Skip to main content

Epigallocatechin-3-Gallate-Loaded Nanocarriers for Health Benefits

  • Chapter
  • First Online:
Nanomedicine for Bioactives

Abstract

Green tea is one of those natural products that contains bioactive components like epigallocatechin-3-gallate (EGCG), a flavanol, that has been widely studied and proven for their health benefits. EGCG also demonstrated as antioxidant, antiaging, antitumorigenic, antidiabetic, antileukemic, anti-Alzheimer, and anti-obesity effects. Its effectiveness has further been harnessed and channelized by incorporating nanotechnology. Nanocarriers have been used as very efficient delivery systems for targeting the potent molecules. This chapter reviews the potential of EGCG when loaded in different types of nanocarriers to improve its physicochemical and therapeutic properties in preventing and treating several disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Negri A, Naponelli V, Rizzi F, Bettuzzi S (2018) Molecular targets of epigallocatechin—gallate (EGCG): a special focus on signal transduction and cancer. Nutrients 10(12). https://doi.org/10.3390/nu10121936

  2. PubChem (-)-Epigallocatechin gallate [Online]. Available https://pubchem.ncbi.nlm.nih.gov/compound/65064. Accessed 26 June 2019

  3. Braicu C, Ladomery MR, Chedea VS, Irimie A, Berindan-Neagoe I (2013) The relationship between the structure and biological actions of green tea catechins. Food Chem 141(3):3282–3289

    Article  CAS  PubMed  Google Scholar 

  4. Rice-Evans CA, Miller NJ, Bolwell PG, Bramley PM, Pridham JB (1995) The relative antioxidant activities of plant-derived polyphenolic flavonoids. Free Radic Res 22(4):375–383

    Article  CAS  PubMed  Google Scholar 

  5. Chu C et al (2017) “Green tea extracts epigallocatechin-3-gallate for different treatments: Figure 1.” [Online]. Available https://www.hindawi.com/journals/bmri/2017/5615647/fig1/. Accessed 16 June 2019]

  6. Du G-J et al (2012) Epigallocatechin gallate (EGCG) Is the most effective cancer chemopreventive polyphenol in green tea. Nutrients 4(11):1679–1691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Higdon JV, Frei B (2003) Tea catechins and polyphenols: health effects, metabolism, and antioxidant functions. Crit Rev Food Sci Nutr 43(1):89–143

    Article  CAS  PubMed  Google Scholar 

  8. Khan N, Mukhtar H (2018) Tea polyphenols in promotion of human health. Nutrients 11(1). https://doi.org/10.3390/nu11010039

  9. Machado ECFA, Ambrosano L, Lage R, Abdalla BMZ, Costa A (2017) Nutraceuticals for healthy skin aging. In: Nutrition and functional foods for healthy aging. Elsevier, Amsterdam, pp 273–281

    Chapter  Google Scholar 

  10. Salimi A, Pourahmad J (2018) Role of natural compounds in prevention and treatment of chronic lymphocytic leukemia. In: Polyphenols: prevention and treatment of human disease. Elsevier, Amsterdam, pp 195–203

    Chapter  Google Scholar 

  11. Wolfram S (2007) Effects of green tea and EGCG on cardiovascular and metabolic health. J Am Coll Nutr 26(4):373S–388S

    Article  CAS  PubMed  Google Scholar 

  12. Granja A, Frias I, Neves AR, Pinheiro M, Reis S (2017a) Therapeutic potential of epigallocatechin gallate nanodelivery systems. BioMed Res Int 2017:5813793

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. “Retracted: Epigallocatechin-3-gallate inhibits photocarcinogenesis through inhibition of angiogenic factors and activation of CD8+ T cells in tumors - Mantena - 2005 - Photochemistry and Photobiology - Wiley Online Library.” [Online]. Available https://onlinelibrary.wiley.com/doi/abs/10.1562/2005-04-11-RA-487. Accessed 20 June 2019

