Skip to main content

Role of Oxidative Stress in Complexity of Respiratory Diseases

  • Chapter
  • First Online:
Role of Oxidative Stress in Pathophysiology of Diseases

Abstract

Oxidative stress can arise from excess production of endogenous reactive oxygen species (ROS) or from exposure to exogenous ROS. In the lungs, oxidative stress causes lipid, protein and DNA oxidation, changes to histone acetylation, and inflammation. These pathways are thought to underlay the pathophysiology of respiratory diseases such as asthma, chronic obstructive pulmonary disease, cystic fibrosis, acute respiratory distress syndrome, pneumonia, lung cancer, and obstructive sleep apnoea. This chapter discusses the risk factors for respiratory disease, the evidence for the role of oxidative stress in these diseases, and proposed antioxidant therapies for the treatment of respiratory disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Park HS, Kim SR, Lee YC (2009) Impact of oxidative stress on lung diseases. Respirology 14(1):27–38

    Article  PubMed  Google Scholar 

  2. Valavanidis A et al (2013) Pulmonary oxidative stress, inflammation and cancer: respirable particulate matter, fibrous dusts and ozone as major causes of lung carcinogenesis through reactive oxygen species mechanisms. Int J Environ Res Public Health 10(9):3886–3907

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Lavie L (2015) Oxidative stress in obstructive sleep apnea and intermittent hypoxia—revisited—the bad ugly and good: implications to the heart and brain. Sleep Med Rev 20:27–45

    Article  PubMed  Google Scholar 

  4. Rahman I, Adcock IM (2006) Oxidative stress and redox regulation of lung inflammation in COPD. Eur Respir J 28(1):219–242

    Article  PubMed  CAS  Google Scholar 

  5. Papac-Milicevic N, Busch CJ, Binder CJ (2016) Malondialdehyde epitopes as targets of immunity and the implications for atherosclerosis. Adv Immunol 131:1–59

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Santus P et al (2014) Oxidative stress and respiratory system: pharmacological and clinical reappraisal of N-acetylcysteine. COPD 11(6):705–717

    Article  PubMed  Google Scholar 

  7. Cai Z, Yan LJ (2013) Protein oxidative modifications: beneficial roles in disease and health. J Biochem Pharmacol Res 1(1):15–26

    PubMed  PubMed Central  CAS  Google Scholar 

  8. Cao C et al (2016) Smoking-promoted oxidative DNA damage response is highly correlated to lung carcinogenesis. Oncotarget 7(14):18919–18926

    Article  PubMed  PubMed Central  Google Scholar 

  9. Szczesny B et al (2018) Mitochondrial DNA damage and subsequent activation of Z-DNA binding protein 1 links oxidative stress to inflammation in epithelial cells. Sci Rep 8(1):914

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Liu X, Chen Z (2017) The pathophysiological role of mitochondrial oxidative stress in lung diseases. J Transl Med 15(1):207

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Rahman I (2002) Oxidative stress, transcription factors and chromatin remodelling in lung inflammation. Biochem Pharmacol 64(5–6):935–942

    Article  PubMed  CAS  Google Scholar 

  12. Mittal M et al (2014) Reactive oxygen species in inflammation and tissue injury. Antioxid Redox Signal 20(7):1126–1167

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Racanelli AC et al (2018) Autophagy and inflammation in chronic respiratory disease. Autophagy 14(2):221–232

    Article  PubMed  PubMed Central  Google Scholar 

  14. Barnes PJ (2014) Cellular and molecular mechanisms of chronic obstructive pulmonary disease. Clin Chest Med 35(1):71–86

    Article  PubMed  Google Scholar 

  15. Liu W et al (2012) Targeted genes and interacting proteins of hypoxia inducible factor-1. Int J Biochem Mol Biol 3(2):165–178

    PubMed  PubMed Central  CAS  Google Scholar 

  16. Tebay LE et al (2015) Mechanisms of activation of the transcription factor Nrf2 by redox stressors, nutrient cues, and energy status and the pathways through which it attenuates degenerative disease. Free Radic Biol Med 88(Pt B):108–146

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Ellegaard PK, Poulsen HE (2016) Tobacco smoking and oxidative stress to DNA: a meta-analysis of studies using chromatographic and immunological methods. Scand J Clin Lab Invest 76(2):151–158

    Article  PubMed  CAS  Google Scholar 

  18. Pryor WA, Stone K (1993) Oxidants in cigarette smoke. Radicals, hydrogen peroxide, peroxynitrate, and peroxynitrite. Ann N Y Acad Sci 686:12–27; discussion 27–28

    Article  PubMed  CAS  Google Scholar 

  19. Goldkorn T, Filosto S, Chung S (2014) Lung injury and lung cancer caused by cigarette smoke-induced oxidative stress: molecular mechanisms and therapeutic opportunities involving the ceramide-generating machinery and epidermal growth factor receptor. Antioxid Redox Signal 21(15):2149–2174

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Chen JH et al (2005) Gaseous nitrogen oxide repressed benzo[a]pyrene-induced human lung fibroblast cell apoptosis via inhibiting JNK1 signals. Arch Toxicol 79(12):694–704

    Article  PubMed  CAS  Google Scholar 

  21. Sun Y et al (2015) Enhancement of the acrolein-induced production of reactive oxygen species and lung injury by GADD34. Oxidative Med Cell Longev 2015:170309

