Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 204 Accesses

Abstract

Photosynthetic water oxidation takes place at the Mn cluster in photosystem II. During this process, several water molecules including four water ligands form a hydrogen bond network around the Mn cluster. To better elucidate the role of this network in the mechanisms underlying water oxidation, we examined the vibrational structure of the water molecules coupled with the Mn cluster using quantum mechanics/molecular mechanics (QM/MM) calculations. The OH vibrations of these water molecules in the hydrogen-bonding network between YZ and D1-D61 were simulated by the QM/MM simulations. The normal mode analysis showed that a broad positive feature at 2500–3200 cm−1 in the experimental S2-minus-S1 difference spectrum was attributed to the OH stretching vibrations with the strong hydrogen bond interaction of water molecules around the Mn cluster, including those of water ligands coordinating with Mn and the in-phase coupled vibration among water molecules in the hydrogen bond network around the Mn cluster. In contrast, the bands in higher frequency (3500–3700 cm−1) region were assigned to the OH stretching vibrations with weaker hydrogen bond interaction of water molecules in the network. These assignments strongly suggested that the in-phase mode among several water molecules may have a function to facilitate rapid proton transfer along the vibration direction using the Grotthuss mechanism. Thus, we proposed that the hydrogen bond network formed by several water molecules around the Mn cluster plays a key role in proton transfer during the water oxidation process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Joliot P, Barbieri G, Chabaud R (1969) A new model of photochemical centers in system II. Photochem Photobiol 10:309–329

    Article  Google Scholar 

  2. Kok B, Forbush B, McGloin M (1970) Cooperation of charges in photosynthetic O2 evolution-I. A linear four step mechanism. Photochem Photobiol 11:457–475

    Article  Google Scholar 

  3. Nakamura S, Ota K, Shibuya Y, Noguchi T (2016) Role of a water network around the Mn4CaO5 cluster in photosynthetic water oxidation: a Fourier transform infrared spectroscopy and quantum mechanics/molecular mechanics calculation study. Biochemistry 55:597–607

    Article  Google Scholar 

  4. Umena Y, Kawakami K, Shen JR, Kamiya N (2011) Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å. Nature 473:55–60

    Article  ADS  Google Scholar 

  5. Luber S, Rivalta I, Umena Y, Kawakami K, Shen JR, Kamiya N, Brudvig GW, Batista VS (2011) S1-state model of the O2-evolving complex of photosystem II. Biochemistry 50:6308–6311

    Article  Google Scholar 

  6. Yano J, Kern J, Irrgang KD, Latimer MJ, Bergmann U, Glatzel P, Pushkar Y, Biesiadka J, Loll B, Sauer K, Messinger J, Zouni A, Yachandra VK (2005) X-ray damage to the Mn4Ca complex in single crystals of photosystem II: a case study for metalloprotein crystallography. Proc Natl Acad Sci USA 102:12047–12052

    Article  ADS  Google Scholar 

  7. Suga M, Akita F, Hirata K, Ueno G, Murakami H, Nakajima Y, Shimizu T, Yamashita K, Yamamoto M, Ago H, Shen JR (2015) Native structure of photosystem II at 1.95 Å resolution viewed by femtosecond X-ray pulses. Nature 517:99–103

    Article  ADS  Google Scholar 

  8. Fowler CF (1977) Proton evolution from photosystem II. Stoichiometry and mechanistic considerations. Biochim Biophys Acta 462:414–421

    Article  Google Scholar 

  9. Schlodder E, Witt HT (1999) Stoichiometry of proton release from the catalytic center in photosynthetic water oxidation. Reexamination by a glass electrode study at pH 5.5–7.2. J Biol Chem 274:30387–30392

    Article  Google Scholar 

  10. Suzuki H, Sugiura M, Noguchi T (2009) Monitoring proton release during photosynthetic water oxidation in photosystem II by means of isotope-edited infrared spectroscopy. J Am Chem Soc 131:7849–7857

    Article  Google Scholar 

  11. Rappaport F, Blanchard-Desce M, Lavergne J (1994) Kinetics of electron transfer and electrochromic change during the redox transitions of the photosynthetic oxygen-evolving complex. Biochim Biophys Acta 1184:178–192

    Article  Google Scholar 

  12. Haumann M, Liebisch P, Muller C, Barra M, Grabolle M, Dau H (2005) Photosynthetic O2 formation tracked by time-resolved X-ray experiments. Science 310:1019–1021

    Article  ADS  Google Scholar 

  13. Klauss A, Haumann M, Dau H (2012) Alternating electron and proton transfer steps in photosynthetic water oxidation. Proc Natl Acad Sci USA 109:16035–16040