  14. Shankar S, Marsh L, Srivastava RK (2013) EGCG inhibits growth of human pancreatic tumors orthotopically implanted in Balb C nude mice through modulation of FKHRL1/FOXO3a and neuropilin | SpringerLink.” [Online]. Available: https://link.springer.com/article/10.1007/s11010-012-1448-y. Accessed 20 June 2019

  15. Granja A, Frias I, Neves AR, Pinheiro M, Reis S (2017b) Therapeutic potential of epigallocatechin gallate nanodelivery systems. Biomed Res Int 2017:1–15

    Article  CAS  Google Scholar 

  16. Meng Q (2008) Regulating the age-related oxidative damage, mitochondrial integrity, and antioxidative enzyme activity in Fischer 344 rats by supplementation of the antioxidant epigallocatechin-3-gallate | Rejuvenation Research. [Online]. Available: https://www.liebertpub.com/doi/10.1089/rej.2007.0645. Accessed 20 June 2019

  17. Eng QY, Thanikachalam PV, Ramamurthy S (2018) Molecular understanding of epigallocatechin gallate (EGCG) in cardiovascular and metabolic diseases. J Ethnopharmacol 210:296–310

    Article  CAS  PubMed  Google Scholar 

  18. Giunta B et al (2010) Fish Oil enhances anti-amyloidogenic properties of Green Tea EGCG in Tg2576 mice. Neurosci Lett 471(3):134–138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lee JW et al (2009) Green tea (−)-epigallocatechin-3-gallate inhibits beta-amyloid-induced cognitive dysfunction through modification of secretase activity via inhibition of ERK and NF-kappaB pathways in mice. J Nutr 139(10):1987–1993

    Article  CAS  PubMed  Google Scholar 

  20. Koo SI, Noh SK (2007) Green tea as inhibitor of the intestinal absorption of lipids: potential mechanism for its lipid-lowering effect. J Nutr Biochem 18(3):179–183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Skovronsky DM, Lee VM-Y, Trojanowski JQ (2006) Neurodegenerative diseases: new concepts of pathogenesis and their therapeutic implications. Annu Rev Pathol 1:151–170

    Article  CAS  PubMed  Google Scholar 

  22. Scholey A et al (2012) Acute neurocognitive effects of epigallocatechin gallate (EGCG). Appetite 58(2):767–770

    Article  CAS  PubMed  Google Scholar 

  23. Park J-H, Bae J-H, Im S-S, Song D-K (2014) Green tea and type 2 diabetes. Integr Med Res 3(1):4–10

    Article  CAS  PubMed  Google Scholar 

  24. Li X, Li S, Chen M, Wang J, Xie B, Sun Z (2018a) (-)-Epigallocatechin-3-gallate (EGCG) inhibits starch digestion and improves glucose homeostasis through direct or indirect activation of PXR/CAR-mediated phase II metabolism in diabetic mice. Food Funct 9(9):4651–4663

    Article  CAS  PubMed  Google Scholar 

  25. Zhang Q et al (2018) “Epigallocatechin gallate improves insulin resistance in HepG2 cells through alleviating inflammation and lipotoxicity,” Diabetes Res. Clin Pract 142:363–373

    CAS  Google Scholar 

  26. Firestein GS (2003) Evolving concepts of rheumatoid arthritis | Nature. [Online]. Available https://www.nature.com/articles/nature01661. Accessed 22 June 2019

  27. Singh R, Ahmed S, Islam N, Goldberg VM, Haqqi TM (2002) Epigallocatechin-3-gallate inhibits interleukin-1β–induced expression of nitric oxide synthase and production of nitric oxide in human chondrocytes: suppression of nuclear factor κB activation by degradation of the inhibitor of nuclear factor κB. Arthritis Rheum 46(8):2079–2086

    Article  CAS  PubMed  Google Scholar 

  28. Thielecke F, Boschmann M (2009) The potential role of green tea catechins in the prevention of the metabolic syndrome – a review. Phytochemistry 70(1):11–24