    Article  Google Scholar 

  22. Wang HT et al (2016) Acrolein preferentially damages nucleolus eliciting ribosomal stress and apoptosis in human cancer cells. Oncotarget 7(49):80450–80464

    Article  PubMed  PubMed Central  Google Scholar 

  23. Li N, Huang HQ, Zhang GS (2014) Association between SOD2 C47T polymorphism and lung cancer susceptibility: a meta-analysis. Tumour Biol 35(2):955–959

    Article  PubMed  CAS  Google Scholar 

  24. Scheffler S et al (2015) Evaluation of E-cigarette liquid vapor and mainstream cigarette smoke after direct exposure of primary human bronchial epithelial cells. Int J Environ Res Public Health 12(4):3915–3925

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Lerner CA et al (2015) Vapors produced by electronic cigarettes and e-juices with flavorings induce toxicity, oxidative stress, and inflammatory response in lung epithelial cells and in mouse lung. PLoS One 10(2):e0116732

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Cai H, Wang C (2017) Graphical review: the redox dark side of e-cigarettes; exposure to oxidants and public health concerns. Redox Biol 13:402–406

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Kaphalia L et al (2016) Effects of acute ethanol exposure on cytokine production by primary airway smooth muscle cells. Toxicol Appl Pharmacol 292:85–93

    Article  PubMed  CAS  Google Scholar 

  28. Das SK, Mukherjee S (2010) Long-term ethanol consumption leads to lung tissue oxidative stress and injury. Oxidative Med Cell Longev 3(6):414–420

    Article  Google Scholar 

  29. Yeligar SM et al (2016) Alcohol and lung injury and immunity. Alcohol 55:51–59

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Aytacoglu BN et al (2006) Alcohol-induced lung damage and increased oxidative stress. Respiration 73(1):100–104

    Article  PubMed  CAS  Google Scholar 

  31. Holguin F (2013) Oxidative stress in airway diseases. Ann Am Thorac Soc 10(Suppl):S150–S157

    Article  PubMed  CAS  Google Scholar 

  32. Sunil VR et al (2013) Ozone-induced injury and oxidative stress in bronchiolar epithelium are associated with altered pulmonary mechanics. Toxicol Sci 133(2):309–319

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Pirozzi C et al (2015) Effect of naturally occurring ozone air pollution episodes on pulmonary oxidative stress and inflammation. Int J Environ Res Public Health 12(5):5061–5075

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Gawda A et al (2017) Air pollution, oxidative stress, and exacerbation of autoimmune diseases. Cent Eur J Immunol 42(3):305–312

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Deng X et al (2013) PM2.5-induced oxidative stress triggers autophagy in human lung epithelial A549 cells. Toxicol In Vitro 27(6):1762–1770

    Article  PubMed  CAS  Google Scholar 

  36. Shadab M et al (2014) Occupational health hazards among sewage workers: oxidative stress and deranged lung functions. J Clin Diagn Res 8(4):BC11–BC12

    PubMed  PubMed Central  Google Scholar 

  37. Li N et al (2015) Influenza infection induces host DNA damage and dynamic DNA damage responses during tissue regeneration. Cell Mol Life Sci 72(15):2973–2988

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Prado GF et al (2012) Burnt sugarcane harvesting: particulate matter exposure and the effects on lung function, oxidative stress, and urinary 1-hydroxypyrene. Sci Total Environ 437:200–208

    Article  PubMed  CAS  Google Scholar 

  39. Anlar HG et al (2017) Effects of occupational silica exposure on OXIDATIVE stress and immune system parameters in ceramic workers in TURKEY. J Toxicol Environ Health A 80(13–15):688–696

    Article  PubMed  CAS  Google Scholar 

  40. Gilham C et al (2016) Pleural mesothelioma and lung cancer risks in relation to occupational history and asbestos lung burden. Occup Environ Med 73(5):290–299

    Article  PubMed  Google Scholar 

  41. Liu G, Cheresh P, Kamp DW (2013) Molecular basis of asbestos-induced lung disease. Annu Rev Pathol 8:161–187

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Eom SY et al (2015) Interactions between paraoxonase 1 genetic polymorphisms and smoking and their effects on oxidative stress and lung cancer risk in a Korean population. PLoS One 10(3):e0119100

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Wang H et al (2012) Association of genetic polymorphisms in the paraoxonase 1 gene with the risk and prognosis of non-small cell lung cancer in Chinese Han population. J Investig Med 60(3):592–597

    Article  PubMed  CAS  Google Scholar 

  44. Peddireddy V et al (2016) Association of CYP1A1, GSTM1 and GSTT1 gene polymorphisms with risk of non-small cell lung cancer in Andhra Pradesh region of South India. Eur J Med Res 21:17

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Tang W et al (2013) Genetic variation in antioxidant enzymes, cigarette smoking, and longitudinal change in lung function. Free Radic Biol Med 63:304–312

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. James AL, Wenzel S (2007) Clinical relevance of airway remodelling in airway diseases. Eur Respir J 30(1):134–155

    Article  PubMed  CAS  Google Scholar 

  47. Kleniewska P, Pawliczak R (2017) The participation of oxidative stress in the pathogenesis of bronchial asthma. Biomed Pharmacother 94:100–108

    Article  PubMed  CAS  Google Scholar 

  48. Lazrak A et al (2015) Hyaluronan mediates airway hyperresponsiveness in oxidative lung injury. Am J Physiol Lung Cell Mol Physiol 308(9):L891–L903

