Skip to main content

Oxidative Stress Monitoring in In Vitro and In Vivo Models

  • Chapter
  • First Online:
Role of Oxidative Stress in Pathophysiology of Diseases

Abstract

In aerobic organisms, cellular respiration is an essential process that is divided into several steps. The third and last step is called oxidative phosphorylation, which occurs in the mitochondria, specifically in the inner mitochondrial membrane. The mitochondria are considered the cell “powerhouse” because they generate energy through oxidative phosphorylation, which is the main energy source in aerobic organisms. The generated energy is stored in the ATP molecule and is used to maintain various biological processes. Conversely, the mitochondria are also the primary site for reactive oxygen species (ROS) production. If ROS are produced beyond the capacity of antioxidant systems to neutralize them, they induce oxidative stress. This condition is harmful for macromolecules and can lead to cell death. Oxidative stress and its consequences can be monitored by many assays that employ in vitro and in vivo models, which will be discussed throughout this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Roubicek DA, De Souza-pinto NC (2017) Mitochondria and mitochondrial DNA as relevant targets for environmental contaminants. Toxicology 391:100–108

    PubMed  CAS  Google Scholar 

  2. Friedman JR, Nunnari J (2014) Mitochondrial form and function. Nature 505:535

    Google Scholar 

  3. Nelson DL, Cox MM (2014) Princípios de bioquímica de Lehninger, 6th edn. Porto Alegre, Artmed

    Google Scholar 

  4. Hüttemann M, Lee I, Samavati L, Yu H, Doan JW (2007) Regulation of mitochondrial oxidative phosphorylation through cell signaling. Biochim Biophys Acta Mol Cell Res 1773(12):1701–1720

    Google Scholar 

  5. Augusto O (2006) Radicais livres: bons, maus e naturais, 1st edn. Oficina de Textos, São Paulo. 120 p

    Google Scholar 

  6. Blajszczak C, Bonini MG (2017) Mitochondria targeting by environmental stressors: implications for redox cellular signaling. Toxicology 391(April):84–89

    PubMed  CAS  Google Scholar 

  7. Zolkipli-Cunningham Z, Falk MJ (2017) Clinical effects of chemical exposures on mitochondrial function. Toxicology 391(April):90–99

    PubMed  CAS  Google Scholar 

  8. Halliwell B (2006) Reactive species and antioxidants: redox biology is a fundamental theme of aerobic life. Plant Physiol 141:312–322

    PubMed  PubMed Central  CAS  Google Scholar 

  9. Hilscherova K, Blankenship AL, Nie M, Coady KK, Upham BL, Trosko JE et al (2003) Oxidative stress in liver and brain of the hatchling chicken (Gallus domesticus) following in ovo injection with TCDD. Comp Biochem Physiol Part C 136:29–45

    CAS  Google Scholar 

  10. Modesto KA, Martinez CBR (2010) Effects of Roundup Transorb on fish: hematology, antioxidant defenses and acetylcholinesterase activity. Chemosphere 81:781–787

    PubMed  CAS  Google Scholar 

  11. Hong Y, Kim Y, Lee K (2012) Methylmercury exposure and health effects. J Prev Med Public Health 45:353–363

    PubMed  PubMed Central  Google Scholar 

  12. WHO (2016) International Programme on Chemical Safety. The public health impact of chemicals: knowns and unknowns. WHO, Geneva

    Google Scholar 

  13. Caine EA, Jagger BW, Diamond MS (2018) Animal models of Zika virus infection during pregnancy. Viruses 10(598):1–21

    Google Scholar 

  14. Higa LM, Trindade P, Delvecchio R, Tanuri A, Rehen SK (2016) Zika virus impairs growth in human neurospheres and brain organoids. Science 352(6287):33–36

    Google Scholar 

  15. Janssens S, Schotsaert M, Karnik R, Balasubramaniam V, Dejosez M, Meissner A (2018) Zika virus alters DNA methylation of neural genes in an organoid model of the developing human brain. mSystems 3(1):e00219–e00217