    Article  CAS  PubMed  Google Scholar 

  29. Moon H-S, Lee H-G, Choi Y-J, Kim T-G, Cho C-S (2007) Proposed mechanisms of (−)-epigallocatechin-3-gallate for anti-obesity. Chem Biol Interact 167(2):85–98

    Article  CAS  PubMed  Google Scholar 

  30. Forester SC, Gu Y, Lambert JD (2012) Inhibition of starch digestion by the green tea polyphenol, (−)-epigallocatechin-3-gallate. Mol Nutr Food Res 56(11):1647–1654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lambert JD et al (2003) Epigallocatechin-3-gallate is absorbed but extensively glucuronidated following oral administration to mice. J Nutr 133(12):4172–4177

    Article  CAS  PubMed  Google Scholar 

  32. Narumi K et al (2014) Simultaneous detection of green tea catechins and gallic acid in human serum after ingestion of green tea tablets using ion-pair high-performance liquid chromatography with electrochemical detection. J Chromatogr B Analyt Technol Biomed Life Sci 945–946:147–153

    Article  PubMed  CAS  Google Scholar 

  33. Cai Y, Anavy ND, Chow H-HS (2002) Contribution of presystemic hepatic extraction to the low oral bioavailability of green tea catechins in rats. Drug Metab Dispos 30(11):1246–1249

    Article  CAS  PubMed  Google Scholar 

  34. Zhang L, Zheng Y, Chow MSS, Zuo Z (2004) Investigation of intestinal absorption and disposition of green tea catechins by Caco-2 monolayer model. Int J Pharm 287(1–2):1–12

    Article  CAS  PubMed  Google Scholar 

  35. Krupkova O, Ferguson SJ, Wuertz-Kozak K (2016) Stability of (−)-epigallocatechin gallate and its activity in liquid formulations and delivery systems. J Nutr Biochem 37:1–12

    Article  CAS  PubMed  Google Scholar 

  36. Chow H-HS et al (2003) Pharmacokinetics and safety of green tea polyphenols after multiple-dose administration of epigallocatechin gallate and polyphenon E in healthy individuals. Clin Cancer Res 9(9):3312–3319

    CAS  PubMed  Google Scholar 

  37. Yang CS, Wang X, Lu G, Picinich SC (2009) Cancer prevention by tea: animal studies, molecular mechanisms and human relevance. Nat Rev Cancer 9(6):429–439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Shtay R, Keppler JK, Schrader K, Schwarz K (2019) Encapsulation of (─)-epigallocatechin-3-gallate (EGCG) in solid lipid nanoparticles for food applications. J Food Eng 244:91–100

    Article  CAS  Google Scholar 

  39. ud Din F et al (2017) Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int J Nanomedicine 12:7291–7309

    Article  CAS  Google Scholar 

  40. Dag D, Oztop MH (2017) Formation and characterization of green tea extract loaded liposomes. J Food Sci 82(2):463–470

    Article  CAS  PubMed  Google Scholar 

  41. Shi M et al (2018) Food-Grade Encapsulation Systems for (−)-Epigallocatechin Gallate. Molecules 23(2):445

    Article  PubMed Central  CAS  Google Scholar 

  42. Dube A, Nicolazzo JA, Larson I (2011) Chitosan nanoparticles enhance the plasma exposure of (−)-epigallocatechin gallate in mice through an enhancement in intestinal stability. Eur J Pharm Sci 44(3):422–426

    Article  CAS  PubMed  Google Scholar 

  43. Ganesan P, Narayanasamy D (2017) Lipid nanoparticles: different preparation techniques, characterization, hurdles, and strategies for the production of solid lipid nanoparticles and nanostructured lipid carriers for oral drug delivery. Sustain Chem Pharm 6:37–56

