Skip to main content

The Role of Diverse Nanoparticles in Oxidative Stress: In Vitro and In Vivo Studies

  • Chapter
  • First Online:
Role of Oxidative Stress in Pathophysiology of Diseases

Abstract

Nanoparticles are a very advanced area of nanotechnology and play an important role in medical sciences and technology. Nanoparticles such as polymer and metal nanoparticles are widely used in applications for antioxidant activity. Nonenzymatic antioxidant assays using free radical–scavenging activity of nanoparticles have been investigated using different methods such as 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) assays, nitric oxide radical inhibition assays, superoxide anion–scavenging activity, reducing power, determination of total phenolic compounds and hydroxyl radical–scavenging assays. The investigated metal nanoparticle included gold, zinc oxide, copper, silver, zirconium oxide and selenium, and the polymer nanoparticles include chitosan and silica.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Malarkodi C, Annadurai G (2013) A novel biological approach on extracellular synthesis and characterization of semiconductor zinc sulfide nanoparticles. Appl Nanosci 3:389–395. https://doi.org/10.1007/s13204-012-0138-0

    Article  CAS  Google Scholar 

  2. Paulkumar K, Rajeshkumar S, Gnanajobitha G et al (2013) Biosynthesis of silver chloride nanoparticles using Bacillus subtilis MTCC 3053 and assessment of its antifungal activity. ISRN Nanomater 2013:1–8. https://doi.org/10.1155/2013/317963

    Article  CAS  Google Scholar 

  3. Rajeshkumar S, Malarkodi C (2014) In vitro antibacterial activity and mechanism of silver nanoparticles against foodborne pathogens. Bioinorg Chem Appl 2014:1–10. https://doi.org/10.1155/2014/581890

    Article  CAS  Google Scholar 

  4. Rajeshkumar S, Malarkodi C, Vanaja M, Paulkumar K (2014) Green-chemical fabrication of silver nanoparticles by marine macro algae and its fungicidal activity. Int Res J Pharm Biosci 1:1–7

    Google Scholar 

  5. Vanaja M, Annadurai G (2013) Coleus aromaticus leaf extract mediated synthesis of silver nanoparticles and its bactericidal activity. Appl Nanosci 3:217–223. https://doi.org/10.1007/s13204-012-0121-9

    Article  CAS  Google Scholar 

  6. Vanaja M, Gnanajobitha G, Paulkumar K et al (2013) Phytosynthesis of silver nanoparticles by Cissus quadrangularis: influence of physicochemical factors. J Nanostruct Chem 3:17. https://doi.org/10.1186/2193-8865-3-17

    Article  Google Scholar 

  7. Happy A, Soumya M, Kumar SV, Rajeshkumar S, Sheba RD, Lakshmi T, Nallaswamy VD (2019) Phyto-assisted synthesis of zinc oxide nanoparticles using Cassia alata and its antibacterial activity against Escherichia coli. Biochem Biophys Rep 17:208–211. https://doi.org/10.1016/j.bbrep.2019.01.002

  8. Menon S, Ks SD, Santhiya R et al (2018) Selenium nanoparticles: a potent chemotherapeutic agent and an elucidation of its mechanism. Colloids Surf B Biointerfaces 170:280–292. https://doi.org/10.1016/j.colsurfb.2018.06.006

    Article  PubMed  CAS  Google Scholar 

  9. Santhoshkumar J, Kumar SV, Rajeshkumar S (2017a) Synthesis of zinc oxide nanoparticles using plant leaf extract against urinary tract infection pathogen. Resour Technol 3:459–465. https://doi.org/10.1016/j.reffit.2017.05.001

    Article  Google Scholar 

  10. Agarwal H, Menon S, Venkat Kumar S, Rajeshkumar S (2018) Mechanistic study on antibacterial action of zinc oxide nanoparticles synthesized using green route. Chem Biol Interact 286:60–70. https://doi.org/10.1016/j.cbi.2018.03.008

    Article  CAS  Google Scholar 

  11. Rajeshkumar S, Bharath LV (2017) Mechanism of plant-mediated synthesis of silver nanoparticles—a review on biomolecules involved, characterisation and antibacterial activity. Chem Biol Interact 273:219–227. https://doi.org/10.1016/j.cbi.2017.06.019

    Article  PubMed  CAS  Google Scholar 

  12. Rajeshkumar S, Kumar SV, Ramaiah A et al (2018) Biosynthesis of zinc oxide nanoparticles using Mangifera indica leaves and evaluation of their antioxidant and cytotoxic properties in lung cancer (A549) cells. Enzym Microb Technol 117:91–95. https://doi.org/10.1016/j.enzmictec.2018.06.009

