Skip to main content

Regularized Reconstruction of the Order in Semilinear Subdiffusion with Memory

  • Conference paper
  • First Online:
Inverse Problems and Related Topics (ICIP2 2018)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 310))

Included in the following conference series:

Abstract

For \(\nu \in (0,1)\), we analyze the semilinear integro-differential equation on  the multidimensional space domain in the unknown \(u=u(x,t)\):

$$\mathbf {D}_{t}^{\nu }u-\mathcal {L}_{1}u-\int _{0}^{t}\mathcal {K}(t-s)\mathcal {L}_{2}u(\cdot ,s)ds=f(x,t,u)+g(x,t)$$

where \(\mathbf {D}_{t}^{\nu }\) is the Caputo fractional derivative and \(\mathcal {L}_{1}\) and \(\mathcal {L}_{2}\) are uniform elliptic operators of the second order with time-dependent smooth coefficients. We obtain the explicit formula reconstructing the order of the fractional derivative \(\nu \) for small time state measurements. The formula gives rise to a regularization algorithm for calculating \(\nu \) from possibly noisy measurements. We present several numerical tests illustrating the algorithm when it is equipped with quasi-optimality criteria for choosing the regularization parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, vol. 55, Applied Mathematics Series (National Bureau of Standards, Washington, 1964)

    Google Scholar 

  2. R.A. Adams, Sobolev Spaces (Academic Press, New York, 1975)

    MATH  Google Scholar 

  3. R.L. Bagley, P. Torvik, A theoretical basis for the application of fractional calculus to viscoelastisity. J. Rheol. 27, 201–210 (1983)

    Article  Google Scholar 

  4. M. Caputo, Models of flux in porous media with memory. Water Resour. Res. 36, 693–705 (2000)

    Article  Google Scholar 

  5. M. Caputo, J.M. Carcione, M.A.B. Botelho, Modeling extreme-event precursors with the fractional diffusion equation. Frac. Calc. Appl. Anal. 18, 208–222 (2015)

    MathSciNet  MATH  Google Scholar 

  6. M. Caputo, W. Plastino, Diffusion in porous layers with memory. Geophys. J. Int. 158, 385–396 (2004)

    Article  Google Scholar 

  7. K. Diethelm, N.J. Ford, A.D. Freed, Yu. Luchko, Algorithms for the fractional calculus: a selection of numerical methods. Comput. Methods Appl. Mech. Eng. 194, 743–773 (2005)

    Article  MathSciNet  Google Scholar 

  8. W.G. Glöckle, T.F. Nonnenmacher, A fractional calculus approach to self-similar protein dynamics. Biophys. J. 68, 46–53 (1995)

    Article  Google Scholar 

  9. N. Engheia, On the role of fractional calculus in electromagnetic theory. IEEE Antennas Propag. Mag. 39, 35–46 (1997)

    Article  Google Scholar 

  10. S. Fedotov, N. Korable, Subdiffusion in an external potential: anomalous effects hiding behind normal behavior. Phys. Rev E. Stat. Nonlin. Soft Matter. Phys. 91(4), 042112-1–042112-7 (2015)

    Google Scholar 

  11. M. Fornasier, V. Naumova, S.V. Pereverzyev, Parameter choice strategies for multipenalty regularization. SIAM J. Numer. Anal. 52(4), 1770–1794 (2014)

    Article  MathSciNet  Google Scholar 

  12. G. Iaffaldano, M. Caputo, S. Martino, Experimental and theoretical memory diffusion of water in sand. Hydrol. Earth. Syst. Sci. Discuss. 2, 1329–1357 (2005)

    Article  Google Scholar 

  13. Y. Hatano, N. Hatano, Dispersive transport of ions in column experiments: an explanation of long tailed profiles. Water Resour. Res. 34, 1027–1033 (1998)

    Article  Google Scholar 

  14. M. Huntul, D. Lesnic, T. Johansson, Determination of an additive time- and space-dependent coefficient in the heat equation. Int. J. Numer. Methods Heat Fluid Flow 28(6), 1352–1373 (2018)

    Google Scholar 

  15. Y. Hatano, J. Nakagawa, Sh Wang, M. Yamamoto, Determination of order in fractional diffusion equation. J. Math-for-Ind. 5A, 51–57 (2013)

    MathSciNet  MATH  Google Scholar 

  16. J. Janno, Determination of the order of fractional derivative and a kernel in an inverse problem for a generalized time fractional diffusion equation. Electron. J. Differ. Equ. 2016 (2016)

    Google Scholar 

  17. J. Janno, N. Kinash, Reconstruction of an order of derivative and a source term in a fractional diffusion equation from final measurements. Inverse Probl. 34(2), 025007 (2018)

