Skip to main content

Elicitation of Flavonoids in Kalanchoe pinnata by Agrobacterium rhizogenes-Mediated Transformation and UV-B Radiation

  • Chapter
  • First Online:
Medicinal Plants: Biodiversity, Sustainable Utilization and Conservation

Abstract

Kalanchoe pinnata from the stonecrop family (Crassulaceae) is a medicinal plant with high content of bioactive compounds. The plant is known for its anti-allergic, antioxidant, anti-inflammatory, antimicrobial and antibacterial activities, which are mainly attributed to flavonoids. Low yields of bioactive compounds in medicinal plants have led to new strategies for enhancing their biosynthetic capacity in order to increase the content of specialized metabolites. Herein, the accumulation of specialized metabolites in plants can be triggered by elicitation methods. In the current study, different elicitation strategies were conducted towards the enhancement of bioactive compounds in K. pinnata leaves. We investigated the effect of natural transformation with the Agrobacterium rhizogenes strain A4 as means of biological elicitation on the total content of flavonoids in the leaves of K. pinnata. Furthermore, the effect of supplemental UV-B radiation, as physical elicitor, was assessed on the total flavonoid content of both wild-type (WT) and rol-transformed plants. The combined effect of the two mentioned elicitation methods was also examined. The data showed that presence of rol genes resulted in an increase of 24% in the total flavonoid content compared to WT plants. The supplemental UV-B radiation increased the total content of flavonoids with 95% and 89% in the WT and the rol+ plants, respectively. Collectively, a synergistic effect was shown as the combination of the two factors dramatically increased (133%) the total flavonoid content in K. pinnata leaves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bieza K (2001) An Arabidopsis mutant tolerant to lethal ultraviolet-b levels shows constitutively elevated accumulation of Flavonoids and other Phenolics. Plant Physiol 126(3):1105–1115

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bonhomme V, Laurain-Mattar D, Lacoux J, Fliniaux MA, Jacquin-Dubreuil A (2000) Tropane alkaloid production by hairy roots of Atropa belladonna obtained after transformation with Agrobacterium rhizogenes 15834 and Agrobacterium tumefaciens containing rolA, B, C genes only. J Biotechnol 81(2–3):151–158

    CAS  PubMed  Google Scholar 

  • Bopda OSM, Longo F, Bella TN, Edzah PMO, Tawe GS, Bilanda DC, Tom ENL, Kamtchouing P, Dimo T (2014) Antihypertensive activities of the aqueous extract of Kalanchoe pinnata (Crassulaceae) in high salt-loaded rats. J Ethnopharmacol 153(2):400–407

    PubMed  Google Scholar 

  • Bulgakov VP (2008) Functions of rol genes in plant secondary metabolism. Biotechnol Adv 26:318–324

    CAS  PubMed  Google Scholar 

  • Casanova E, Trillas MI, Moysset L, Vainstein A (2005) Influence of rol genes in floriculture. Biotechnol Adv 23:3):3–3)39

    PubMed  Google Scholar 

  • Chandra S (2011) Natural plant genetic engineer Agrobacterium rhizogenes: role of T-DNA in plant secondary metabolism. Biotechnol Lett 34(3):407–415

    PubMed  Google Scholar 

  • Chibli LA, Rodrigues KCM, Gasparetto CM, Pinto NCC, Fabri RL, Scio E, Alves MS, Del-Vechio-Vieira G, Sousa OV (2014) Anti-inflammatory effects of Bryophyllum pinnatum (Lam.) Oken ethanol extract in acute and chronic cutaneous inflammation. J Ethnopharmacol 154(2):330–338

    PubMed  Google Scholar 

  • Christensen B, Müller R (2009) The use of Agrobacterium rhizogenes and its rol-genes for quality improvement in ornamentals. Eur J Hortic Sci 74(6):275–287

    CAS  Google Scholar 

  • Christensen B, Sriskandarajah S, Serek M, Müller R (2008) Transformation of Kalanchoe blossfeldiana with rol-genes is useful in molecular breeding towards compact growth. Plant Cell Rep 27(9):1485–1495