    Article  CAS  Google Scholar 

  13. Rajeshkumar S, Rinitha G (2018) Nanostructural characterization of antimicrobial and antioxidant copper nanoparticles synthesized using novel Persea americana seeds. OpenNano 3:18–27. https://doi.org/10.1016/j.onano.2018.03.001

    Article  Google Scholar 

  14. Ramesh AV, Rama D, Battu G, Basavaiah K (2018) A facile plant mediated synthesis of silver nanoparticles using an aqueous leaf extract of Ficus hispida Linn.f. for catalytic, antioxidant and antibacterial applications. South Afr J Chem Eng 26:25–34. https://doi.org/10.1016/j.sajce.2018.07.001

    Article  Google Scholar 

  15. Kumar A, Srivastava R, Singh P, Bahadur V (2018) Antioxidant and antibacterial activity of silver nanoparticles synthesized by Cestrum nocturnum. J Ayurveda Integr Med. https://doi.org/10.1016/j.jaim.2017.11.003

  16. Nunes MR, de Souza Maguerroski Castilho M, de Lima Veeck AP et al (2018) Antioxidant and antimicrobial methylcellulose films containing Lippia alba extract and silver nanoparticles. Carbohydr Polym 192:37–43. https://doi.org/10.1016/j.carbpol.2018.03.014

    Article  PubMed  CAS  Google Scholar 

  17. Ahn E, Jin H, Park Y (2019) Assessing the antioxidant, cytotoxic, apoptotic and wound healing properties of silver nanoparticles green-synthesized by plant extracts. Mater Sci Eng C 101:204–216. https://doi.org/10.1016/j.msec.2019.03.095

    Article  CAS  Google Scholar 

  18. Hajji S, Ben S, Hamza-Mnif I et al (2019) Biomedical potential of chitosan–silver nanoparticles with special reference to antioxidant, antibacterial, hemolytic and in vivo cutaneous wound healing effects. Biochim Biophys Acta Gen Subj 1863:241–254. https://doi.org/10.1016/j.bbagen.2018.10.010

    Article  PubMed  CAS  Google Scholar 

  19. Moteriya P, Chanda S (2018) Biosynthesis of silver nanoparticles formation from Caesalpinia pulcherrima stem metabolites and their broad spectrum biological activities. J Genet Eng Biotechnol 16:105–113. https://doi.org/10.1016/j.jgeb.2017.12.003

    Article  PubMed  PubMed Central  Google Scholar 

  20. Govindappa M, Hemashekhar B, Arthikala M et al (2018) Anti-inflammatory and antityrosinase activity of green synthesized silver nanoparticles using Calophyllum tomentosum leaves extract. Results Phys 9:400–408. https://doi.org/10.1016/j.rinp.2018.02.049

    Article  Google Scholar 

  21. Sivasankar P, Seedevi P, Poongodi S (2018) Characterization, antimicrobial and antioxidant property of exopolysaccharide mediated silver nanoparticles synthesized by Streptomyces violaceus MM72. Carbohydr Polym 181:752–759. https://doi.org/10.1016/j.carbpol.2017.11.082

    Article  PubMed  CAS  Google Scholar 

  22. Sripriya N, Vasantharaj S, Mani U et al (2019) Encapsulated enhanced silver nanoparticles biosynthesis by modified new route for nano-biocatalytic activity. Biocatal Agric Biotechnol 18:101045. https://doi.org/10.1016/j.bcab.2019.101045

    Article  Google Scholar 

  23. Ahmed S, Kaur G, Sharma P et al (2018) Fruit waste (peel) as bio-reductant to synthesize silver nanoparticles with antimicrobial, antioxidant and cytotoxic activities. J Appl Biomed 16:221–231. https://doi.org/10.1016/j.jab.2018.02.002

    Article  Google Scholar 

  24. Selvan DA, Mahendiran D, Kumar RS, Rahiman AK (2018) Garlic, green tea and turmeric extracts–mediated green synthesis of silver nanoparticles: phytochemical, antioxidant and in vitro cytotoxicity studies. J Photochem Photobiol B Biol 180:243–252. https://doi.org/10.1016/j.jphotobiol.2018.02.014

    Article  CAS  Google Scholar 

  25. Haghparasti Z, Shahri MM (2018) Green synthesis of water-soluble nontoxic inorganic polymer nanocomposites containing silver nanoparticles using white tea extract and assessment of their in vitro antioxidant and cytotoxicity activities. Mater Sci Eng C 87:139–148. https://doi.org/10.1016/j.msec.2018.02.026

