoxicity induced by cisplatin in rodents and potentiates its antitumor activity. Can J Physiol Pharmacol 75:1356–1361

    Article  CAS  PubMed  Google Scholar 

  67. al-Shabanah OA, Badary OA, Nagi MN et al (1998) TQ protects against doxorubicin-induced cardiotoxicity without compromising its antitumor activity. J Exp Clin Cancer Res. 17:193–198

    CAS  PubMed  Google Scholar 

  68. Badary OA, Abdel-Naim AB, Abdel-Wahab MH, Hamada FM (2000) The influence of TQ on doxorubicin-induced hyperlipidemic nephropathy in rats. Toxicology 143:219–226

    Article  CAS  PubMed  Google Scholar 

  69. Gali-Muhtasib HU, AbouKheir WG, Kheir LA, Darwiche N, Crooks PA (2004) Molecular pathway for TQ-induced cell-cycle arrest and apoptosis in neoplastic keratinocytes. Anticancer Drugs 15:389–399

    Article  CAS  PubMed  Google Scholar 

  70. Gali-Muhtasib H, Roessner A, Schneider-Stock R (2006) TQ: a promising anti-cancer drug from natural sources. Int J Biochem Cell Biol 38:1249–1253

    Article  CAS  PubMed  Google Scholar 

  71. Hochhauser D (1997) Modulation of chemosensitivity through altered expression of cell cycle regulatory genes in cancer. Anticancer Drugs 8:903–910

    Article  CAS  PubMed  Google Scholar 

  72. Barron J, Benghuzzi H, Tucci M (2008) Effects of TQ and selenium on the proliferation of mg 63 cells in tissue culture. Biomed Sci Instrum 44:434–440

    CAS  PubMed  Google Scholar 

  73. Worthen DR, Ghosheh OA, Crooks PA (1998) The in vitro anti-tumor activity of some crude and purified components of black seed, Nigella sativa L. Anticancer Res 18:1527–1532

    CAS  PubMed  Google Scholar 

  74. Banerjee S, Zhang Y, Ali S et al (2005) Molecular evidence for increased antitumor activity of gemcitabine by genistein in vitro and in vivo using an orthotopic model of pancreatic cancer. Cancer Res 65:9064–9072

    Article  CAS  PubMed  Google Scholar 

  75. Banerjee S, Zhang Y, Wang Z et al (2007) In vitro and in vivo molecular evidence of genistein action in augmenting the efficacy of cisplatin in pancreatic cancer. Int J Cancer 120:906–917

    Article  CAS  PubMed  Google Scholar 

  76. Al-Amri AA, Bamoasa AO (2009) Phase I safety and clinical activity of TQ in patients with advanced refractory malignant disease. Shiraz E-Med J 10:107–111

    Google Scholar 

  77. Qadri SM, Mahmud H, Foller M, Lang F (2009) TQ-induced suicidal erythrocyte death. Food Chem Toxicol 47(7):1545–1549

    Article  CAS  PubMed  Google Scholar 

  78. Khader M, Bresgen N, Eckl PM (2009) In vitro toxicological properties of TQ. Food Chem Toxicol 47(1):129–133

    Article  CAS  PubMed  Google Scholar 

  79. Rahmani AH, Alzohairy MA, Khan MA, Aly SM (2014) Therapeutic implications of black seed and its constituent TQ in the prevention of cancer through inactivation and activation of molecular pathways. Evid Based Complement Alternat Med 2014:1–13

    Article  Google Scholar 

  80. Vaillancourt F, Silva P, Shi Q, Fahmi H, Fernandes JC, Benderdour M (2011) Elucidation of molecular mechanisms underlying the protective effects of TQ against rheumatoid arthritis. J Cell Biochem 112(1):107–117

    Article  CAS  PubMed  Google Scholar 

  81. Dollah HMA, Parhizkar S, Latiff LA, Hassan MHB (2013) Toxicity effect of Nigella sativa on the liver function of rats. Adv Pharm Bull 3(1):97–102

    PubMed  PubMed Central  Google Scholar 

  82. Valizadeh N, Zakeri HR, Shafiee A (2009) The effect of Nigella sativa extract on biochemical bon markers in osteopenic postmenopausal women. Iran J Endocrinol Metab 10:570–580

    Google Scholar 

  83. Khanna T, Zaidi FA, Dandiya PC (1993) CNS and analgesic studies on Nigella sativa. Fitoterapia 64(5):407–410

    CAS  Google Scholar 

  84. Zaoui A, Cherrah Y, Mahassini N, Alaoui K, Amarouch H, Hassar M (2002) Acute and chronic toxicity of Nigella sativa fixed oil. Phytomedicine 9(1):69–74

    Article  CAS  PubMed  Google Scholar 

  85. Effenberger-Neidnicht K, Schobert R (2011) Combinatorial effects of TQ on the anticancer activity of doxorubicin. Cancer Chemother Pharmacol 67:867–874

    Article  CAS  PubMed  Google Scholar 

  86. Nagi MN, Mansour MA (2000) Protective effect of TQ against doxorubicin induced cardiotoxicity in rats: a possible mechanism of protection. Pharmacol Res 41:283–289

    Article  CAS  PubMed  Google Scholar 

  87. Velho-Pereira R, Kumar A, Pandey BN, Jagtap AG, Mishra KP (2011) Radiosensitization in human breast carcinoma cells by TQ: role of cell cycle and apoptosis. Cell Biol Int 35:1025–1029

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Barkat, M.A., Harshita, Pottoo, F.H., Beg, S., Rahman, M., Ahmad, F.J. (2020). Evidence-Based Review on Clinical Potential of Thymoquinone in Breast Cancer. In: Rahman, M., Beg, S., Kumar, V., Ahmad, F. (eds) Nanomedicine for Bioactives . Springer, Singapore. https://doi.org/10.1007/978-981-15-1664-1_19

Download citation

Publish with us

Policies and ethics