Skip to main content

Inverse Moving Source Problem for Fractional Diffusion(-Wave) Equations: Determination of Orbits

  • Conference paper
  • First Online:

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 310))

Abstract

This paper is concerned  with the inverse problem on determining the orbit of a moving source in fractional diffusion(-wave) equations either in a connected bounded domain of \({\mathbb R}^d\) or in the whole space \({\mathbb R}^d\). Based on a newly established fractional Duhamel’s principle, we derive a Lipschitz stability estimate in the case of a localized moving source by the observation data at d interior points. The uniqueness for the general non-localized moving source is verified with additional data of more interior observations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. R.A. Adams, Sobolev Spaces (Academic Press, New York, 1975)

    MATH  Google Scholar 

  2. Y.E. Anikonov, J. Cheng, M. Yamamoto, A uniqueness result in an inverse hyperbolic problem with analyticity. Eur. J. Appl. Math. 15, 533–543 (2004)

    Google Scholar 

  3. A.E. Badia, T. Ha-Duong, Determination of point wave sources by boundary measurements. Inverse Probl. 17, 1127–1139 (2001)

    Article  MathSciNet  Google Scholar 

  4. A.L. Bukhgeim, M.V. Klibanov, Global uniqueness of a class of multidimensional inverse problems. Sov. Math. Dokl. 24, 244–247 (1981)

    MATH  Google Scholar 

  5. J. Cheng, V. Isakov, S. Lu, Increasing stability in the inverse source problem with many frequencies. J. Differ. Equ. 260, 4786–4804 (2016)

    Article  MathSciNet  Google Scholar 

  6. M. Choulli, M. Yamamoto, Some stability estimates in determining sources and coefficients. J. Inverse Ill Posed Probl. 14, 355–373 (2006)

    Article  MathSciNet  Google Scholar 

  7. S.D. Eidelman, A.N. Kochubei, Cauchy problem for fractional diffusion equations. J. Differ. Equ. 199, 211–255 (2004)

    Article  MathSciNet  Google Scholar 

  8. K. Fujishiro, Y. Kian, Determination of time dependent factors of coefficients in fractional diffusion equations. Math. Control Relat. Fields 6, 251–269 (2016)

    Article  MathSciNet  Google Scholar 

  9. D. Henry, Geometric Theory of Semilinear Parabolic Equations (Springer, Berlin, 1981)

    Book  Google Scholar 

  10. G. Hu, Y. Kian, P. Li, Y. Zhao, Inverse moving source problems in electrodynamics. Inverse Probl. 35, 075001 (2019)

    Article  MathSciNet  Google Scholar 

  11. V. Isakov, Stability in the continuation for the Helmholtz equation with variable coefficient, in Control Methods in PDE Dynamical Systems, Contemporary Mathematics, vol. 426 (AMS, Providence, RI, 2007), pp. 255–269

    Google Scholar 

  12. V. Isakov, Inverse Source Problems (AMS, Providence, RI, 1989)

    MATH  Google Scholar 

  13. D. Jiang, Y. Liu, M. Yamamoto, Inverse source problem for the hyperbolic equation with a time-dependent principal part. J. Differ. Equ. 262, 653–681 (2017)

    Article  MathSciNet  Google Scholar 

  14. M.V. Klibanov, Inverse problems and Carleman estimates. Inverse Probl. 8, 575–596 (1992)

    Article  MathSciNet  Google Scholar 

  15. V. Komornik, M. Yamamoto, Upper and lower estimates in determining point sources in a wave equation. Inverse Probl. 18, 319–329 (2002)

    Article  MathSciNet  Google Scholar 

  16. V. Komornik, M. Yamamoto, Estimation of point sources and applications to inverse problems. Inverse Probl. 21, 2051–2070 (2005)

    Article  MathSciNet  Google Scholar 

  17. Y. Liu, Strong maximum principle for multi-term time-fractional diffusion equations and its application to an inverse source problem. Comput. Math. Appl. 73, 96–108 (2017)

    Article  MathSciNet  Google Scholar 

  18. Y. Liu, W. Rundell, M. Yamamoto, Strong maximum principle for fractional diffusion equations and an application to an inverse source problem. Fract. Calc. Appl. Anal. 19, 888–906 (2016)

    MathSciNet  MATH  Google Scholar 

  19. Y. Liu, Z. Zhang, Reconstruction of the temporal component in the source term of a (time-fractional) diffusion equation. J. Phys. A 50, 305–203 (2017)

    MathSciNet  Google Scholar 

  20. T. Nara, Algebraic reconstruction of the general-order poles of a meromorphic function. Inverse Probl. 28, 025008 (2012)

    Article  MathSciNet  Google Scholar 

  21. T. Ohe, Real-time reconstruction of moving point/dipole wave sources from boundary measurements. Inverse Probl. Sci. Eng. (accepted)

    Google Scholar 

  22. T. Ohe, H. Inui, K. Ohnaka, Real-time reconstruction of time-varying point sources in a three-dimensional scalar wave equation. Inverse Probl. 27, 115011 (2011)

    Article  MathSciNet  Google Scholar 

  23. I. Podlubny, Fractional Differential Equations (Academic Press, San Diego, 1999)

    MATH  Google Scholar 

  24. K. Sakamoto, M. Yamamoto, Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems. J. Math. Anal. Appl. 382, 426–447 (2011)

    Article  MathSciNet  Google Scholar 

  25. S.R. Umarov, E.M. Saidamatov, A generalization of Duhamel’s principle for differential equations of fractional order. Dokl. Math. 75, 94–96 (2007)

    Article  MathSciNet  Google Scholar 

  26. T. Wei, X.L. Li, Y.S. Li, An inverse time-dependent source problem for a time-fractional diffusion equation. Inverse Probl. 32, 085003 (2016)

    Article  MathSciNet  Google Scholar 

  27. M. Yamamoto, Stability reconstruction formula and regularization for an inverse source hyperbolic problem by control method. Inverse Probl. 11, 481–496 (1995)

    Article  MathSciNet  Google Scholar 

  28. M. Yamamoto, Uniqueness and stability in multidimensional hyperbolic inverse problems. J. Math. Pure Appl. 78, 65–98 (1999)

    Article  MathSciNet  Google Scholar 

  29. Y. Zhang, X. Xu, Inverse source problem for a fractional diffusion equation. Inverse Probl. 27, 035010 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is partly supported by the A3 Foresight Program “Modeling and Computation of Applied Inverse Problems”, Japan Society for the Promotion of Science (JSPS) and National Natural Science Foundation of China (NSFC). G. Hu is supported by the NSFC grant (No. 11671028) and NSAF grant (No. U1930402). Y. Liu and M. Yamamoto are supported by JSPS KAKENHI Grant Number JP15H05740. M. Yamamoto is partly supported by NSFC (Nos. 11771270, 91730303) and RUDN University Program 5-100.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yikan Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hu, G., Liu, Y., Yamamoto, M. (2020). Inverse Moving Source Problem for Fractional Diffusion(-Wave) Equations: Determination of Orbits. In: Cheng, J., Lu, S., Yamamoto, M. (eds) Inverse Problems and Related Topics. ICIP2 2018. Springer Proceedings in Mathematics & Statistics, vol 310. Springer, Singapore. https://doi.org/10.1007/978-981-15-1592-7_5

Download citation

Publish with us

Policies and ethics