    Article  CAS  Google Scholar 

  26. Rolim WR, Pelegrino MT, de Araújo LB et al (2019) Green tea extract mediated biogenic synthesis of silver nanoparticles: characterization, cytotoxicity evaluation and antibacterial activity. Appl Surf Sci 463:66–74. https://doi.org/10.1016/j.apsusc.2018.08.203

    Article  CAS  Google Scholar 

  27. Anca N, Stefania D, Fierascu I et al (2018) Phytosynthesis of gold and silver nanoparticles enhance in vitro antioxidant and mitostimulatory activity of Aconitum toxicum Reichenb. rhizomes alcoholic extracts. Mater Sci Eng C 93:746–758. https://doi.org/10.1016/j.msec.2018.08.042

    Article  CAS  Google Scholar 

  28. Bhutto AA, Kalay Ş, Sherazi STH, Culha M (2018) Quantitative structure–activity relationship between antioxidant capacity of phenolic compounds and the plasmonic properties of silver nanoparticles. Talanta 189:174–181. https://doi.org/10.1016/j.talanta.2018.06.080

    Article  PubMed  CAS  Google Scholar 

  29. Valsalam S, Agastian P, Valan M et al (2019) Rapid biosynthesis and characterization of silver nanoparticles from the leaf extract of Tropaeolum majus L. and its enhanced in-vitro antibacterial, antifungal, antioxidant and anticancer properties. J Photochem Photobiol B Biol 191:65–74. https://doi.org/10.1016/j.jphotobiol.2018.12.010

    Article  CAS  Google Scholar 

  30. Masood N, Ahmed R, Tariq M, Ahmed Z (2019) Silver nanoparticle impregnated chitosan–PEG hydrogel enhances wound healing in diabetes induced rabbits. Int J Pharm 559:23–36. https://doi.org/10.1016/j.ijpharm.2019.01.019

    Article  PubMed  CAS  Google Scholar 

  31. Khoshnamvand M, Huo C, Liu J (2019) Silver nanoparticles synthesized using Allium ampeloprasum L. leaf extract: characterization and performance in catalytic reduction of 4-nitrophenol and antioxidant activity. J Mol Struct 1175:90–96. https://doi.org/10.1016/j.molstruc.2018.07.089

    Article  CAS  Google Scholar 

  32. Della Pelle F, Scroccarello A, Sergi M et al (2018) Simple and rapid silver nanoparticles based antioxidant capacity assays: reactivity study for phenolic compounds. Food Chem 256:342–349. https://doi.org/10.1016/j.foodchem.2018.02.141

    Article  PubMed  CAS  Google Scholar 

  33. Voicescu M, Ionescu S, Manoiu VS et al (2019) Synthesis and biophysical characteristics of riboflavin/HSA protein system on silver nanoparticles. Mater Sci Eng C 96:30–40. https://doi.org/10.1016/j.msec.2018.10.087

    Article  CAS  Google Scholar 

  34. Ayodhya D, Veerabhadram G (2019) Synthesis and characterization of g-C3N4 nanosheets decorated Ag2S composites for investigation of catalytic reduction of 4-nitrophenol, antioxidant and antimicrobial activities. J Mol Struct 1186:423–433. https://doi.org/10.1016/j.molstruc.2019.03.048

    Article  CAS  Google Scholar 

  35. Ukkund SJ, Ashraf M, Udupa AB et al (2019) Synthesis and characterization of silver nanoparticles from Fusarium oxysporum and investigation of their antibacterial activity. Mater Today Proc 9:506–514. https://doi.org/10.1016/j.matpr.2018.10.369

    Article  CAS  Google Scholar 

  36. AlSalhi MS, Elangovan K, Jacob A et al (2019) Synthesis of silver nanoparticles using plant derived 4-N-methyl benzoic acid and evaluation of antimicrobial, antioxidant and antitumor activity. Saudi J Biol Sci 26:970–978. https://doi.org/10.1016/j.sjbs.2019.04.001

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Saravanakumar K, Wang M (2018) Trichoderma based synthesis of anti-pathogenic silver nanoparticles and their characterization, antioxidant and cytotoxicity properties. Microb Pathog 114:269–273. https://doi.org/10.1016/j.micpath.2017.12.005

    Article  PubMed  CAS  Google Scholar 

  38. Guzmán K, Kumar B, Cumbal L et al (2019) Ultrasound-assisted synthesis and antibacterial activity of gallic acid–chitosan modified silver nanoparticles. Prog Org Coat 129:229–235. https://doi.org/10.1016/j.porgcoat.2019.01.009