    PubMed  PubMed Central  CAS  Google Scholar 

  16. de Souza N (2018) Organoids. Nat Methods 15(1):2018

    Google Scholar 

  17. Tannenbaum J, Bennett BT (2015) Russell and Burch’ s 3Rs then and now: the need for clarity in definition and purpose. J Am Assoc Lab Anim Sci 54(2):120–132

    PubMed  PubMed Central  Google Scholar 

  18. Doke SK, Dhawale SC (2015) Alternatives to animal testing: a review. Saudi Pharm J 23(3):223–229

    PubMed  Google Scholar 

  19. Schechtman LM (2002) Implementation of the 3Rs (Refinement, Reduction, and Replacement): validation and regulatory acceptance considerations for alternative toxicological test methods. ILAR J 43:S85

    PubMed  CAS  Google Scholar 

  20. Blosh M (2012) The history of animal welfare law and the future of animal rights. The University of Western Ontario, London, ON. Available at: https://ir.lib.uwo.ca/etd/803

    Google Scholar 

  21. Trent N, Edwards S, Felt J, Meara KO (2005) International animal law, with a concentration on Latin America, Asia, and Africa. In: Salem DJ, Rowan AN (eds) The state of the animals III. Humane Society Press, Washington, DC, pp 65–77. Available at: https://animalstudiesrepository.org/sota_2005/5/

    Google Scholar 

  22. de Vasconselos RM (2008) Conhecendo a Lei Arouca, Lei no 11.794, de 8 de outubro de 2008, que regula a pesquisa com animais. pp 113–50

    Google Scholar 

  23. United States of America’ Congress (2000) Public Law 106–545. 106th Public Law 106–545—December 19, 2000. 2721–5

    Google Scholar 

  24. Knight A (2008) Non-animal methodologies within biomedical research and toxicity testing. ALTEX 25(3/08):213–231

    PubMed  Google Scholar 

  25. Griesinger C, Desprez B, Coecke S, Casey W, Zuang V (2016) Validation of alternative in vitro methods to animal testing: concepts, challenges, processes and tools. In: Eskes C, Whelan M (eds) Advances in experimental medicine and biology. Springer International Publishing, Cham

    Google Scholar 

  26. Kapałczyńska M, Kolenda T, Przybyła W, Zajączkowska M, Teresiak A, Filas V et al (2018) State of the art paper 2D and 3D cell cultures – a comparison of different types of cancer cell cultures. Arch Med Sci 14(4):910–919

    PubMed  Google Scholar 

  27. Duval K, Grover H, Han L, Mou Y, Pegoraro AF, Fredberg J et al (2017) Modeling physiological events in 2D vs 3D cell culture. Physiology (Bethesda) 32:266–277

    CAS  Google Scholar 

  28. Joseph JS, Malindisa ST, Ntwasa M (2018) Two-dimensional (2D) and three-dimensional (3D) cell culturing in drug discovery. In: Cell culture. IntechOpen, Rijeka. Available at: https://www.intechopen.com/books/cell-culture/two-dimensional-2d-and-three-dimensional-3d-cell-culturing-in-drug-discovery

    Google Scholar 

  29. Antoni D, Burckel H, Josset E, Noel G (2015) Three-dimensional cell culture: a breakthrough in vivo. Int J Mol Sci 16:5517–5527

    PubMed  PubMed Central  CAS  Google Scholar 

  30. Knight E, Przyborski S (2015) Advances in 3D cell culture technologies enabling tissue-like structures to be created in vitro. J Anat 227:746–756

    PubMed  Google Scholar 

  31. Box GEP (1976) Science and statistics. J Am Stat Assoc 71(356):791–799

    Google Scholar 

  32. Anadón A, Martínez MA, Castellano V, Martínez-Larrañaga MR (2014) The role of in vitro methods as alternatives to animals in toxicity testing. Expert Opin Drug Metab Toxicol 10(1):67–79