    Article  ADS  Google Scholar 

  14. Noguchi T, Suzuki H, Tsuno M, Sugiura M, Kato C (2012) Time-resolved infrared detection of the proton and protein dynamics during photosynthetic oxygen evolution. Biochemistry 51:3205–3214

    Article  Google Scholar 

  15. Nakamura S, Nagao R, Takahashi R, Noguchi T (2014) Fourier transform infrared detection of a polarizable proton trapped between photooxidized tyrosine YZ and a coupled histidine in photosystem II: relevance to the proton transfer mechanism of water oxidation. Biochemistry 53:3131–3144

    Article  Google Scholar 

  16. Klauss A, Haumann M, Dau H (2015) Seven steps of alternating electron and proton transfer in photosystem II water oxidation traced by time-resolved photothermal beam deflection at improved sensitivity. J Phys Chem B 119:2677–2689

    Article  Google Scholar 

  17. Murray JW, Barber J (2007) Structural characteristics of channels and pathways in photosystem II including the identification of an oxygen channel. J Struct Biol 159:228–237

    Article  Google Scholar 

  18. Ho FM, Styring S (2008) Access channels and methanol binding site to the CaMn4 cluster in Photosystem II based on solvent accessibility simulations, with implications for substrate water access. Biochim Biophys Acta 1777:140–153

    Article  Google Scholar 

  19. Vassiliev S, Comte P, Mahboob A, Bruce D (2010) Tracking the flow of water through photosystem II using molecular dynamics and streamline tracing. Biochemistry 49:1873–1881

    Article  Google Scholar 

  20. Bondar AN, Dau H (2012) Extended protein/water H-bond networks in photosynthetic water oxidation. Biochim Biophys Acta 1817:1177–1190

    Article  Google Scholar 

  21. Bao H, Dilbeck PL, Burnap RL (2013) Proton transport facilitating water-oxidation: the role of second sphere ligands surrounding the catalytic metal cluster. Photosynth Res 116:215–229

    Article  Google Scholar 

  22. Ogata K, Yuki T, Hatakeyama M, Uchida W, Nakamura S (2013) All-atom molecular dynamics simulation of photosystem II embedded in thylakoid membrane. J Am Chem Soc 135:15670–15673

    Article  Google Scholar 

  23. Linke K, Ho FM (2014) Water in Photosystem II: structural, functional and mechanistic considerations. Biochim Biophys Acta 1837:14–32

    Article  Google Scholar 

  24. Vogt L, Vinyard DJ, Khan S, Brudvig GW (2015) Oxygen-evolving complex of Photosystem II: an analysis of second-shell residues and hydrogen-bonding networks. Curr Opin Chem Biol 25:152–158

    Article  Google Scholar 

  25. Saito K, Ishikita H (2014) Influence of the Ca2+ ion on the Mn4Ca conformation and the H-bond network arrangement in Photosystem II. Biochim Biophys Acta 1837:159–166

    Article  Google Scholar 

  26. Yang J, Hatakeyama M, Ogata K, Nakamura S, Li C (2014) Theoretical study on the role of Ca2+ at the S2 state in photosystem II. J Phys Chem B 118:14215–14222

    Article  Google Scholar 

  27. Siegbahn PE (2014) Water oxidation energy diagrams for photosystem II for different protonation states, and the effect of removing calcium. Phys Chem Chem Phys 16:11893–11900

    Article  Google Scholar 

  28. Siegbahn PEM (2012) Mechanisms for proton release during water oxidation in the S2 to S3 and S3 to S4 transitions in photosystem II. PCCP 14:4849–4856

    Article  ADS  Google Scholar 

  29. Siegbahn PE (2013) Water oxidation mechanism in photosystem II, including oxidations, proton release pathways, O–O bond formation and O2 release. Biochim Biophys Acta 1827:1003–1019

    Article  Google Scholar 

  30. Sproviero EM, Gascon JA, McEvoy JP, Brudvig GW, Batista VS (2008) Quantum mechanics/molecular mechanics study of the catalytic cycle of water splitting in photosystem II. J Am Chem Soc 130:3428–3442

    Article  Google Scholar 

  31. Vogt L, Ertem MZ, Pal R, Brudvig GW, Batista VS (2015) Computational insights on crystal structures of the oxygen-evolving complex of photosystem II with either Ca2+ or Ca2+ substituted by Sr2+. Biochemistry 54:820–825

    Article  Google Scholar 

  32. Pantazis DA, Ames W, Cox N, Lubitz W, Neese F (2012) Two interconvertible structures that explain the spectroscopic properties of the oxygen-evolving complex of photosystem II in the S2 state. Angew Chem Int Ed 51:9935–9940

    Article  Google Scholar 

  33. Ames W, Pantazis DA, Krewald V, Cox N, Messinger J, Lubitz W, Neese F (2011) Theoretical evaluation of structural models of the S2 state in the oxygen evolving complex of Photosystem II: protonation states and magnetic interactions. J Am Chem Soc 133:19743–19757