    Article  CAS  Google Scholar 

  39. Chithrani DB (2010) Nanoparticles for improved therapeutics and imaging in cancer therapy. Recent Pat Nanotechnol 4:171–180

    Article  CAS  Google Scholar 

  40. Grzelczak M, Perez-Juste J, Mulvaney P, Liz-Marzan LM (2008) Shape control in gold nanoparticle synthesis. Chem Soc Rev 37:1783–1791. https://doi.org/10.1039/b711490g

    Article  PubMed  CAS  Google Scholar 

  41. Santhoshkumar J, Rajeshkumar S, Venkat Kumar S (2017b) Phyto-assisted synthesis, characterization and applications of gold nanoparticles—a review. Biochem Biophys Rep 11:46. https://doi.org/10.1016/j.bbrep.2017.06.004

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Della F, Vilela D, Cristina M et al (2015) Antioxidant capacity index based on gold nanoparticles formation. Application to extra virgin olive oil samples. Food Chem 178:70–75. https://doi.org/10.1016/j.foodchem.2015.01.045

    Article  CAS  Google Scholar 

  43. Razzaq H, Saira F, Yaqub A et al (2016) Interaction of gold nanoparticles with free radicals and their role in enhancing the scavenging activity of ascorbic acid. J Photochem Photobiol B Biol 161:266–272. https://doi.org/10.1016/j.jphotobiol.2016.04.003

    Article  CAS  Google Scholar 

  44. Jiménez-Pérez ZE, Singh P, Kim Y et al (2018) Applications of Panax ginseng leaves–mediated gold nanoparticles in cosmetics relation to antioxidant, moisture retention, and whitening effect on B16BL6 cells. J Ginseng Res 42:327–333. https://doi.org/10.1016/j.jgr.2017.04.003

    Article  PubMed  Google Scholar 

  45. Karmakar A, Mallick T, Fouzder C, Mukhuty A (2019) Antioxidant flavone functionalized fluorescent and biocompatible metal nanoparticles: exploring their efficacy as cell imaging agents. Nano-Struct Nano-Objects 18:100278. https://doi.org/10.1016/j.nanoso.2019.100278

    Article  CAS  Google Scholar 

  46. Pu S, Li J, Sun L et al (2019) An in vitro comparison of the antioxidant activities of chitosan and green synthesized gold nanoparticles. Carbohydr Polym 211:161–172. https://doi.org/10.1016/j.carbpol.2019.02.007

    Article  PubMed  CAS  Google Scholar 

  47. Esin S, Bekdeşer B, Apak R (2019) A novel colorimetric sensor for measuring hydroperoxide content and peroxyl radical scavenging activity using starch-stabilized gold nanoparticles. Talanta 196:32–38. https://doi.org/10.1016/j.talanta.2018.12.022

    Article  CAS  Google Scholar 

  48. Dauthal P, Mukhopadhyay M (2018) Antioxidant activity of phytosynthesized biomatrix-loaded noble metallic nanoparticles. Chin J Chem Eng 26:1200–1208. https://doi.org/10.1016/j.cjche.2017.12.014

    Article  CAS  Google Scholar 

  49. Kirdaite G, Leonaviciene L, Bradunaite R et al (2019) Antioxidant effects of gold nanoparticles on early stage of collagen-induced arthritis in rats. Res Vet Sci 124:32–37. https://doi.org/10.1016/j.rvsc.2019.02.002

    Article  PubMed  CAS  Google Scholar 

  50. Agarwal H, Kumar SV, Rajeshkumar S (2017) A review on green synthesis of zinc oxide nanoparticles—an eco-friendly approach. Resour Technol 3:406. https://doi.org/10.1016/j.reffit.2017.03.002

    Article  Google Scholar 

  51. Dastjerdi R, Montazer M (2010) A review on the application of inorganic nano-structured materials in the modification of textiles: focus on anti-microbial properties. Colloids Surf B Biointerfaces 79:5–18. https://doi.org/10.1016/j.colsurfb.2010.03.029

    Article  PubMed  CAS  Google Scholar 

  52. Naveed Ul Haq A, Nadhman A, Ullah I et al (2017) Synthesis approaches of zinc oxide nanoparticles: the dilemma of ecotoxicity. J Nanomater 2017:1–14. https://doi.org/10.1155/2017/8510342