    PubMed  Google Scholar 

  33. Society A (1974) Spawning cycle and egg production of Zebrafish, Brachydanio rerio, in the laboratory. Am Soc Ichthyol Herpetol (ASIH) 1974(1):195–2014

    Google Scholar 

  34. Strahle U, Scholz S, Geisler R, Greiner P, Hollert H, Rastegar S et al (2012) Zebrafish embryos as an alternative to animal experiments - a commentary on the definition of the onset of protect life stages in animal welfare regulations. Reprod Toxicol 33:128–132

    PubMed  Google Scholar 

  35. European Commision (2010) Directive 2010/63/EU of the European parliament and of the Council of 22 September 2010

    Google Scholar 

  36. Scholz S, Fischer S, Gündel U (2008) The zebrafish embryo model in environmental risk assessment — applications beyond acute toxicity testing. Environ Sci Pollut Res 15:394–404

    CAS  Google Scholar 

  37. Teixidó E, Piqué E, Llobet JM (2013) Assessment of developmental delay in the zebrafish embryo teratogenicity assay. Toxicol In Vitro 27:469–478

    PubMed  Google Scholar 

  38. Lawrence C (2007) The husbandry of zebrafish (Danio rerio): a review. Aquaculture 269:1–20

    Google Scholar 

  39. Carlsson G, Patring J, Kreuger J, Norrgren L, Oskarsson A (2013) Toxicity of 15 veterinary pharmaceuticals in zebrafish (Danio rerio) embryos. Aquat Toxicol 126:30–41

    PubMed  CAS  Google Scholar 

  40. Barbazuk WB, Korf I, Kadavi C, Heyen J, Tate S, Wun E et al (2000) The syntenic relationship of the zebrafish and human genomes. Genome Res 10:1351–1358

    PubMed  PubMed Central  CAS  Google Scholar 

  41. Hill AJ, Teraoka H, Heideman W, Peterson RE (2005) Zebrafish as a model vertebrate for investigating chemical toxicity. Toxicol Sci 86(1):6–19

    PubMed  CAS  Google Scholar 

  42. Mcgrath P, Li C (2008) Zebrafish: a predictive model for assessing drug-induced toxicity. Drug Discov Today 13(9–10):394

    PubMed  CAS  Google Scholar 

  43. Hahn ME, Timme-laragy AR, Karchner SI, Stegeman JJ (2015) Free radical biology and medicine Nrf2 and Nrf2-related proteins in development and developmental toxicity: insights from studies in zebrafish (Danio rerio). Free Radic Biol Med 88:275–289

    PubMed  PubMed Central  CAS  Google Scholar 

  44. Rashed MN (2019) Cadmium and Lead levels in fish (Tilapia Nilotica) tissues as biological indicator for lake water pollution. Environ Monit Assess 68:75–89

    Google Scholar 

  45. Moura MAM, Oliveira R, Jonsson CM, Domingues I, Soares AMVM, Nogueira AJA (2018) The sugarcane herbicide ametryn induces oxidative stress and developmental abnormalities in zebrafish embryos. Environ Sci Pollut Res 25(14):13416–13425

    CAS  Google Scholar 

  46. Oost D, Beyer J, Vermeulen NPE (2003) Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environ Toxicol Pharmacol 13:57–149

    PubMed  Google Scholar 

  47. Atli G, Canli M (2007) Enzymatic responses to metal exposures in a freshwater fish Oreochromis niloticus. Comp Biochem Physiol Part C 145:282–287

    Google Scholar 

  48. Gravato C, Almeida JR, Silva C, Oliveira C, Soares AMVM (2014) Using a multibiomarker approach and behavioural responses to assess the effects of anthracene in Palaemon serratus. Aquat Toxicol 149:94–102

    PubMed  CAS  Google Scholar 

  49. Newman TAC, Carleton CR, Leeke B, Hampton MB, Julia A (2015) Embryonic oxidative stress results in reproductive impairment for adult zebrafish. Redox Biol 6(Dec):648–655