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Gorlach A et al (2015) Calcium and ROS: a mutual interplay. Redox Biol 6:260–271

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. van Hoof IH, van Bree L, Bast A (1996) Changes in receptor function by oxidative stress in Guinea pig tracheal smooth muscle. Cent Eur J Public Health 4(Suppl):3–5

    PubMed  Google Scholar 

  51. Menshikova EV et al (1995) Pulmonary microsomes contain a Ca2+-transport system sensitive to oxidative stress. Biochim Biophys Acta Bioenergetics 1228(2–3):165–174

    Article  Google Scholar 

  52. Lai Y-L, Huang P-C (2002) Reactive oxygen species in sustained airway constriction induced by citric acid aerosol inhalation. Eur J Pharmacol 452(2):229–233

    Article  PubMed  CAS  Google Scholar 

  53. Emin O, Hasan A, Rusen DM (2015) Plasma paraoxonase, oxidative status level, and their relationship with asthma control test in children with asthma. Allergol Immunopathol (Madr) 43(4):346–352

    Article  CAS  Google Scholar 

  54. Ercan H et al (2006) Oxidative stress and genetic and epidemiologic determinants of oxidant injury in childhood asthma. J Allergy Clin Immunol 118(5):1097–1104

    Article  PubMed  CAS  Google Scholar 

  55. Dut R et al (2008) Oxidative stress and its determinants in the airways of children with asthma. Allergy 63(12):1605–1609

    Article  PubMed  CAS  Google Scholar 

  56. Celik M et al (2012) Oxidative stress in the airways of children with asthma and allergic rhinitis. Pediatr Allergy Immunol 23(6):556–561

    Article  PubMed  Google Scholar 

  57. Kwon HS et al (2014) Clusterin expression level correlates with increased oxidative stress in asthmatics. Ann Allergy Asthma Immunol 112(3):217–221

    Article  PubMed  CAS  Google Scholar 

  58. Andrianjafimasy M et al (2017) Oxidative stress biomarkers and asthma characteristics in adults of the EGEA study. Eur Respir J 50(6):1701193

    Article  PubMed  CAS  Google Scholar 

  59. Fatani SH (2014) Biomarkers of oxidative stress in acute and chronic bronchial asthma. J Asthma 51(6):578–584

    Article  PubMed  CAS  Google Scholar 

  60. Emelyanov A et al (2001) Elevated concentrations of exhaled hydrogen peroxide in asthmatic patients. Chest 120(4):1136–1139

    Article  PubMed  CAS  Google Scholar 

  61. Ganas K et al (2001) Total nitrite/nitrate in expired breath condensate of patients with asthma. Respir Med 95(8):649–654

    Article  PubMed  CAS  Google Scholar 

  62. Montuschi P et al (1999) Increased 8-isoprostane, a marker of oxidative stress, in exhaled condensate of asthma patients. Am J Respir Crit Care Med 160(1):216–220

    Article  PubMed  CAS  Google Scholar 

  63. Kelly FJ et al (1999) Altered lung antioxidant status in patients with mild asthma. Lancet 354(9177):482–483

    Article  PubMed  CAS  Google Scholar 

  64. Dumas O, Le Moual N (2016) Do chronic workplace irritant exposures cause asthma? Curr Opin Allergy Clin Immunol 16(2):75–85

    Article  PubMed  CAS  Google Scholar 

  65. Moreno-Macias H, Romieu I (2014) Effects of antioxidant supplements and nutrients on patients with asthma and allergies. J Allergy Clin Immunol 133(5):1237–44; quiz 1245

    Article  PubMed  CAS  Google Scholar 

  66. Delfino RJ et al (2013) Airway inflammation and oxidative potential of air pollutant particles in a pediatric asthma panel. J Expo Sci Environ Epidemiol 23(5):466–473

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Cosio Piqueras MG, Cosio MG (2001) Disease of the airways in chronic obstructive pulmonary disease. Eur Respir J 18(1):41–49

    Article  Google Scholar 

  68. MacNee W (2016) Is chronic obstructive pulmonary disease an accelerated aging disease? Ann Am Thorac Soc 13(Suppl 5):S429–S437

    Article  PubMed  Google Scholar 

  69. Riesco JA et al (2017) Active smoking and COPD phenotype: distribution and impact on prognostic factors. Int J Chron Obstruct Pulmon Dis 12:1989–1999

    Article  PubMed  PubMed Central  Google Scholar 

  70. Santo Tomas LH (2011) Emphysema and chronic obstructive pulmonary disease in coal miners. Curr Opin Pulm Med 17(2):123–125

    Article  PubMed  Google Scholar 

  71. Kim V, Criner GJ (2015) The chronic bronchitis phenotype in chronic obstructive pulmonary disease: features and implications. Curr Opin Pulm Med 21(2):133–141

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Anzueto A (2015) Alpha-1 antitrypsin deficiency-associated chronic obstructive pulmonary disease: a family perspective. COPD 12(4):462–467

    Article  PubMed  Google Scholar 

  73. Bialas AJ et al (2016) The role of mitochondria and oxidative/antioxidative imbalance in pathobiology of chronic obstructive pulmonary disease. Oxidative Med Cell Longev 2016:7808576

    Article  CAS  Google Scholar 

  74. Barnes PJ (2016) Inflammatory mechanisms in patients with chronic obstructive pulmonary disease. J Allergy Clin Immunol 138(1):16–27