    Article  MathSciNet  Google Scholar 

  18. A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations, vol. 204, North-Holland Mathematics Studies (Elsevier Science B.V., Amsterdam, 2006)

    Google Scholar 

  19. M. Krasnoschok, V. Pata, N. Vasylyeva, Semilinear subdiffusion with memory in the one-dimensional case. Nonlinear Anal. 165, 1–17 (2017)

    Article  MathSciNet  Google Scholar 

  20. M. Krasnoschok, V. Pata, N. Vasylyeva, Solvability of linear boundary value problems for subdiffusion equations with memory. J. Integr. Equ. Appl. 30(3), 417–445 (2018)

    Article  MathSciNet  Google Scholar 

  21. M. Krasnoschok, V. Pata, N. Vasylyeva, Semilinear subdiffusion with memory in multidimensional domains. Math. Nachr. 292(7), 1490–1513 (2019)

    Article  MathSciNet  Google Scholar 

  22. G. Li, D. Zhang, X. Jia, M. Yamamoto, Simultaneous inversion for the space-dependent diffusion coefficient and the fractional order in the time-fractional diffusion equation. Inverse Probl. 29(6), 065014 (2013)

    Article  MathSciNet  Google Scholar 

  23. S. Lu, S.V. Pereverzyev, Regularization Theory for Ill-posed Problems. Selected topics, vol. 58, Inverse and Ill-posed Problems Series (De Gruyter, Berlin, 2013)

    Google Scholar 

  24. M.M. Meerschart, A. Sikorskii, Stochastic Models for Fractional Calculus, vol. 43 (Walter De Grayter, Berlin, 2011)

    Google Scholar 

  25. M. Raberto, E. Scalas, F. Mainardi, Waiting-time and returns in high-frequency financial data: and empirical study. J. Phys. A. 314(1), 749–755 (2002)

    MATH  Google Scholar 

  26. Z. Ruan, W. Zhang, Z. Wang, Simultaneous inversion of the fractional order and the space-dependent source term for the time-fractional diffusion equation. Appl. Math. Comput. 328, 365–379 (2018)

    Article  MathSciNet  Google Scholar 

  27. S.V. Siryk, A note on the application of the Guermond-Pasquetti mass lumping correction technique for convection-diffusion problems. J. Comput. Phys. 376, 1273–1291 (2019)

    Article  MathSciNet  Google Scholar 

  28. F. Shen, W. Tan, Y. Zhao, T. Masuoka, The Rayleigh-Stokes problem for a heated generalized second grade fluid with fractional derivative model. Nonlinear Anal. Real World Appl. 7, 1072–1080 (2006)

    Article  MathSciNet  Google Scholar 

  29. I.M. Sokolov, J. Klafter, From diffusion to anomalous diffusion: a century after Einstein’s Brownian motion. Chaos 15, 1–7 (2005)

    Article  MathSciNet  Google Scholar 

  30. G. Szegö, Orthogonal Polynomials, 4th edn. (AMS, Providence, 1975)

    MATH  Google Scholar 

  31. C. Sun, G. Li, X. Jia, Numerical inversion for the multiple fractional orders in the multiterm TFDE. Adv. Math. Phys. 3204959 (2017)

    Google Scholar 

  32. A.N. Tikhonov, V.B. Glasko, Use of the regularization methods in nonlinear problems. USSR Comput. Math. Math. Phys. 5, 93–107 (1965)

    Article  Google Scholar 

  33. B. Yu, X. Jiang, H. Qi, An inverse problem to estimate an unknown order of a Riemann-Liouville fractional derivative for a fractional Stokes’ first problem for a heated generalized second grade fluid. Acta Mech. Sin. 31(2), 153–161 (2015)

    Article  MathSciNet  Google Scholar 

  34. Y. Zhang, C.T. Green, E.M. LaBolle, R.M. Neupauer, H.G. Sun, Bounded fractional diffusion in geological media: definition and Lagrangian approximation. Water Resour. Res. 52, 8561–8577 (2016)

    Google Scholar 

  35. Y.X. Zhang, J. Jia, L. Yan, Bayesian approach to a nonlinear inverse problem for a time-space fractional diffusion equation. Inverse Prob. 34, 125002 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is partially supported by the Grant H2020-MSCA-RISE-2014 project number 645672 (AMMODIT: Approximation Methods for Molecular Modelling and Diagnosis Tools). The paper has been finalized during the visit of the first, third and fourth authors to Johann Radon Institute (RICAM), Linz. The hospitality and perfect working conditions of RICAM are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nataliya Vasylyeva .

Editor information

Editors and Affiliations

Appendix: Proof of Proposition 10.1

Appendix: Proof of Proposition 10.1

First, we note that the statements (i)(iii) have been obtained in the proof of Proposition 1 [22]. Moreover, statement (v) follows immediately from statement (iv).