    PubMed  PubMed Central  CAS  Google Scholar 

  50. Valavanidis A, Vlahogianni T, Dassenakis M, Scoullos M (2006) Molecular biomarkers of oxidative stress in aquatic organisms in relation to toxic environmental pollutants. Ecotoxicol Environ Saf 64:178–189

    PubMed  CAS  Google Scholar 

  51. Winston GW, Di Giulio RT (1991) Prooxidant and antioxidant mechanisms in aquatic organisms. Aquat Toxicol 19:137–161

    CAS  Google Scholar 

  52. Ahmad I, Pacheco M, Santos MA (2006) Anguilla anguilla L. oxidative stress biomarkers: an in situ study of freshwater wetland ecosystem (Pateira de Fermentelos, Portugal). Chemosphere 65:952–962

    PubMed  CAS  Google Scholar 

  53. Funesa V, Alhamaa J, Navasb JI, López-Bareaa J, Peinadoa J (2006) Ecotoxicological effects of metal pollution in two mollusc species from the Spanish South Atlantic littoral. Environ Pollut 139:214–223

    Google Scholar 

  54. Eruslanov E, Kusmartsev S (2010) Identification of ROS using oxidized DCFDA and flow-cytometry. In: Methods in molecular biology. Springer, New York, NY

    Google Scholar 

  55. Paget V, Moche H, Kortulewski T, Grall R, Irbah L, Nesslany F et al (2015) Human cell line-dependent WC-Co nanoparticle cytotoxicity and genotoxicity: a key role of ROS production. Toxicol Sci 143(2):385–397

    PubMed  CAS  Google Scholar 

  56. Lebel CP, Ali SF, McKee M, Bondy C (1990) Organometal-induced increases in oxygen reactive species: the potential diacetate as an index of neurotoxic damage. Toxicol Appl Pharmacol 104:17–24

    PubMed  CAS  Google Scholar 

  57. Xu H, Dong X, Zhang Z, Yang M, Wu X, Liu H (2015) Assessment of immunotoxicity of dibutyl phthalate using live zebrafish embryos. Fish Shellfish Immunol 45:286–292

    PubMed  CAS  Google Scholar 

  58. Usenko CY, Hopkins DC, Trumble SJ, Bruce ED (2012) Hydroxylated PBDEs induce developmental arrest in zebrafish. Toxicol Appl Pharmacol 262(1):43–51. https://doi.org/10.1016/j.taap.2012.04.017

    Article  PubMed  CAS  Google Scholar 

  59. Guilherme D, Paganotto L, De Brum P, Rodrigues N, Carvalho D, Rubim A et al (2018) N-acetylcysteine inhibits Mancozeb-induced impairments to the normal development of zebrafish embryos. Neurotoxicol Teratol 68(April):1–12

    Google Scholar 

  60. Dębski D, Smulik R, Zielonka J, Michałowski B (2016) Mechanism of oxidative conversion of Amplex® Red to resorufin: pulse radiolysis and enzymatic studies. Free Radic Biol Med 95:323–332

    PubMed  PubMed Central  Google Scholar 

  61. Zhao B, Summers FA, Mason RP (2012) Photooxidation of Amplex Red to resorufin: implications of exposing the Amplex Red assay to light. Free Radic 53(5):1080–1087

    CAS  Google Scholar 

  62. Misra HP, Fridovich I (1972) The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem 247(10):3170–3175

    PubMed  CAS  Google Scholar 

  63. Medica E (1979) Oxygen free radicals and tissue damage. Ciba Found Symp (65):1

    Google Scholar 

  64. Zhang Y, Zheng Q, Pan J, Zheng RL (2004) Oxidative damage of biomolecules in mouse liver induced by morphine and protected by antioxidants. Basic Clin Pharmacol Toxicol 95:53–58

    PubMed  CAS  Google Scholar 

  65. Paravani EV, Simoniello MF, Poletta GL, Casco VH (2019) Cypermethrin induction of DNA damage and oxidative stress in zebrafish gill cells. Ecotoxicol Environ Saf 173(August 2018):1–7