    Article  PubMed  CAS  Google Scholar 

  75. Gao W et al (2015) Bronchial epithelial cells: the key effector cells in the pathogenesis of chronic obstructive pulmonary disease? Respirology 20(5):722–729

    Article  PubMed  Google Scholar 

  76. Jiang Y, Wang X, Hu D (2017) Mitochondrial alterations during oxidative stress in chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis 12:1153–1162

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Michaeloudes C et al (2017) Dealing with stress: defective metabolic adaptation in chronic obstructive pulmonary disease pathogenesis. Ann Am Thorac Soc 14(Suppl_5):S374–S382

    Article  PubMed  PubMed Central  Google Scholar 

  78. Houben JM et al (2009) Telomere shortening in chronic obstructive pulmonary disease. Respir Med 103(2):230–236

    Article  PubMed  Google Scholar 

  79. Sundar IK, Yao H, Rahman I (2013) Oxidative stress and chromatin remodeling in chronic obstructive pulmonary disease and smoking-related diseases. Antioxid Redox Signal 18(15):1956–1971

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Dekhuijzen PN et al (1996) Increased exhalation of hydrogen peroxide in patients with stable and unstable chronic obstructive pulmonary disease. Am J Respir Crit Care Med 154(3 Pt 1):813–816

    Article  PubMed  CAS  Google Scholar 

  81. Antus B et al (2014) Monitoring oxidative stress during chronic obstructive pulmonary disease exacerbations using malondialdehyde. Respirology 19(1):74–79

    Article  PubMed  Google Scholar 

  82. Zeng M et al (2013) Local and systemic oxidative stress status in chronic obstructive pulmonary disease patients. Can Respir J 20(1):35–41

    Article  PubMed  PubMed Central  Google Scholar 

  83. Numakura T et al (2017) Production of reactive persulfide species in chronic obstructive pulmonary disease. Thorax 72(12):1074–1083

    Article  PubMed  Google Scholar 

  84. Yang S et al (2014) Feasibility of 8-OHdG formation and hOGG1 induction in PBMCs for assessing oxidative DNA damage in the lung of COPD patients. Respirology 19(8):1183–1190

    Article  PubMed  Google Scholar 

  85. Ekin S et al (2017) The relationships among the levels of oxidative and antioxidative parameters, FEV1 and prolidase activity in COPD. Redox Rep 22(2):74–77

    Article  PubMed  CAS  Google Scholar 

  86. Can U, Yerlikaya FH, Yosunkaya S (2015) Role of oxidative stress and serum lipid levels in stable chronic obstructive pulmonary disease. J Chin Med Assoc 78(12):702–708

    Article  PubMed  Google Scholar 

  87. Liu X et al (2019) 8-Hydroxy-2′-deoxyguanosine as a biomarker of oxidative stress in acute exacerbation of chronic obstructive pulmonary disease. Turk J Med Sci 49(1):93–100

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Cristovao C et al (2013) Evaluation of the oxidant and antioxidant balance in the pathogenesis of chronic obstructive pulmonary disease. Rev Port Pneumol 19(2):70–75

    Article  PubMed  CAS  Google Scholar 

  89. Kodama Y et al (2017) Antioxidant nutrients in plasma of Japanese patients with chronic obstructive pulmonary disease, asthma-COPD overlap syndrome and bronchial asthma. Clin Respir J 11(6):915–924

    Article  PubMed  CAS  Google Scholar 

  90. Arja C et al (2013) Oxidative stress and antioxidant enzyme activity in South Indian male smokers with chronic obstructive pulmonary disease. Respirology 18(7):1069–1075

    PubMed  Google Scholar 

  91. Rumora L et al (2014) Paraoxonase 1 activity in patients with chronic obstructive pulmonary disease. COPD 11(5):539–545

    Article  PubMed  Google Scholar 

  92. Ahmad A, Shameem M, Husain Q (2013) Altered oxidant-antioxidant levels in the disease prognosis of chronic obstructive pulmonary disease. Int J Tuberc Lung Dis 17(8):1104–1109

    Article  PubMed  CAS  Google Scholar 

  93. Ratjen F, Döring G (2003) Cystic fibrosis. Lancet 361(9358):681–689

    Article  PubMed  CAS  Google Scholar 

  94. Brown SD, White R, Tobin P (2017) Keep them breathing: cystic fibrosis pathophysiology, diagnosis, and treatment. JAAPA 30(5):23–27

    Article  PubMed  Google Scholar 

  95. Rafeeq MM, Murad HAS (2017) Cystic fibrosis: current therapeutic targets and future approaches. J Transl Med 15(1):84

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Hudson VM (2001) Rethinking cystic fibrosis pathology: the critical role of abnormal reduced glutathione (GSH) transport caused by CFTR mutation. Free Radic Biol Med 30(12):1440–1461

    Article  PubMed  CAS  Google Scholar 

  97. Kleme ML, Levy E (2015) Cystic fibrosis-related oxidative stress and intestinal lipid disorders. Antioxid Redox Signal 22(7):614–631

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Starosta V et al (2006) Oxidative changes of bronchoalveolar proteins in cystic fibrosis. Chest 129(2):431–437

    Article  PubMed  CAS  Google Scholar 

  99. Gao L et al (1999) Abnormal glutathione transport in cystic fibrosis airway epithelia. Am J Phys 277(1):L113–L118

    CAS  Google Scholar 

  100. Antus B et al (2015) Comparison of airway and systemic malondialdehyde levels for assessment of oxidative stress in cystic fibrosis. Lung 193(4):597–604