    CAS  PubMed  Google Scholar 

  • Christey MC (2001) Use of ri-mediated transformation for production of transgenic plants. In Vitro Cell Dev Biol Plant 37(6):687–700

    CAS  Google Scholar 

  • Cruz EA, Reuter S, Martin H, Dehzad N, Muzitano MF, Costa SS, Rossi-Bergmann B, Buhl R, Stassen M, Taube C (2012) Kalanchoe pinnata inhibits mast cell activation and prevents allergic airway disease. Phytomedicine 19(2):115–121

    CAS  PubMed  Google Scholar 

  • Cuadra P, Harborne JB, Waterman PG (1997) Increases in surface flavonols and photosynthetic pigments in Gnaphalium luteo-album in response to UV-B radiation. Phytochemistry 45(7):1377–1383

    CAS  Google Scholar 

  • European Union (2001) Directive 2001/18/EC of the European parliament and of the council of 12 March 2001 on the deliberate release into the environment of genetically modified organisms and repealing council directive 90/220/EEC-commission declaration

    Google Scholar 

  • Giri A, Narasu ML (2000) Transgenic hairy roots: recent trends and applications. Biotechnol Adv 18(1):1–22

    Article  CAS  PubMed  Google Scholar 

  • Heisler GM, Grant RH, Gao W, Slusser JR (2003) Ultraviolet radiation and its impacts on agriculture and forests. Agric For Meteorol 120(3):120–133

    Google Scholar 

  • Husain A (2010) Economic aspects of exploitation of medicinal plants. In: Akerele O, Heywood V, Synge H (eds) Conservation of medicinal plants. Cambridge University Press (Virtual Publishing), Cambridge, pp 125–140

    Google Scholar 

  • Huyskens-Keil S, Eichholz I, Kroh LW, Rohn S (2007) UV-B induced changes of phenol composition and antioxidant activity in blackcurrant fruit (Ribes nigrum L.). J Appl Bot Food Qual 81:140–144

    CAS  Google Scholar 

  • Kabera J, Semana E, Mussa A, He X (2014) Plant secondary metabolites: biosynthesis, classification, function and pharmacological properties. J Pharm Pharmacol 2:377–392

    Google Scholar 

  • Kiselev KV, Dubrovina AS, Veselova MV, Bulgakov VP, FedoreyevSA ZYN (2007) The rolB gene-induced overproduction of resveratrol in Vitis amurensis transformed cells. J Biotechnol 128(3):681–692

    Article  CAS  PubMed  Google Scholar 

  • Mahdavian K, Ghorbanli M, Kalantari KM (2008) The effects of ultraviolet radiation on the contents of chlorophyll, flavonoid, anthocyanin and proline in Capsicum annuum L. Turk J Bot 32:25–33

    Google Scholar 

  • Matsuura HN, de Costa F, Yendo ACA, Fett-Neto AG (2012) Photoelicitation of bioactive secondary metabolites by ultraviolet radiation: mechanisms, strategies, and applications. In: Chandra S, Lata H, Varma A (eds) Biotechnology for medicinal plants. Springer, New York, pp 171–190

    Google Scholar 

  • Middleton EM, Teramura AH (1993) The role of flavonol glycosides and carotenoids in protecting soybean from ultraviolet-B damage. Plant Physiol 103:741–752

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nascimento LBDS, Leal-Costa MV, Menezes EA, Lopes VR, Muzitano MF, Costa SS, Tavares ES (2015) Ultraviolet-B radiation effects on phenolic profile and flavonoid content of Kalanchoe pinnata. J Photochem Photobiol B 148:73–81

    CAS  PubMed  Google Scholar 

  • Nayak S, Marshall JR, Isitor G (2010) Wound healing potential of ethanolic extract of Kalanchoe pinnata Lam. Leaf—a preliminary study. Indian J Exp Biol 48:572–576