    PubMed  CAS  Google Scholar 

  66. Marcon M, Mocelin R, Benvenutti R, Costa T, Herrmann AP, De Oliveira DL et al (2018) Environmental enrichment modulates the response to chronic stress in zebrafish. J Exp Biol 221:jeb176735

    PubMed  Google Scholar 

  67. Weydert CJ, Cullen J (2010) Measurement of superoxide dismutase, catalase, and glutathione peroxidase in cultured cells and tissue. Nat Protoc 5(1):51–66

    PubMed  CAS  Google Scholar 

  68. Ove P, Lieberman I (1958) Enzyme activity levels in mammalian cell cultures. J Biol Chem 233(3):634–636

    PubMed  Google Scholar 

  69. Shao B, Zhu L, Dong M (2012) DNA damage and oxidative stress induced by endosulfan exposure in zebrafish (Danio rerio). Ecotoxicology 21:1533–1540

    PubMed  CAS  Google Scholar 

  70. Bartoskova M, Dobsikova R, Stancova V, Pana O, Zivna D, Plhalova L et al (2014) Norfloxacin — toxicity for zebrafish (Danio rerio) focused on oxidative stress parameters. Biomed Res Int 2014:6

    Google Scholar 

  71. Halliwell B (2001) Role of free radicals in the neurodegenerative diseases therapeutic implications for antioxidant treatment. Drugs Aging 18(9):685–716

    PubMed  CAS  Google Scholar 

  72. Reischl E, Luiz A, Luis J, Wilhelm D (2007) Distribution, adaptation and physiological meaning of thiols from vertebrate hemoglobins. Comp Biochem Physiol 146(Part C):22–53

    Google Scholar 

  73. Pisoschi AM, Pop A (2015) The role of antioxidants in the chemistry of oxidative stress: a review. Eur J Med Chem 97:55–74

    PubMed  CAS  Google Scholar 

  74. Stegeman JJ, Renton KW, Woodin BR, Addison RF (1990) Experimental and environmental induction of cytochrome P450E in fish from Bermuda waters. J Exp Mar Biol Ecol 138:49–61

    CAS  Google Scholar 

  75. Taylor P, Bucheli TD, Fent K, Bucheli TD, Fent K (2012) Induction of cytochrome P450 as a biomarker for environmental contamination in aquatic ecosystems. Crit Rev Environ Sci Technol 25(3):201–267

    Google Scholar 

  76. Habig WH, Pasbst MJ, Jakoby WB (1974) Glutathione S-transferases. J Biol Chem 249(22):7130–7140

    CAS  PubMed  Google Scholar 

  77. Nunes MEM, Müller TE, Murussi C, Aline MB, Gomes JLC, Marins AT et al (2018) Oxidative effects of the acute exposure to a pesticide mixture of cypermethrin and chlorpyrifos on carp and zebrafish – a comparative study. Comp Biochem Physiol Part C 206–207(October 2017):48–53

    Google Scholar 

  78. Divišová L, Dobšíková R, Blahová J, Plhalová L, Hostovsky M (2013) Oxidative stress responses in zebrafish Danio rerio after subchronic exposure to atrazine. Food Chem Toxicol 61:82–85

    PubMed  Google Scholar 

  79. Meyer JN, Leung MCK, Rooney JP, Sendoel A, Hengartner MO, Kisby GE et al (2013) Mitochondria as a target of environmental toxicants. Toxicol Sci 134(1):1–17

    PubMed  PubMed Central  CAS  Google Scholar 

  80. Pitt JA, Trevisan R, Massarsky A, Kozal JS, Levin ED, Di RT (2018) Maternal transfer of nanoplastics to offspring in zebrafish (Danio rerio): a case study with nanopolystyrene. Sci Total Environ 643:324–334

    PubMed  PubMed Central  CAS  Google Scholar 

  81. Puente-Muñoz V, Paredes JM, Resa S, Vílchez JD, Zitnan M, Miguel D et al (2019) New thiol-sensitive dye application for measuring oxidative stress in cell cultures. Sci Rep 9:1659