    Article  PubMed  CAS  Google Scholar 

  101. Paredi P et al (1999) Increased carbon monoxide in exhaled air of patients with cystic fibrosis. Thorax 54(10):917–920

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Montuschi P et al (2000) Exhaled 8-isoprostane as a new non-invasive biomarker of oxidative stress in cystic fibrosis. Thorax 55(3):205–209

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Kettle AJ et al (2014) Oxidation contributes to low glutathione in the airways of children with cystic fibrosis. Eur Respir J 44(1):122–129

    Article  PubMed  CAS  Google Scholar 

  104. Spicuzza L et al (2018) Exhaled markers of antioxidant activity and oxidative stress in stable cystic fibrosis patients with moderate lung disease. J Breath Res 12(2):026010

    Article  PubMed  CAS  Google Scholar 

  105. Wood LG et al (2001) Oxidative stress in cystic fibrosis: dietary and metabolic factors. J Am Coll Nutr 20(2):157–165

    Article  PubMed  CAS  Google Scholar 

  106. McGrath LT et al (1999) Oxidative stress during acute respiratory exacerbations in cystic fibrosis. Thorax 54(6):518–523

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Brown RK, Wyatt H, Price FJ, Kelly FJ (1996) Pulmonary dysfunction in cystic fibrosis is associated with oxidative stress. Eur Respir J 9:334–339

    Article  PubMed  CAS  Google Scholar 

  108. Olveira C et al (2017) Inflammation and oxidation biomarkers in patients with cystic fibrosis: the influence of azithromycin. Eurasian J Med 49(2):118–123

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Lagrange-Puget M et al (2004) Longitudinal study of oxidative status in 312 cystic fibrosis patients in stable state and during bronchial exacerbation. Pediatr Pulmonol 38(1):43–49

    Article  PubMed  Google Scholar 

  110. Tobin M, Manthous C (2017) What is acute respiratory distress syndrome? Am J Respir Crit Care Med 196(9):P17–P18

    Article  PubMed  Google Scholar 

  111. Yadam S, Bihler E, Balaan M (2016) Acute respiratory distress syndrome. Crit Care Nurs Q 39(2):190–195

    Article  PubMed  Google Scholar 

  112. Ware LB, Matthay MA (2000) The acute respiratory distress syndrome. N Engl J Med 342(18):1334–1349

    Article  PubMed  CAS  Google Scholar 

  113. Cross CE et al (1990) Oxidative stress and abnormal cholesterol metabolism in patients with adult respiratory distress syndrome. J Lab Clin Med 115(4):396–404

    PubMed  CAS  Google Scholar 

  114. Lucas R et al (2009) Regulators of endothelial and epithelial barrier integrity and function in acute lung injury. Biochem Pharmacol 77(12):1763–1772

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Ning JL, Mo LW, Lai XN (2010) Low- and high-dose hydrogen peroxide regulation of transcription factor NF-E2-related factor 2. Chin Med J 123(8):1063–1069

    PubMed  CAS  Google Scholar 

  116. Rojo de la Vega M et al (2016) Role of Nrf2 and autophagy in acute lung injury. Curr Pharmacol Rep 2(2):91–101

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Tasaka S et al (2008) Roles of oxidants and redox signaling in the pathogenesis of acute respiratory distress syndrome. Antioxid Redox Signal 10(4):739–753

    Article  PubMed  CAS  Google Scholar 

  118. Downs CA et al (2013) Chronic alcohol ingestion changes the landscape of the alveolar epithelium. Biomed Res Int 2013:470217

    Article  PubMed  CAS  Google Scholar 

  119. Fini MA et al (2017) Alcohol abuse is associated with enhanced pulmonary and systemic xanthine oxidoreductase activity. Am J Physiol Lung Cell Mol Physiol 313(6):L1047–L1057

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Liang Y, Yeligar SM, Brown LA (2012) Chronic-alcohol-abuse-induced oxidative stress in the development of acute respiratory distress syndrome. ScientificWorldJournal 2012:740308

    PubMed  PubMed Central  Google Scholar 

  121. Liu D et al (2015) Changes in the concentrations of mediators of inflammation and oxidative stress in exhaled breath condensate during liver transplantation and their relations with postoperative ARDS. Respir Care 60(5):679–688

    Article  PubMed  Google Scholar 

  122. Nelson JL et al (2003) Effect of enteral feeding with eicosapentaenoic acid, gamma-linolenic acid, and antioxidants on antioxidant status in patients with acute respiratory distress syndrome. JPEN J Parenter Enteral Nutr 27(2):98–104

    Article  PubMed  CAS  Google Scholar 

  123. Ware LB et al (2013) Low plasma citrulline levels are associated with acute respiratory distress syndrome in patients with severe sepsis. Crit Care 17(1):R10

    Article  PubMed  PubMed Central  Google Scholar 

  124. Mahmoodpoor A et al (2019) The effect of intravenous selenium on oxidative stress in critically ill patients with acute respiratory distress syndrome. Immunol Investig 48(2):147–159

    Article  Google Scholar 

  125. Alcon A, Fabregas N, Torres A (2005) Pathophysiology of pneumonia. Clin Chest Med 26(1):39–46

    Article  PubMed  Google Scholar 

  126. Mizgerd JP (2017) Pathogenesis of severe pneumonia: advances and knowledge gaps. Curr Opin Pulm Med 23(3):193–197

    Article  PubMed  PubMed Central  Google Scholar 

  127. Serebrovska Z et al (2017) Anti-inflammatory and antioxidant effect of cerium dioxide nanoparticles immobilized on the surface of silica nanoparticles in rat experimental pneumonia. Biomed Pharmacother 92:69–77