    Article  CAS  Google Scholar 

  53. El-Batal AI, Mosalam FM, Ghorab MM et al (2018) Antimicrobial, antioxidant and anticancer activities of zinc nanoparticles prepared by natural polysaccharides and gamma radiation. Int J Biol Macromol 107:2298–2311. https://doi.org/10.1016/j.ijbiomac.2017.10.121

    Article  PubMed  CAS  Google Scholar 

  54. Koner D, Banerjee B, Hasan R, Saha N (2019) Antioxidant activity of endogenously produced nitric oxide against the zinc oxide nanoparticle–induced oxidative stress in primary hepatocytes of air-breathing catfish, Clarias magur. Nitric Oxide 84:7–15. https://doi.org/10.1016/j.niox.2018.12.010

    Article  PubMed  CAS  Google Scholar 

  55. Gupta R, Malik P, Das N, Singh M (2019) Antioxidant and physicochemical study of Psidium guajava prepared zinc oxide nanoparticles. J Mol Liq 275:749–767. https://doi.org/10.1016/j.molliq.2018.11.085

    Article  CAS  Google Scholar 

  56. Zare M, Namratha K, Thakur MS, Byrappa K (2019) Biocompatibility assessment and photocatalytic activity of bio-hydrothermal synthesis of ZnO nanoparticles by Thymus vulgaris leaf extract. Mater Res Bull 109:49–59. https://doi.org/10.1016/j.materresbull.2018.09.025

    Article  CAS  Google Scholar 

  57. Guo X, Li W, Wang H et al (2018) Preparation, characterization, release and antioxidant activity of curcumin-loaded amorphous calcium phosphate nanoparticles. J Non-Cryst Solids 500:317–325. https://doi.org/10.1016/j.jnoncrysol.2018.08.015

    Article  CAS  Google Scholar 

  58. Soren S, Kumar S, Mishra S et al (2018) Evaluation of antibacterial and antioxidant potential of the zinc oxide nanoparticles synthesized by aqueous and polyol method. Microb Pathog 119:145–151. https://doi.org/10.1016/j.micpath.2018.03.048

    Article  PubMed  CAS  Google Scholar 

  59. Madhumitha G, Fowsiya J, Gupta N et al (2019) Green synthesis, characterization and antifungal and photocatalytic activity of Pithecellobium dulce peel–mediated ZnO nanoparticles. J Phys Chem Solids 127:43–51. https://doi.org/10.1016/j.jpcs.2018.12.005

    Article  CAS  Google Scholar 

  60. Sharmila G, Thirumarimurugan M, Muthukumaran C (2019b) Green synthesis of ZnO nanoparticles using Tecoma castanifolia leaf extract: characterization and evaluation of its antioxidant, bactericidal and anticancer activities. Microchem J 145:578–587. https://doi.org/10.1016/j.microc.2018.11.022

    Article  CAS  Google Scholar 

  61. Ullah A, Kareem A, Nami SAA et al (2019) Malus pumila and Juglen regia plant species mediated zinc oxide nanoparticles: synthesis, spectral characterization, antioxidant and antibacterial studies. Microb Pathog 129:233–241. https://doi.org/10.1016/j.micpath.2019.02.020

    Article  CAS  Google Scholar 

  62. Alavi M, Karimi N, Salimikia I (2019) Phytosynthesis of zinc oxide nanoparticles and its antibacterial, antiquorum sensing, antimotility, and antioxidant capacities against multidrug resistant bacteria. J Ind Eng Chem 72:457–473. https://doi.org/10.1016/j.jiec.2019.01.002

    Article  CAS  Google Scholar 

  63. Zare M, Namratha K, Byrappa K et al (2018) Surfactant assisted solvothermal synthesis of ZnO nanoparticles and study of their antimicrobial and antioxidant properties. J Mater Sci Technol 34:1035–1043. https://doi.org/10.1016/j.jmst.2017.09.014

    Article  Google Scholar 

  64. Shobha N, Nanda N, Shivanna A et al (2019) Synthesis and characterization of zinc oxide nanoparticles utilizing seed source of Ricinus communis and study of its antioxidant, antifungal and anticancer activity. Mater Sci Eng C 97:842–850. https://doi.org/10.1016/j.msec.2018.12.023

    Article  CAS  Google Scholar 

  65. Safawo T, Sandeep BV, Pola S, Tadesse A (2018) Synthesis and characterization of zinc oxide nanoparticles using tuber extract of anchote (Coccinia abyssinica (Lam.) Cong.) for antimicrobial and antioxidant activity assessment. OpenNano 3:56–63. https://doi.org/10.1016/j.onano.2018.08.001