    Article  Google Scholar 

  34. Cox N, Retegan M, Neese F, Pantazis DA, Boussac A, Lubitz W (2014) Electronic structure of the oxygen-evolving complex in photosystem II prior to O–O bond formation. Science 345:804–808

    Article  ADS  Google Scholar 

  35. Galstyan A, Robertazzi A, Knapp EW (2012) Oxygen-evolving Mn cluster in photosystem II: the protonation pattern and oxidation state in the high-resolution crystal structure. J Am Chem Soc 134:7442–7449

    Article  Google Scholar 

  36. Isobe H, Shoji M, Yamanaka S, Umena Y, Kawakami K, Kamiya N, Shen JR, Yamaguchi K (2012) Theoretical illumination of water-inserted structures of the CaMn4O5 cluster in the S2 and S3 states of oxygen-evolving complex of photosystem II: full geometry optimizations by B3LYP hybrid density functional. Dalton Trans 41:13727–13740

    Article  Google Scholar 

  37. Isobe H, Shoji M, Yamanaka S, Mino H, Umena Y, Kawakami K, Kamiya N, Shen JR, Yamaguchi K (2014) Generalized approximate spin projection calculations of effective exchange integrals of the CaMn4O5 cluster in the S1 and S3 states of the oxygen evolving complex of photosystem II. Phys Chem Chem Phys 16:11911–11923

    Article  Google Scholar 

  38. Shoji M, Isobe H, Yamanaka S, Umena Y, Kawakami K, Kamiya N, Shen J-R, Yamaguchi K (2013) Theoretical insight into hydrogen-bonding networks and proton wire for the CaMn4O5 cluster of photosystem II. Elongation of Mn–Mn distances with hydrogen bonds. Catal Sci Technol 3:1831–1848

    Article  Google Scholar 

  39. Shoji M, Isobe H, Yamaguchi K (2015) QM/MM study of the S2 to S3 transition reaction in the oxygen-evolving complex of photosystem II. Chem Phys Lett 636:172–179

    Article  ADS  Google Scholar 

  40. Bovi D, Narzi D, Guidoni L (2013) The S2 state of the oxygen-evolving complex of photosystem II explored by QM/MM dynamics: spin surfaces and metastable states suggest a reaction path towards the S3 state. Angew Chem Int Ed Engl 52:11744–11749

    Article  Google Scholar 

  41. Petrie S, Pace RJ, Stranger R (2015) Resolving the differences between the 1.9 A and 1.95 a crystal structures of photosystem II: a single proton relocation defines two tautomeric forms of the water-oxidizing complex. Angew Chem Int Ed Engl 54:7120–7124

    Article  Google Scholar 

  42. Vreven T, Byun KS, Komaromi I, Dapprich S, Montgomery JA, Morokuma K, Frisch MJ (2006) Combining quantum mechanics methods with molecular mechanics methods in ONIOM. J Chem Theory Comput 2:815–826

    Article  Google Scholar 

  43. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, revision C.01. Gaussian Inc., Wallingford CT

    Google Scholar 

  44. Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general amber force field. J Comput Chem 25:1157–1174

    Article  Google Scholar 

  45. Huggins CM, Pimentel GC (1956) Systematics of the infrared spectral properties of hydrogen bonding systems: Frequency shift, half width and intensity. J Phys Chem 60:1615–1619

    Article  Google Scholar 

  46. Zundel G (2000) Hydrogen bonds with large proton polarizability and proton transfer processes in electrochemistry and biology. Adv Chem Phys 111:1–217

    Google Scholar 

  47. Wolf S, Freier E, Cui Q, Gerwert K (2014) Infrared spectral marker bands characterizing a transient water wire inside a hydrophobic membrane protein. J Chem Phys 141:22D524

    Article  Google Scholar 

  48. Noguchi T, Sugiura M (2000) Structure of an active water molecule in the water-oxidizing complex of photosystem II as studied by FTIR spectroscopy. Biochemistry 39:10943–10949

    Article  Google Scholar 

  49. Noguchi T, Sugiura M (2002) FTIR detection of water reactions during the flash-induced S-state cycle of the photosynthetic water-oxidizing complex. Biochemistry 41:15706–15712

    Article  Google Scholar 

  50. Suzuki H, Sugiura M, Noguchi T (2008) Monitoring water reactions during the S-state cycle of the photosynthetic water-oxidizing center: detection of the DOD bending vibrations by means of Fourier transform infrared spectroscopy. Biochemistry 47:11024–11030