    Article  PubMed  CAS  Google Scholar 

  128. Li H et al (2015) Oxidative stress, telomere shortening, and DNA methylation in relation to low-to-moderate occupational exposure to welding fumes. Environ Mol Mutagen 56(8):684–693

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Zahlten J et al (2015) Streptococcus pneumoniae-induced oxidative stress in lung epithelial cells depends on pneumococcal autolysis and is reversible by resveratrol. J Infect Dis 211(11):1822–1830

    Article  PubMed  CAS  Google Scholar 

  130. Suri R et al (2016) Exposure to welding fumes and lower airway infection with Streptococcus pneumoniae. J Allergy Clin Immunol 137(2):527–534.e7

    Article  PubMed  CAS  Google Scholar 

  131. Violi F et al (2015) Nox2 up-regulation is associated with an enhanced risk of atrial fibrillation in patients with pneumonia. Thorax 70(10):961–966

    Article  PubMed  Google Scholar 

  132. Loffredo L et al (2016) Impaired flow-mediated dilation in hospitalized patients with community-acquired pneumonia. Eur J Intern Med 36:74–80

    Article  PubMed  Google Scholar 

  133. Cemek M et al (2006) Oxidative stress and enzymic-non-enzymic antioxidant responses in children with acute pneumonia. Cell Biochem Funct 24(3):269–273

    Article  PubMed  CAS  Google Scholar 

  134. Chen Y et al (2014) Vitamin C mitigates oxidative stress and tumor necrosis factor-alpha in severe community-acquired pneumonia and LPS-induced macrophages. Mediat Inflamm 2014:426740

    Google Scholar 

  135. Duflo F et al (2002) Alveolar and serum oxidative stress in ventilator-associated pneumonia. Br J Anaesth 89(2):231–236

    Article  PubMed  CAS  Google Scholar 

  136. Dirican N et al (2016) Thiol/disulfide homeostasis: a prognostic biomarker for patients with advanced non-small cell lung cancer? Redox Rep 21(5):197–203

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Durham AL, Adcock IM (2015) The relationship between COPD and lung cancer. Lung Cancer 90(2):121–127

    Article  PubMed  CAS  Google Scholar 

  138. Ng Kee Kwong F et al (2017) Is mitochondrial dysfunction a driving mechanism linking COPD to nonsmall cell lung carcinoma? Eur Respir Rev 26(146). https://doi.org/10.1183/16000617.0040-2017

  139. Gegotek A et al (2016) Lipid mediators involved in the oxidative stress and antioxidant defence of human lung cancer cells. Redox Biol 9:210–219

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Barreiro E et al (2013) Oxidative stress and inflammation in the normal airways and blood of patients with lung cancer and COPD. Free Radic Biol Med 65:859–871

    Article  PubMed  CAS  Google Scholar 

  141. Katsabeki-Katsafli A et al (2008) Serum vascular endothelial growth factor is related to systemic oxidative stress in patients with lung cancer. Lung Cancer 60(2):271–276

    Article  PubMed  CAS  Google Scholar 

  142. Lawless MW, O’Byrne KJ, Gray SG (2009) Oxidative stress induced lung cancer and COPD: opportunities for epigenetic therapy. J Cell Mol Med 13(9A):2800–2821

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Ahmad S et al (2018) Oxidation, glycation and glycoxidation-the vicious cycle and lung cancer. Semin Cancer Biol 49:29–36

    Article  PubMed  CAS  Google Scholar 

  144. Upadhyay S, Vaish S, Dhiman M (2019) Hydrogen peroxide-induced oxidative stress and its impact on innate immune responses in lung carcinoma A549 cells. Mol Cell Biochem 450(1–2):135–147

    Article  PubMed  CAS  Google Scholar 

  145. Bialous SA, Sarna L (2017) Lung cancer and tobacco: what is new? Nurs Clin North Am 52(1):53–63

    Article  PubMed  Google Scholar 

  146. Margaret AL, Syahruddin E, Wanandi SI (2011) Low activity of manganese superoxide dismutase (MnSOD) in blood of lung cancer patients with smoking history: relationship to oxidative stress. Asian Pac J Cancer Prev 12(11):3049–3053

    PubMed  Google Scholar 

  147. Thakur S, Dhiman M, Mantha AK (2018) APE1 modulates cellular responses to organophosphate pesticide-induced oxidative damage in non-small cell lung carcinoma A549 cells. Mol Cell Biochem 441(1–2):201–216

    Article  PubMed  CAS  Google Scholar 

  148. Peddireddy V et al (2012) Assessment of 8-oxo-7,8-dihydro-2′-deoxyguanosine and malondialdehyde levels as oxidative stress markers and antioxidant status in non-small cell lung cancer. Biomarkers 17(3):261–268

    Article  PubMed  CAS  Google Scholar 

  149. Zablocka-Slowinska K et al (2018) Serum and whole blood Zn, Cu and Mn profiles and their relation to redox status in lung cancer patients. J Trace Elem Med Biol 45:78–84

    Article  PubMed  CAS  Google Scholar 

  150. Esme H et al (2008) High levels of oxidative stress in patients with advanced lung cancer. Respirology 13(1):112–116