    Article  Google Scholar 

  66. Lu J, Ali H, Hurh J et al (2019) The assessment of photocatalytic activity of zinc oxide nanoparticles from the roots of Codonopsis lanceolata synthesized by one-pot green synthesis method. Optik 184:82–89. https://doi.org/10.1016/j.ijleo.2019.03.050

    Article  CAS  Google Scholar 

  67. Alkaladi A (2019) Vitamins E and C ameliorate the oxidative stresses induced by zinc oxide nanoparticles on liver and gills of Oreochromis niloticus. Saudi J Biol Sci 26:357–362. https://doi.org/10.1016/j.sjbs.2018.07.001

    Article  PubMed  CAS  Google Scholar 

  68. Suresh D, Nethravathi PC, Udayabhanu et al (2015) Green synthesis of multifunctional zinc oxide (ZnO) nanoparticles using Cassia fistula plant extract and their photodegradative, antioxidant and antibacterial activities. Mater Sci Semicond Process 31:446–454. https://doi.org/10.1016/j.mssp.2014.12.023

    Article  CAS  Google Scholar 

  69. Nagajyothi PC, Sreekanth TVM, Lee J, Duk K (2014) Mycosynthesis: antibacterial, antioxidant and antiproliferative activities of silver nanoparticles synthesized from Inonotus obliquus (Chaga mushroom) extract. J Photochem Photobiol B Biol 130:299–304. https://doi.org/10.1016/j.jphotobiol.2013.11.022

    Article  CAS  Google Scholar 

  70. Nethravathi PC, Shruthi GS, Suresh D et al (2015) Garcinia xanthochymus mediated green synthesis of ZnO nanoparticles: photoluminescence, photocatalytic and antioxidant activity studies. Ceram Int 41:8680–8687. https://doi.org/10.1016/j.ceramint.2015.03.084

    Article  CAS  Google Scholar 

  71. Nagajyothi PC, Ju S, Jun I et al (2015) Antioxidant and anti-inflammatory activities of zinc oxide nanoparticles synthesized using Polygala tenuifolia root extract. J Photochem Photobiol B Biol 146:10–17. https://doi.org/10.1016/j.jphotobiol.2015.02.008

    Article  CAS  Google Scholar 

  72. Mubarakali D, Lewisoscar F, Gopinath V et al (2018) An inhibitory action of chitosan nanoparticles against pathogenic bacteria and fungi and their potential applications as biocompatible antioxidants. Microb Pathog 114:323–327. https://doi.org/10.1016/j.micpath.2017.11.043

    Article  PubMed  CAS  Google Scholar 

  73. Khatami M, Alijani HQ, Fakheri B et al (2019) Super-paramagnetic iron oxide nanoparticles (SPIONs): greener synthesis using Stevia plant and evaluation of its antioxidant properties. J Clean Prod 208:1171–1177. https://doi.org/10.1016/j.jclepro.2018.10.182

    Article  CAS  Google Scholar 

  74. Tian H, Ghorbanpour M, Kariman K (2018) Manganese oxide nanoparticle–induced changes in growth, redox reactions and elicitation of antioxidant metabolites in deadly nightshade (Atropa belladonna L.). Ind Crop Prod 126:403–414. https://doi.org/10.1016/j.indcrop.2018.10.042

    Article  CAS  Google Scholar 

  75. Qiu W, Wang Y, Wang M, Yan J (2018) Construction, stability, and enhanced antioxidant activity of pectin-decorated selenium nanoparticles. Colloids Surf B Biointerfaces 170:692–700. https://doi.org/10.1016/j.colsurfb.2018.07.003

    Article  PubMed  CAS  Google Scholar 

  76. Cai W, Hu T, Bakry AM et al (2018) Effect of ultrasound on size, morphology, stability and antioxidant activity of selenium nanoparticles dispersed by a hyperbranched polysaccharide from Lignosus rhinocerotis. Ultrason Sonochem 42:823–831. https://doi.org/10.1016/j.ultsonch.2017.12.022

    Article  PubMed  CAS  Google Scholar 

  77. Sharmila G, Muthukumaran C, Saraswathi H et al (2019a) Green synthesis, characterization and biological activities of nanoceria. Ceram Int 45:12382. https://doi.org/10.1016/j.ceramint.2019.03.164

    Article  CAS  Google Scholar 

  78. Qin L, Wang W, You S, Dong J, Zhou Y, Wang J (2014) In vitro antioxidant activity and in vivo antifatigue effect of layered double hydroxide nanoparticles as delivery vehicles for folic acid. Int J Nanomedicine 9:5701

