Skip to main content

Oxidative Stress in Liver Diseases

  • Chapter
  • First Online:
Role of Oxidative Stress in Pathophysiology of Diseases

Abstract

Liver, being the second largest organ, maintains homeostasis by undergoing a number of risk factors that include alcohol, drugs, environmental pollutants, and radiation. All these factors are capable of inducing oxidative stress by generating free radicals that eventually result in various forms of severe liver diseases. In this chapter, the consequences of oxidative stress are studied, along with its pathophysiology, its effects on organelles, physiological alterations, and the common diseases that occur due to oxidative stress. The progression of various liver diseases primarily involves lipid peroxidation, deoxyribonucleic acid (DNA) damage, signaling of inflammatory mediators, and ultimately generation of free radicals. The inarguable role of prooxidants in hepatic pathogenesis can be evidenced by an increase in the levels of biomarkers of oxidative stress, namely, malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE), to name a few. These markers are paralleled by utilizing endogenous antioxidant mechanisms, thus decreasing the levels of superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT), and glutathione (GSH).

This challenge was overcome by a diverse and rapid development in the field of biomarkers and antioxidants. Newer advances in the field of biomarkers outlined strategies to identify diseases at an early stage so that the treatment procedure could be both clinically useful and cost-effective. Advanced research on antioxidants, to treat liver disease, resulted in the emergence of natural substances that contain common natural herbal extracts, vitamins, and other compounds. Antioxidant use, either as a single compound or in combination, has become key molecules today for counteracting our stressed system and to achieve healthy homeostasis. However, new research should be carried out at cellular and molecular pharmacology levels in combination with drug targeting systems so as to get innovative ideas for the therapeutics of hepatic disease, which are not known enough.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jones DP (2006) Redefining oxidative stress. Antioxid Redox Signal 8:1865–1879

    Article  CAS  Google Scholar 

  2. Muriel P (2007) Some experimental models of liver damage. In: Sahu SC (ed) Hepatotoxicity: from genomics to in vitro and in vivo models. Wiley, West Sussex, p 119e137

    Google Scholar 

  3. Halina CL, Agata M (2014) Oxidative stress as a crucial factor in liver diseases. World J Gastroenterol 20(25):8082–8091

    Article  CAS  Google Scholar 

  4. Li AN, Li S, Zhang YJ, Xu XR, Chen YM, Li HB (2014) Resources and biological activities of natural polyphenols. Nutrients 6:6020–6047

    Article  CAS  Google Scholar 

  5. Valente MJ, Carvalho F, Bastos M, de Pinho PG, Carvalho M (2012) Contribution of oxidative metabolism to cocaine-induced liver and kidney damage. Curr Med Chem 19:5601–5606

    Article  CAS  Google Scholar 

  6. Nguyen V, Huang J, Doan V, Lin X, Tang X, Huang Y, Tang A, Yang X, Huang R (2015) Hepatoprotective effects of Yulangsan polysaccharide against nimesulide-induced liver injury in mice. J Ethnopharmacol 172:273–280

    Article  CAS  Google Scholar 

  7. Dornas WC, de Lima WG, dos Santos RC, Guerra JF, de Souza MO, Silva M, Souza e Silva L, Diniz MF, Silva ME (2013) High dietary salt decreases antioxidant defences in the liver of fructose-fed insulin-resistant rats. J Nutr Biochem 24:2016–2022

    Article  CAS  Google Scholar 

  8. Skowronska M, Albrecht J (2013) Oxidative and nitrosative stress in ammonia neurotoxicity. Neurochem Int 62:731–737

    Article  CAS  Google Scholar 

  9. Paik YH, Kim J, Aoyama T, De Minicis S, Bataller R, Brenner DA (2014) Role of NADPH oxidases in liver fibrosis. Antioxid Redox Signal 20:2854–2872

    Article  CAS  Google Scholar 

  10. Elias-Miro M, Jiménez-Castro MB, Rodés J, Peralta C (2013) Current knowledge on oxidative stress in hepatic ischemia/reperfusion. Free Radic Res 47:555–568

    Article  CAS  Google Scholar 

  11. Ozer J, Ratner M, Shaw M, Bailey W, Schomaker S (2008) The current state of serum biomarkers of hepatotoxicity. Toxicology 245:194–205

    Article  CAS  Google Scholar 

  12. Casas-Grajales S, Muriel P (2015) Antioxidants in liver health. World J Gastrointest Pharmacol Ther 6:59–72

    Article  Google Scholar 

  13. Reiter RJ, Tan DX, Mayo JC, Sainz RM, Leon J, Czarnocki Z (2003) Melatonin as an antioxidant: biochemical mechanisms and pathophysiological implications in humans. Acta Biochim Pol 50:1129–1146

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, L. et al. (2020). Oxidative Stress in Liver Diseases. In: Maurya, P., Dua, K. (eds) Role of Oxidative Stress in Pathophysiology of Diseases. Springer, Singapore. https://doi.org/10.1007/978-981-15-1568-2_13

Download citation

Publish with us

Policies and ethics