    Article  Google Scholar 

  44. Dzulhi S, Anwar E, Nurhayati T (2018) Formulation, characterization and in vitro skin penetration of green tea (Camellia sinensis L.) leaves extract-loaded solid lipid nanoparticles. J Appl Pharm Sci 8:57–62

    CAS  Google Scholar 

  45. Fangueiro JF et al (2016) Biopharmaceutical evaluation of epigallocatechin gallate-loaded cationic lipid nanoparticles (EGCG-LNs): in vivo, in vitro and ex vivo studies. Int J Pharm 502(1):161–169

    Article  CAS  PubMed  Google Scholar 

  46. Zhang J, Nie S, Wang S (2013) Nanoencapsulation enhances epigallocatechin-3-gallate stability and its anti-atherogenic bioactivities in macrophages. J Agric Food Chem 61(38):9200–9209

    Article  CAS  PubMed  Google Scholar 

  47. Zhang J, Nie S, Martinez-Zaguilan R, Sennoune SR, Wang S (2016) Formulation, characteristics and anti-atherogenic bioactivities of CD36-targeted epigallocatechin gallate (EGCG)-loaded nanoparticles. J Nutr Biochem 30:14–23

    Article  CAS  PubMed  Google Scholar 

  48. Smith A, Giunta B, Bickford PC, Fountain M, Tan J, Shytle RD (2010) Nanolipidic particles improve the bioavailability and alpha-secretase inducing ability of epigallocatechin-3-gallate (EGCG) for the treatment of Alzheimer’s disease. Int J Pharm 389(1–2):207–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Chen J et al (2017) Development and evaluation of resveratrol, vitamin E, and epigallocatechin gallate loaded lipid nanoparticles for skin care applications. Eur J Pharm Biopharm 117:286–291

    Article  CAS  PubMed  Google Scholar 

  50. Radhakrishnan R et al (2016) Encapsulation of biophenolic phytochemical EGCG within lipid nanoparticles enhances its stability and cytotoxicity against cancer. Chem Phys Lipids 198:51–60

    Article  CAS  PubMed  Google Scholar 

  51. Nafee N, Makled S, Boraie N (2018) Nanostructured lipid carriers versus solid lipid nanoparticles for the potential treatment of pulmonary hypertension via nebulization. Eur J Pharm Sci 125:151–162

    Article  CAS  PubMed  Google Scholar 

  52. Gerasimov OV, Boomer JA, Qualls MM, Thompson DH (1999) Cytosolic drug delivery using pH- and light-sensitive liposomes. Adv Drug Deliv Rev 38(3):317–338

    Article  CAS  PubMed  Google Scholar 

  53. Minnelli C et al (2018) A Poloxamer-407 modified liposome encapsulating epigallocatechin-3-gallate in the presence of magnesium: characterization and protective effect against oxidative damage. Int J Pharm 552(1):225–234

    Article  CAS  PubMed  Google Scholar 

  54. Chen W, Zou M, Ma X, Lv R, Ding T, Liu D (2019) Co-encapsulation of EGCG and quercetin in liposomes for optimum antioxidant activity. J Food Sci 84(1):111–120

    CAS  PubMed  Google Scholar 

  55. Marwah M, Perrie Y, Badhan RKS, Lowry D (2019) Intracellular uptake of EGCG-loaded deformable controlled release liposomes for skin cancer. J Liposome Res 1–14. https://doi.org/10.1080/08982104.2019.1604746

  56. Zou L, Peng S, Liu W, Chen X, Liu C (2015) A novel delivery system dextran sulfate coated amphiphilic chitosan derivatives-based nanoliposome: capacity to improve in vitro digestion stability of (−)-epigallocatechin gallate. Food Res Int 69:114–120

    Article  CAS  Google Scholar 

  57. “Therapeutic efficacy of epigallocatechin gallate-loaded nanoliposomes against burn wound infection by methicillin-resistant Staphylococcus aureus - Abstract - Skin pharmacology and physiology 2013, Vol. 26, No. 2 - Karger Publishers.” [Online]. Available: https://www.karger.com/Article/Abstract/345761. Accessed 23 June 2019