    Article  CAS  Google Scholar 

  79. Zhang D, Zhang J, Zeng J, Li Z, Zuo H, Huang C, Zhao X (2019) Nano-gold loaded with resveratrol enhance the anti-hepatoma effect of resveratrol in vitro and in vivo. J Biomed Nanotechnol 15(2):288–300

    Article  CAS  Google Scholar 

  80. Krug P, Mielczarek L, Wiktorska K, Kaczyńska K, Wojciechowski P, Andrzejewski K, Ofiara K, Szterk A, Mazur M (2018) Sulforaphane-conjugated selenium nanoparticles: towards a synergistic anticancer effect. Nanotechnology 30(6):065101

    Article  CAS  Google Scholar 

  81. Khan SA, Kanwal S, Rizwan K, Shahid S (2018) Enhanced antimicrobial, antioxidant, in vivo antitumor and in vitro anticancer effects against breast cancer cell line by green synthesized un-doped SnO2 and Co-doped SnO2 nanoparticles from Clerodendrum inerme. Microb Pathog 125:366–384

    Article  CAS  Google Scholar 

  82. Tang P, Sun Q, Yang H, Tang B, Pu H, Li H (2018) Honokiol nanoparticles based on epigallocatechin gallate functionalized chitin to enhance therapeutic effects against liver cancer. Int J Pharm 545(1–2):74–83

    Article  CAS  Google Scholar 

  83. Shanmugasundaram T, Radhakrishnan M, Gopikrishnan V, Kadirvelu K, Balagurunathan R (2017) Biocompatible silver, gold and silver/gold alloy nanoparticles for enhanced cancer therapy: in vitro and in vivo perspectives. Nanoscale 9(43):16773–16790

    Article  CAS  Google Scholar 

  84. Sulaiman GM, Tawfeeq AT, Jaaffer MD (2018) Biogenic synthesis of copper oxide nanoparticles using Olea europaea leaf extract and evaluation of their toxicity activities: an in vivo and in vitro study. Biotechnol Prog 34(1):218–230

    Article  CAS  Google Scholar 

  85. Nemmar A, Al-Salam S, Beegam S, Yuvaraju P, Ali BH (2017) The acute pulmonary and thrombotic effects of cerium oxide nanoparticles after intratracheal instillation in mice. Int J Nanomedicine 12:2913

    Article  CAS  Google Scholar 

  86. Qiao H, Chen L, Rui T, Wang J, Chen T, Fu T, Li J, Di L (2017) Fabrication and in vitro/in vivo evaluation of amorphous andrographolide nanosuspensions stabilized by d-α-tocopheryl polyethylene glycol 1000 succinate/sodium lauryl sulfate. Int J Nanomedicine 12:1033

    Article  CAS  Google Scholar 

  87. Pramanik AK, Palanimuthu D, Somasundaram K, Samuelson AG (2016) Biotin decorated gold nanoparticles for targeted delivery of a smart-linked anticancer active copper complex: in vitro and in vivo studies. Bioconjug Chem 27(12):2874–2885

    Article  CAS  Google Scholar 

  88. Pirmohamed T, Dowding JM, Singh S, Wasserman B, Heckert E, Karakoti AS, King JE, Seal S, Self WT (2010) Nanoceria exhibit redox state–dependent catalase mimetic activity. Chem Commun 46(16):2736–2738

    Article  CAS  Google Scholar 

  89. He W, Zhou YT, Wamer WG, Hu X, Wu X, Zheng Z, Boudreau MD, Yin JJ (2013) Intrinsic catalytic activity of Au nanoparticles with respect to hydrogen peroxide decomposition and superoxide scavenging. Biomaterials 34(3):765–773

    Article  CAS  Google Scholar 

  90. Li J, Liu W, Wu X, Gao X (2015) Mechanism of pH-switchable peroxidase and catalase-like activities of gold, silver, platinum and palladium. Biomaterials 48:37–44

    Article  CAS  Google Scholar 

  91. Singh N, Savanur MA, Srivastava S, D’Silva P, Mugesh G (2017) A redox modulatory Mn3O4 nanozyme with multi-enzyme activity provides efficient cytoprotection to human cells in a Parkinson’s disease model. Angew Chem Int Ed 56(45):14267–14271

    Article  CAS  Google Scholar 

  92. Huang Y, Liu C, Pu F, Liu Z, Ren J, Qu X (2017) A GO–Se nanocomposite as an antioxidant nanozyme for cytoprotection. Chem Commun 53(21):3082–3085