    PubMed  Google Scholar 

  • Newman DJ, Crag GM (2007) Natural products as sources of new drugs over the last 25 years. J Nat Prod 70:461–477

    CAS  PubMed  Google Scholar 

  • Oksman-Caldentey KM, Hiltunen R (1996) Transgenic crops for improved pharmaceutical products. Field Crop Res 45(1-3):57–69

    Google Scholar 

  • Rahmatullah M, Mollik MAH, Islam MK, Islam MR, Jahan FI, Zubaida K, Seraj S, Chowdhury MH, Islam F, Miajee ZUME, Rownak J (2010) A survey of medicinal and functional food plants used by the folk medicinal practitioners of three villages in Sreepur Upazila, Magura District, Bangladesh. Am-Eurasian J Sustain Agric 4(3):363–373

    Google Scholar 

  • Ryan KG, Markham KR, Bloor SJ, Bradley JM, Mitchell KA, Jordan BR (1998) UV-B radiation induced increase in quercetin: kaempferol ratio in wild-type and transgenic lines of Petunia. Photochem Photobiol 68(3):323–330

    CAS  Google Scholar 

  • Schreiner M, Martínez-Abaigar J, Glaab J, Jansen M (2014) UV-B induced secondary plant metabolites. OPJ 9(2):34–37

    CAS  Google Scholar 

  • Sevon N, Oksman-Caldentey KM (2002) Agrobacterium rhizogenes-mediated transformation: root cultures as a source of alkaloids. Planta Med 68(10):859–868

    CAS  PubMed  Google Scholar 

  • Supratman U, Fujita T, Akiyama K, Hayashi H, Murakami A, Sakai H, Koshimizu K, Ohigashi H (2001) Anti-tumor promoting activity of Bufadienolides from Kalanchoe pinnata and K. Daigremontiana × butiflora. Biosci Biotechnol Biochem 65(4):947–949

    CAS  PubMed  Google Scholar 

  • Tatsimo S, Tamokou J, Havyarimana L, Csupor D, Forgo P, Hohmann J, Kuiate JR, Tane P (2012) Antimicrobial and antioxidant activity of kaempferol rhamnoside derivatives from Bryophyllum pinnatum. BMC Res Notes 5(1):158

    CAS  PubMed  PubMed Central  Google Scholar 

  • Topcu Y, Dogan A, Kasimoglu Z, Sahin-Nadeem H, Polat E, Erkan M (2015) The effects of UV radiation during the vegetative period on antioxidant compounds and postharvest quality of broccoli (Brassica oleracea L.). Plant Physiol Biochem 93:56–65

    CAS  PubMed  Google Scholar 

  • White FF, Taylor BH, Huffmann GA, Gordon MP, Nester EW (1985) Molecular and genetic analysis of the transferred DNA regions of the root-inducing plasmid of Agrobacterium rhizogenes. J Bacteriol 164(1):33–44

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou X, Wu Y, Wang X, Liu B, Xu H (2007) Salidroside production by hairy roots of Rhodiola sachalinensis obtained after transformation with Agrobacterium rhizogenes. Biol Pharm Bull 30(3):439–442

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Knud Jepsen A/S, Hinnerup, Denmark, for providing plant material. Hanne Hasselager is acknowledged for the A. rhizogenes-mediated transformation of K. pinnata. This research was a part of the innovation consortium BioFactory funded by The Danish Agency for Science, Technology and Innovation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henrik Lütken .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fkiara, A., Barba-Espín, G., El-Houri, R., Müller, R., Christensen, L.P., Lütken, H. (2020). Elicitation of Flavonoids in Kalanchoe pinnata by Agrobacterium rhizogenes-Mediated Transformation and UV-B Radiation. In: Khasim, S.M., Long, C., Thammasiri, K., Lutken, H. (eds) Medicinal Plants: Biodiversity, Sustainable Utilization and Conservation. Springer, Singapore. https://doi.org/10.1007/978-981-15-1636-8_22

Download citation

Publish with us

Policies and ethics