  58. Luo X et al (2014) Optimization on condition of epigallocatechin-3-gallate (EGCG) nanoliposomes by response surface methodology and cellular uptake studies in Caco-2 cells | Nanoscale Research Letters | Full Text. [Online]. Available: https://nanoscalereslett.springeropen.com/articles/10.1186/1556-276X-9-291. Accessed 23 June 2019

  59. Song Q et al (2014) Enhanced uptake and transport of (+)-catechin and (−)-epigallocatechin gallate in niosomal formulation by human intestinal Caco-2 cells. Int J Nanomed; 08-May-2014. [Online]. Available: https://www.dovepress.com/enhanced-uptake-and-transport-of%2D%2Dcatechin-and%2D%2D-epigallocatechin-gall-peer-reviewed-article-IJN. Accessed 23 June 2019

  60. Ramdass SK et al (2014) Paclitaxel/epigallocatechin gallate coloaded liposome: a synergistic delivery to control the invasiveness of MDA-MB-231 breast cancer cells - ScienceDirect.” [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0927776514006195?via%3Dihub. Accessed 23 June 2019

  61. Iyisan B, Landfester K (2019) Polymeric Nanocarriers. In: Gehr P, Zellner R (eds) Biological responses to nanoscale particles. Springer, Cham, pp 53–84

    Chapter  Google Scholar 

  62. Soppimath KS, Aminabhavi TM, Kulkarni AR, Rudzinski WE (2001) Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release 70(1):1–20

    Article  CAS  PubMed  Google Scholar 

  63. Hong Z, Xu Y, Yin J-F, Jin J, Jiang Y, Du Q (2014) Improving the effectiveness of (−)-epigallocatechin gallate (EGCG) against rabbit atherosclerosis by EGCG-loaded nanoparticles prepared from chitosan and polyaspartic acid. J Agric Food Chem 62(52):12603–12609

    Article  CAS  PubMed  Google Scholar 

  64. Sanna V et al (2017) Targeted nanoparticles encapsulating (−)-epigallocatechin-3-gallate for prostate cancer prevention and therapy. Sci Rep 7:41573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zeng L, Yan J, Luo L, Ma M, Zhu H (2017) Preparation and characterization of (−)-epigallocatechin-3-gallate (EGCG)-loaded nanoparticles and their inhibitory effects on Human breast cancer MCF-7 cells. Sci Rep 7:45521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Cano A et al (2019) Dual-drug loaded nanoparticles of Epigallocatechin-3-gallate (EGCG)/Ascorbic acid enhance therapeutic efficacy of EGCG in a APPswe/PS1dE9 Alzheimer’s disease mice model. J Control Release 301:62–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zhang G, Zhang J (2018) Enhanced oral bioavailability of EGCG using pH-sensitive polymeric nanoparticles: characterization and in vivo investigation on nephrotic syndrome rats. Drug Des Devel Ther 12:2509–2518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Singh NA, Bhardwaj V, Ravi C, Ramesh N, Mandal AKA, Khan ZA (2018) EGCG nanoparticles attenuate aluminum chloride induced neurobehavioral deficits, beta amyloid and tau pathology in a rat model of Alzheimer’s disease. Front Aging Neurosci 10:244

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Lin Y-H, Feng C-L, Lai C-H, Lin J-H, Chen H-Y (2014) Preparation of epigallocatechin gallate-loaded nanoparticles and characterization of their inhibitory effects on Helicobacter pylori growth in vitro and in vivo. Sci Technol Adv Mater 15(4):045006

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Cano A et al (2018) Epigallocatechin-3-gallate loaded PEGylated-PLGA nanoparticles: a new anti-seizure strategy for temporal lobe epilepsy. Nanomed Nanotechnol Biol Med 14(4):1073–1085