    Article  CAS  Google Scholar 

  93. Lee SS, Song W, Cho M, Puppala HL, Nguyen P, Zhu H, Segatori L, Colvin VL (2013) Antioxidant properties of cerium oxide nanocrystals as a function of nanocrystal diameter and surface coating. ACS Nano 7(11):9693–9703

    Article  CAS  Google Scholar 

  94. Watanabe A, Kajita M, Kim J, Kanayama A, Takahashi K, Mashino T, Miyamoto Y (2009) In vitro free radical scavenging activity of platinum nanoparticles. Nanotechnology 20(45):455105

    Article  CAS  Google Scholar 

  95. Balaji S, Mandal BK, Ranjan S, Dasgupta N, Chidambaram R (2017) Nano-zirconia—evaluation of its antioxidant and anticancer activity. J Photochem Photobiol B Biol 170:125–133

    Article  CAS  Google Scholar 

  96. Ju KY, Lee Y, Lee S, Park SB, Lee JK (2011) Bioinspired polymerization of dopamine to generate melanin-like nanoparticles having an excellent free-radical-scavenging property. Biomacromolecules 12(3):625–632

    Article  CAS  Google Scholar 

  97. Liu GF, Filipović M, Ivanović-Burmazović I, Beuerle F, Witte P, Hirsch A (2008) High catalytic activity of dendritic C60 monoadducts in metal-free superoxide dismutation. Angew Chem Int Ed 47(21):3991–3994

    Article  CAS  Google Scholar 

  98. Ali SS, Hardt JI, Quick KL, Kim-Han JS, Erlanger BF, Huang TT, Epstein CJ, Dugan LL (2004) A biologically effective fullerene (C60) derivative with superoxide dismutase mimetic properties. Free Radic Biol Med 37(8):1191–1202

    Article  CAS  Google Scholar 

  99. Dong J, Song L, Yin JJ, He W, Wu Y, Gu N, Zhang Y (2014) Co3O4 nanoparticles with multi-enzyme activities and their application in immunohistochemical assay. ACS Appl Mater Interfaces 6(3):1959–1970

    Article  CAS  Google Scholar 

  100. Liu Y, Wu H, Li M, Yin JJ, Nie Z (2014) pH dependent catalytic activities of platinum nanoparticles with respect to the decomposition of hydrogen peroxide and scavenging of superoxide and singlet oxygen. Nanoscale 6(20):11904–11910

    Article  CAS  Google Scholar 

  101. Ge C, Fang G, Shen X, Chong Y, Wamer WG, Gao X, Chai Z, Chen C, Yin JJ (2016) Facet energy versus enzyme-like activities: the unexpected protection of palladium nanocrystals against oxidative damage. ACS Nano 10(11):10436–10445

    Article  CAS  Google Scholar 

  102. Samuel EL, Marcano DC, Berka V, Bitner BR, Wu G, Potter A, Fabian RH, Pautler RG, Kent TA, Tsai AL, Tour JM (2015) Highly efficient conversion of superoxide to oxygen using hydrophilic carbon clusters. Proc Natl Acad Sci U S A 112(8):2343–2348

    Article  CAS  Google Scholar 

  103. Ragg R, Schilmann AM, Korschelt K, Wieseotte C, Kluenker M, Viel M, Völker L, Preiß S, Herzberger J, Frey H, Heinze K (2016) Intrinsic superoxide dismutase activity of MnO nanoparticles enhances the magnetic resonance imaging contrast. J Mater Chem B 4(46):7423–7428

    Article  CAS  Google Scholar 

  104. Korschelt K, Ragg R, Metzger CS, Kluenker M, Oster M, Barton B, Panthöfer M, Strand D, Kolb U, Mondeshki M, Strand S (2017) Glycine-functionalized copper (II) hydroxide nanoparticles with high intrinsic superoxide dismutase activity. Nanoscale 9(11):3952–3960

    Article  CAS  Google Scholar 

  105. Liu Y, Ai K, Ji X, Askhatova D, Du R, Lu L, Shi J (2017) Comprehensive insights into the multi-antioxidative mechanisms of melanin nanoparticles and their application to protect brain from injury in ischemic stroke. J Am Chem Soc 139(2):856–862

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rajeshkumar, S., Sekar, D., Ezhilarasan, D., Lakshmi, T. (2020). The Role of Diverse Nanoparticles in Oxidative Stress: In Vitro and In Vivo Studies. In: Maurya, P., Dua, K. (eds) Role of Oxidative Stress in Pathophysiology of Diseases. Springer, Singapore. https://doi.org/10.1007/978-981-15-1568-2_3

Download citation

Publish with us

Policies and ethics