    PubMed  PubMed Central  Google Scholar 

  82. Thompson HJ, Heimendinger J, Haegele A, Sedlacek SM, Gillette C, Neill CO et al (1999) Effect of increased vegetable and fruit consumption on markers of oxidative cellular damage. Carcinogenesis 20(12):2261–2266

    PubMed  CAS  Google Scholar 

  83. Topal A, Alak G, Altun S, Serkan H (2017) Evaluation of 8-hydroxy-2-deoxyguanosine and NFkB activation, oxidative stress response, acetylcholinesterase activity, and histopathological changes in rainbow trout brain exposed to linuron. Environ Toxicol Pharmacol 49:14–20

    PubMed  CAS  Google Scholar 

  84. Zhu B, Wang Q, Shi X, Guo Y, Xu T, Zhou B (2016) Effect of combined exposure to lead and decabromodiphenyl ether on neurodevelopment of zebrafish larvae. Chemosphere 144:1646–1654

    PubMed  CAS  Google Scholar 

  85. Park C, Cha H, Hong SH, Kim G, Kim S, Kim H et al (2019) Protective effect of Phloroglucinol on oxidative stress-induced DNA damage and apoptosis through activation of the Nrf2/HO-1 signaling pathway in HaCaT human keratinocytes. Mar Drugs 17(255):1–16

    CAS  Google Scholar 

  86. Aydin UR, Akpinar KE, Hepokur C, Erd D (2018) Assessment of toxicity and oxidative DNA damage of sodium hypochlorite, chitosan and propolis on fibroblast cells. Braz Oral Res 32:1–8

    Google Scholar 

  87. Ferreira ALA, Matsubara LS (1997) Radicais livres: conceitos, doenças relacionadas, sistema de defesa e estresse oxidativo. Rev Assoc Med Bras 43(1):61–68

    PubMed  CAS  Google Scholar 

  88. Pilz J, Meineke I, Gleiter CH (2000) Measurement of free and bound malondialdehyde in plasma by high-performance liquid chromatography as the 2,4-dinitrophenylhydrazine derivative. J Chromatogr B 742:315–325

    CAS  Google Scholar 

  89. Özgüner MF, Delibaş N, Tahan V, Koyu A, Köylü H (1999) Effects of industrial noise on the blood levels of superoxide dismutase, glutathione peroxidase and malondialdehyde. Eastern J Med 4(1):13–15

    Google Scholar 

  90. Yagi K et al (1976) A simple fluorometric assay for lipoperoxide in blood plasma. Biochem Med 15:212–216

    PubMed  CAS  Google Scholar 

  91. Araseki M, Kobayashi H, Hosokawa M, Miyashita K (2005) Lipid peroxidation of a human hepatoma cell line (HepG2) after incorporation of linoleic acid, arachidonic acid, and docosahexaenoic acid. Biosci Biotechnol Biochem 69(3):483–490

    PubMed  CAS  Google Scholar 

  92. Kumar N, Awoyemu O, Willis A, Schmitt C, Ramalingam L, Moustaid-Moussa N et al (2019) Comparative lipid peroxidation and apoptosis in embryo-larval zebrafish exposed to three azole fungicides, Tebuconazole, Propiconazole, and Myclobutanil, at environmentally relevant concentrations. Environ Toxicol Chem 38(7):1455–1466

    PubMed  CAS  Google Scholar 

  93. Halliwell B, Whiteman M (2004) Measuring reactive species and oxidative damage in vivo and in cell culture: how should you do it and what do the results mean? Br J Pharmacol 142:231–255

    PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lilian Cristina Pereira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lima, T.R.R., Sales, B.C.P., Pereira, L.C. (2020). Oxidative Stress Monitoring in In Vitro and In Vivo Models. In: Maurya, P., Dua, K. (eds) Role of Oxidative Stress in Pathophysiology of Diseases. Springer, Singapore. https://doi.org/10.1007/978-981-15-1568-2_10

Download citation

Publish with us

Policies and ethics