    Article  Google Scholar 

  51. Shimada Y, Suzuki H, Tsuchiya T, Tomo T, Noguchi T, Mimuro M (2009) Effect of a single-amino acid substitution of the 43 kDa chlorophyll protein on the oxygen-evolving reaction of the cyanobacterium Synechocystis sp. PCC 6803: analysis of the Glu354Gln mutation. Biochemistry 48:6095–6103

    Article  Google Scholar 

  52. Hou LH, Wu CM, Huang HH, Chu HA (2011) Effects of ammonia on the structure of the oxygen-evolving complex in photosystem II as revealed by light-induced FTIR difference spectroscopy. Biochemistry 50:9248–9254

    Article  Google Scholar 

  53. Service RJ, Yano J, Dilbeck PL, Burnap RL, Hillier W, Debus RJ (2013) Participation of glutamate-333 of the D1 polypeptide in the ligation of the Mn4CaO5 cluster in photosystem II. Biochemistry 52:8452–8464

    Google Scholar 

  54. Debus RJ (2014) Evidence from FTIR difference spectroscopy that D1-Asp61 influences the water reactions of the oxygen-evolving Mn4CaO5 cluster of photosystem II. Biochemistry 53:2941–2955

    Article  Google Scholar 

  55. Pokhrel R, Debus RJ, Brudvig GW (2015) Probing the effect of mutations of asparagine 181 in the D1 subunit of photosystem II. Biochemistry 54:1663–1672

    Article  Google Scholar 

  56. de Grotthuss CJT (1806) Sur la décomposition de l’eau et des corps qu’elle tient en dissolution àl’aide de l’électricitégalvanique. Ann Chim 58:54–74

    Google Scholar 

  57. Dilbeck PL, Hwang HJ, Zaharieva I, Gerencser L, Dau H, Burnap RL (2012) The D1-D61N mutation in Synechocystis sp. PCC 6803 allows the observation of pH-sensitive intermediates in the formation and release of O2 from photosystem II. Biochemistry 51:1079–1091

    Article  Google Scholar 

  58. Amin M, Vogt L, Szejgis W, Vassiliev S, Brudvig GW, Bruce D, Gunner MR (2015) Proton-coupled electron transfer during the S-state transitions of the oxygen-evolving complex of photosystem II. J Phys Chem B 119:7366–7377

    Article  Google Scholar 

  59. Rivalta I, Amin M, Luber S, Vassiliev S, Pokhrel R, Umena Y, Kawakami K, Shen JR, Kamiya N, Bruce D, Brudvig GW, Gunner MR, Batista VS (2011) Structural-functional role of chloride in photosystem II. Biochemistry 50:6312–6315

    Article  Google Scholar 

  60. Pokhrel R, Service RJ, Debus RJ, Brudvig GW (2013) Mutation of lysine 317 in the D2 subunit of photosystem II alters chloride binding and proton transport. Biochemistry 52:4758–4773

    Google Scholar 

  61. Suzuki H, Yu JF, Kobayashi T, Nakanishi H, Nixon PJ, Noguchi T (2013) Functional roles of D2-Lys317 and the interacting chloride ion in the water oxidation reaction of photosystem II as revealed by Fourier transform infrared analysis. Biochemistry 52:4748–4757

    Article  Google Scholar 

  62. Cox N, Messinger J (2013) Reflections on substrate water and dioxygen formation. Biochim Biophys Acta 1827:1020–1030

    Article  Google Scholar 

  63. Yano J, Yachandra V (2014) Mn4Ca cluster in photosynthesis: where and how water is oxidized to dioxygen. Chem Rev 114:4175–4205

    Article  Google Scholar 

  64. Pushkar Y, Yano J, Sauer K, Boussac A, Yachandra VK (2008) Structural changes in the Mn4Ca cluster and the mechanism of photosynthetic water splitting. Proc Natl Acad Sci USA 105:1879–1884

    Article  ADS  Google Scholar 

  65. Noguchi T (2008) FTIR detection of water reactions in the oxygen-evolving centre of photosystem II. Philos Trans R Soc 363:1189–1194

    Article  Google Scholar 

  66. Noguchi T, Sugiura M (2002) Flash-induced FTIR difference spectra of the water oxidizing complex in moderately hydrated photosystem II core films: Effect of hydration extent on state transitions. Biochemistry 41:2322–2330

    Article  Google Scholar 

  67. Vrettos JS, Stone DA, Brudvig GW (2001) Quantifying the ion selectivity of the Ca2+ site in photosystem II: evidence for direct involvement of Ca2+ in O2 formation. Biochemistry 40:7937–7945

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shin Nakamura .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nakamura, S. (2020). Vibrational Analysis of Water Network Around the Mn Cluster. In: Molecular Mechanisms of Proton-coupled Electron Transfer and Water Oxidation in Photosystem II. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-15-1584-2_4

Download citation

Publish with us

Policies and ethics