    Article  CAS  Google Scholar 

  71. Huang H-Y et al (2018) Gelatin–epigallocatechin gallate nanoparticles with hyaluronic acid decoration as eye drops can treat rabbit dry-eye syndrome effectively via inflammatory relief. Int J Nanomed; 08-Nov-2018. [Online]. Available https://www.dovepress.com/gelatinndashepigallocatechin-gallate-nanoparticles-with-hyaluronic-aci-peer-reviewed-fulltext-article-IJN. Accessed 23 June 2019

  72. Wu YR, Choi HJ, Kang YG, Kim JK, Shin J-W (2017) In vitro study on anti-inflammatory effects of epigallocatechin-3-gallate-loaded nano- and microscale particles. Int J Nanomedicine 12:7007–7013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Chavva S et al (2019) Epigallocatechin gallate-gold nanoparticles exhibit superior antitumor activity compared to conventional gold nanoparticles: potential synergistic interactions. Nano 9(3):396

    CAS  Google Scholar 

  74. Wu S et al (2018) Biosynthesis of flower-shaped Au nanoclusters with EGCG and their application for drug delivery. J Nanobiotechnol 16(1):90

    Article  CAS  Google Scholar 

  75. Tsai L-C, Hsieh H-Y, Lu K-Y, Wang S-Y, Mi F-L (2016) EGCG/gelatin-doxorubicin gold nanoparticles enhance therapeutic efficacy of doxorubicin for prostate cancer treatment. Nanomedicine 11(1):9–30

    Article  CAS  PubMed  Google Scholar 

  76. Chen C-C, et al (2014) Improving anticancer efficacy of (–)-epigallocatechin-3-gallate gold nanoparticles in murine B16F10 melanoma cells. [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4020885/. Accessed 24 June 2019

  77. Zhang J et al (2014) Epigallocatechin-3-gallate (EGCG)-stabilized selenium nanoparticles coated with Tet-1 peptide to reduce amyloid-β aggregation and cytotoxicity. - PubMed - NCBI. [Online]. Available: https://www.ncbi.nlm.nih.gov/pubmed/24758520. Accessed 24 June 2019

  78. Li Y et al (2018b) ‘Cell-addictive’ dual-target traceable nanodrug for Parkinson’s disease treatment via flotillins pathway. Theranostics 8(19):5469–5481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Hsieh DS et al (2011) The treatment of bladder cancer in a mouse model by epigallocatechin-3-gallate-gold nanoparticles. - PubMed - NCBI.” [Online]. Available: https://www.ncbi.nlm.nih.gov/pubmed/21782236. Accessed 25 June 2019

  80. Avadhani KS et al (2017) Skin delivery of epigallocatechin-3-gallate (EGCG) and hyaluronic acid loaded nano-transfersomes for antioxidant and anti-aging effects in UV radiation induced skin damage. Drug Deliv 24(1):61–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Shetty PK et al (2017) Skin delivery of EGCG and silibinin: potential of peptide dendrimers for enhanced skin permeation and deposition. AAPS PharmSciTech 18(6):2346–2357

    Article  CAS  PubMed  Google Scholar 

  82. Shafiei SS, Solati-Hashjin M, Samadikuchaksaraei A, Kalantarinejad R, Asadi-Eydivand M, Osman NAA (2015) Epigallocatechin gallate/layered double hydroxide nanohybrids: preparation, characterization, and in vitro anti-tumor study. PLoS One 10(8):e0136530

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Lambert JD et al (2006) Dose-dependent levels of epigallocatechin-3-gallate in human colon cancer cells and mouse plasma and tissues. Drug Metab Dispos Biol 34(1):8–11

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nupur Garg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Garg, N., Ahmad, F.J. (2020). Epigallocatechin-3-Gallate-Loaded Nanocarriers for Health Benefits. In: Rahman, M., Beg, S., Kumar, V., Ahmad, F. (eds) Nanomedicine for Bioactives . Springer, Singapore. https://doi.org/10.1007/978-981-15-1664-1_15

Download citation

Publish with us

Policies and ethics