    Article  PubMed  Google Scholar 

  151. Yuan JM et al (2018) Relationship of the oxidative damage biomarker 8-epi-prostaglandin F2alpha to risk of lung cancer development in the Shanghai Cohort Study. Carcinogenesis 39(7):948–954

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Yano T et al (2009) Significance of the urinary 8-OHdG level as an oxidative stress marker in lung cancer patients. Lung Cancer 63(1):111–114

    Article  PubMed  Google Scholar 

  153. Levy P et al (2015) Obstructive sleep apnoea syndrome. Nat Rev Dis Primers 1:15015

    Article  PubMed  Google Scholar 

  154. Davies CR, Harrington JJ (2016) Impact of obstructive sleep apnea on neurocognitive function and impact of continuous positive air pressure. Sleep Med Clin 11(3):287–298

    Article  PubMed  Google Scholar 

  155. Bikov A, Losonczy G, Kunos L (2017) Role of lung volume and airway inflammation in obstructive sleep apnea. Respir Investig 55(6):326–333

    Article  PubMed  Google Scholar 

  156. Yamauchi M, Kimura H (2008) Oxidative stress in obstructive sleep apnea: putative pathways to the cardiovascular complications. Antioxid Redox Signal 10(4):755–768

    Article  PubMed  CAS  Google Scholar 

  157. Stiefel P et al (2013) Obstructive sleep apnea syndrome, vascular pathology, endothelial function and endothelial cells and circulating microparticles. Arch Med Res 44(6):409–414

    Article  PubMed  CAS  Google Scholar 

  158. Toraldo DM et al (2016) Obstructive sleep apnea syndrome: coagulation anomalies and treatment with continuous positive airway pressure. Sleep Breath 20(2):457–465

    Article  PubMed  Google Scholar 

  159. Cicco S et al (2018) Analysis of aortic remodeling and stiffness in patients with obstructive sleep apnea syndrome: preliminary results. Adv Exp Med Biol 1072:251–255

    Article  PubMed  CAS  Google Scholar 

  160. Sunnetcioglu A et al (2016) Evaluation of oxidative damage and antioxidant mechanisms in COPD, lung Cancer, and obstructive sleep apnea syndrome. Respir Care 61(2):205–211

    Article  PubMed  Google Scholar 

  161. Guo Q et al (2013) Levels of thioredoxin are related to the severity of obstructive sleep apnea: based on oxidative stress concept. Sleep Breath 17(1):311–316

    Article  PubMed  Google Scholar 

  162. Franco CM et al (2012) Obstructive sleep apnea severity correlates with cellular and plasma oxidative stress parameters and affective symptoms. J Mol Neurosci 47(2):300–310

    Article  PubMed  CAS  Google Scholar 

  163. Hira HS et al (2014) Plasma level of hypoxanthine/xanthine as markers of oxidative stress with different stages of obstructive sleep apnea syndrome. Ann Saudi Med 34(4):308–313

    Article  PubMed  PubMed Central  Google Scholar 

  164. Ozben S et al (2014) Advanced oxidation protein products and ischaemia-modified albumin in obstructive sleep apnea. Eur J Clin Investig 44(11):1045–1052

    Article  CAS  Google Scholar 

  165. Dinc ME et al (2017) Thiol/disulfide homeostasis as a novel indicator of oxidative stress in obstructive sleep apnea patients. Laryngoscope 127(7):E244–E250

    Article  PubMed  CAS  Google Scholar 

  166. Cherneva RV et al (2017) 8-Isoprostanes and resistin as markers of vascular damage in non-hypersomnolent obstructive sleep apnoea patients. Clin Physiol Funct Imaging 37(6):695–702

    Article  PubMed  CAS  Google Scholar 

  167. Yamauchi M et al (2005) Oxidative stress in obstructive sleep apnea. Chest 127(5):1674–1679

    Article  PubMed  CAS  Google Scholar 

  168. Celec P et al (2012) Oxidative and carbonyl stress in patients with obstructive sleep apnea treated with continuous positive airway pressure. Sleep Breath 16(2):393–398

    Article  PubMed  Google Scholar 

  169. Tichanon P et al (2016) Effect of continuous positive airway pressure on airway inflammation and oxidative stress in patients with obstructive sleep apnea. Can Respir J 2016:3107324

    Article  PubMed  PubMed Central  Google Scholar 

  170. Carpagnano GE et al (2003) 8-Isoprostane, a marker of oxidative stress, is increased in exhaled breath condensate of patients with obstructive sleep apnea after night and is reduced by continuous positive airway pressure therapy. Chest 124(4):1386–1392

    Article  PubMed  CAS  Google Scholar 

  171. Zinellu E et al (2016) Circulating biomarkers of oxidative stress in chronic obstructive pulmonary disease: a systematic review. Respir Res 17(1):150

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  172. Frijhoff J et al (2015) Clinical relevance of biomarkers of oxidative stress. Antioxid Redox Signal 23(14):1144–1170

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  173. Montuschi P et al (2000) Exhaled 8-isoprostane as an in vivo biomarker of lung oxidative stress in patients with COPD and healthy smokers. Am J Respir Crit Care Med 162(3 Pt 1):1175–1177

    Article  PubMed  CAS  Google Scholar 

  174. Rahman I, Biswas SK (2004) Non-invasive biomarkers of oxidative stress: reproducibility and methodological issues. Redox Rep 9(3):125–143