Hence, we are left to verify inequality (iv). To this end, we first rewrite the difference \((\mathbf {D}_{t}^{\nu _{2}}U-\mathbf {D}_{t}^{\nu _{1}}U)\) as follows:

$$ \mathbf {D}_{t}^{\nu _{2}}U(t)-\mathbf {D}_{t}^{\nu _{1}}U(t)=\mathbf {D}_{t}^{\nu _{2}}U(t)-\Theta _{\nu _{2}-\nu _{1}}\star \mathbf {D}_{t}^{\nu _{2}}U(t)$$
$$ = \Big [1-\frac{t^{\nu _{2}-\nu _{1}}}{\Gamma (\nu _{2}-\nu _{1}+1)}\Big ]\mathbf {D}_{t}^{\nu _{2}}U(t)$$
$$ + \int \limits _{0}^{t}\frac{(t-\tau )^{\nu _{2}-\nu _{1}-1}}{\Gamma (\nu _{2}-\nu _{1})}[\mathbf {D}_{t}^{\nu _{2}}U(t)- \mathbf {D}_{\tau }^{\nu _{2}}U(\tau )]d\tau $$
$$\begin{aligned} \equiv \sum \limits _{j=1}^{3}\mathcal {R}_{j}, \end{aligned}$$
(10.34)

where we put

$$ \mathcal {R}_{1}=\frac{\Gamma (\nu _{2}-\nu _{1}+1)-1}{\Gamma (\nu _{2}-\nu _{1}+1)}\mathbf {D}_{t}^{\nu _{2}}U(t),$$
$$ \mathcal {R}_{2}=\frac{1-t^{\nu _{2}-\nu _{1}}}{\Gamma (\nu _{2}-\nu _{1}+1)}\mathbf {D}_{t}^{\nu _{2}}U(t),$$
$$ \mathcal {R}_{3}=\int \limits _{0}^{t}\frac{(t-\tau )^{\nu _{2}-\nu _{1}-1}}{\Gamma (\nu _{2}-\nu _{1})}[\mathbf {D}_{t}^{\nu _{2}}U(t) -\mathbf {D}_{\tau }^{\nu _{2}}U(\tau )]d\tau . $$

Now it is enough to estimate each term \(\mathcal {R}_{j}\) separately.

\(\bullet \) By inequalities (i) in Proposition 10.1,

$$ \mathcal {R}_{1}\le C(\nu _{2}-\nu _{1})\Vert \mathbf {D}_{t}^{\nu _{2}}U\Vert _{\mathbf {C}[0,T]}, $$

where C is the positive constant.

\(\bullet \) Concerning \(\mathcal {R}_{2}\), the simple straightforward calculations give

$$ |1-t^{\nu _{2}-\nu _{1}}|\le C(\nu _{2}-\nu _{1}) t\quad \qquad \,\,\,\, \mathrm{if}\quad t>1,$$
$$ |1-t^{\nu _{2}-\nu _{1}}|\le C(\nu _{2}-\nu _{1}) |\ln t| \qquad \mathrm{if}\quad t\le 1, $$

and from this inequality, we easily draw the estimate

$$ \mathcal {R}_{2}\le C(\nu _{2}-\nu _{1})(t+|\ln t|)\Vert \mathbf {D}_{t}^{\nu _{2}}U\Vert _{\mathbf {C}[0,T]}. $$

\(\bullet \) For \(\mathcal {R}_{3}\), we have

$$ \mathcal {R}_{3} \le C\Big |\int \limits _{0}^{t}\frac{(t-\tau )^{\nu _{2}-\nu _{1}-1+\gamma }}{\Gamma (\nu _{2}-\nu _{1})}d\tau \Big | \langle \mathbf {D}_{t}^{\nu _{2}}U\rangle _{t,[0,T]}^{(\gamma )}$$
$$ \le C(\nu _{2}-\nu _{1})\frac{{t}^{\nu _{2}-\nu _{1}+\gamma }}{(\nu _{2}-\nu _{1}+\gamma )\Gamma (1+\nu _{2}-\nu _{1})} \langle \mathbf {D}_{t}^{\nu _{2}}U\rangle _{t,[0,T]}^{(\gamma )}. $$

Summarizing the above estimates, we obtain statement (iv).

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Krasnoschok, M., Pereverzyev, S., Siryk, S.V., Vasylyeva, N. (2020). Regularized Reconstruction of the Order in Semilinear Subdiffusion with Memory. In: Cheng, J., Lu, S., Yamamoto, M. (eds) Inverse Problems and Related Topics. ICIP2 2018. Springer Proceedings in Mathematics & Statistics, vol 310. Springer, Singapore. https://doi.org/10.1007/978-981-15-1592-7_10

Download citation

Publish with us

Policies and ethics