    Article  PubMed  CAS  Google Scholar 

  175. Brussino L et al (2010) Oxidative stress and airway inflammation after allergen challenge evaluated by exhaled breath condensate analysis. Clin Exp Allergy 40(11):1642–1647

    Article  PubMed  CAS  Google Scholar 

  176. Marrocco I, Altieri F, Peluso I (2017) Measurement and clinical significance of biomarkers of oxidative stress in humans. Oxidative Med Cell Longev 2017:6501046

    Article  CAS  Google Scholar 

  177. Mesaros C et al (2015) Bioanalytical techniques for detecting biomarkers of response to human asbestos exposure. Bioanalysis 7(9):1157–1173

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  178. Lin JL, Thomas PS (2010) Current perspectives of oxidative stress and its measurement in chronic obstructive pulmonary disease. COPD 7(4):291–306

    Article  PubMed  Google Scholar 

  179. Esther CR Jr et al (2016) Metabolomic biomarkers predictive of early structural lung disease in cystic fibrosis. Eur Respir J 48(6):1612–1621

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  180. Matera MG, Calzetta L, Cazzola M (2016) Oxidation pathway and exacerbations in COPD: the role of NAC. Expert Rev Respir Med 10(1):89–97

    Article  PubMed  CAS  Google Scholar 

  181. Samuni Y et al (2013) The chemistry and biological activities of N-acetylcysteine. Biochim Biophys Acta 1830(8):4117–4129

    Article  PubMed  CAS  Google Scholar 

  182. Thomson NC (2018) Targeting oxidant-dependent mechanisms for the treatment of respiratory diseases and their comorbidities. Curr Opin Pharmacol 40:1–8

    Article  PubMed  CAS  Google Scholar 

  183. Decramer M et al (2005) Effects of N-acetylcysteine on outcomes in chronic obstructive pulmonary disease (Bronchitis Randomized on NAC Cost-Utility Study, BRONCUS): a randomised placebo-controlled trial. Lancet 365(9470):1552–1560

    Article  PubMed  CAS  Google Scholar 

  184. Zheng J-P et al (2014) Twice daily N-acetylcysteine 600 mg for exacerbations of chronic obstructive pulmonary disease (PANTHEON): a randomised, double-blind placebo-controlled trial. Lancet Respir Med 2(3):187–194

    Article  PubMed  CAS  Google Scholar 

  185. Tse HN et al (2013) High-dose N-acetylcysteine in stable COPD: the 1-year, double-blind, randomized, placebo-controlled HIACE study. Chest 144(1):106–118

    Article  PubMed  CAS  Google Scholar 

  186. Conrad C et al (2015) Long-term treatment with oral N-acetylcysteine: affects lung function but not sputum inflammation in cystic fibrosis subjects. A phase II randomized placebo-controlled trial. J Cyst Fibros 14(2):219–227

    Article  PubMed  CAS  Google Scholar 

  187. Domej W, Oettl K, Renner W (2014) Oxidative stress and free radicals in COPD—implications and relevance for treatment. Int J Chron Obstruct Pulmon Dis 9:1207–1224

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  188. Zheng J-P et al (2008) Effect of carbocisteine on acute exacerbation of chronic obstructive pulmonary disease (PEACE Study): a randomised placebo-controlled study. Lancet 371(9629):2013–2018

    Article  PubMed  CAS  Google Scholar 

  189. Calabrese C et al (2015) Randomized, single blind, controlled trial of inhaled glutathione vs placebo in patients with cystic fibrosis. J Cyst Fibros 14(2):203–210

    Article  PubMed  CAS  Google Scholar 

  190. Ciofu O, Lykkesfeldt J (2014) Antioxidant supplementation for lung disease in cystic fibrosis. Cochrane Database Syst Rev 8:CD007020

    Google Scholar 

  191. Harvey CJ et al (2011) Targeting Nrf2 signaling improves bacterial clearance by alveolar macrophages in patients with COPD and in a mouse model. Sci Transl Med 3(78):78ra32

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  192. Wise RA et al (2016) Lack of effect of oral sulforaphane administration on Nrf2 expression in COPD: a randomized, double-blind, placebo controlled trial. PLoS One 11(11):e0163716

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  193. Beijers R, Gosker HR, Schols A (2018) Resveratrol for patients with chronic obstructive pulmonary disease: hype or hope? Curr Opin Clin Nutr Metab Care 21(2):138–144

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  194. Kode A et al (2008) Resveratrol induces glutathione synthesis by activation of Nrf2 and protects against cigarette smoke-mediated oxidative stress in human lung epithelial cells. Am J Physiol Lung Cell Mol Physiol 294(3):L478–L488

    Article  PubMed  CAS  Google Scholar 

  195. Baldrick FR et al (2012) Effect of fruit and vegetable intake on oxidative stress and inflammation in COPD: a randomised controlled trial. Eur Respir J 39(6):1377–1384

    Article  PubMed  CAS  Google Scholar 

  196. Turowski JB et al (2015) Flaxseed modulates inflammatory and oxidative stress biomarkers in cystic fibrosis: a pilot study. BMC Complement Altern Med 15:148

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehra Haghi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ghadiri, M., Yung, A.E., Haghi, M. (2020). Role of Oxidative Stress in Complexity of Respiratory Diseases. In: Maurya, P., Dua, K. (eds) Role of Oxidative Stress in Pathophysiology of Diseases. Springer, Singapore. https://doi.org/10.1007/978-981-15-1568-2_5

Download citation

Publish with us

Policies and ethics