Skip to main content

Role of Macronutrients in Cotton Production

  • Chapter
  • First Online:
Cotton Production and Uses

Abstract

Sound nutrition plays a key role in enhancing cotton yield. As cotton undergoes vegetative and reproductive growth at the same time, its nutritional requirements are dissimilar, compared to other field crops. Cotton is grown as an annual crop with an indeterminate growth pattern. The vegetative branching provides a potential fruiting place except under abiotic and biotic stresses. Moreover, cotton has a deep root system with low density of roots in the surface layer of soils where availability of nutrients is high. The rooting system makes cotton crop more dependent on the subsoil for nutrition. A continuous supply of nutrients is required to sustain morphogenesis. The rate of both nutrients absorption and dry matter production increases progressively during the seedling, vegetative, and fruiting periods and peaks near the end of the bloom period. Nitrogen, phosphorus, and potassium are required in large quantities and are limited in many soils. The deficiencies of macro- and micronutrients decrease plant growth and development, and consequently seed cotton yield is reduced. The deficiency of phosphorous (P), calcium (Ca), potassium (K), boron (B), magnesium (Mg), and zinc (Zn) affects fruit production in cotton than vegetative growth, while the deficiencies of nitrogen (N), sulfur (S), molybdenum (Mo), and manganese (Mn) affect equally vegetative and reproductive growth of cotton. A bevy of literature concerning the role of macronutrients in growth and development is presented in the following paragraphs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

B:

Boron

Ca:

Calcium

CEC:

Cation exchange capacity

CO2 :

Carbon dioxide

GHGs:

Greenhouse gases

K:

Potassium

Mg:

Magnesium

Mn:

Manganese

Mo:

Molybdenum

N:

Nitrogen

NH4 + :

Ammonium

NO3 − :

Nitrate

P:

Phosphorous

S:

Sulfur

Zn:

Zinc

References

  • Abbas Q, Ahmad S (2018) Effect of different sowing times and cultivars on cotton fiber quality under stable cotton-wheat cropping system in southern Punjab, Pakistan. Pak J Life Soc Sci 16:77–84

    Google Scholar 

  • Adams F, Moore BL (1983) Chemical factors affecting root growth in subsoil horizons of coastal plain soils. Soil Sci Soc Am J 47:99–102

    Article  CAS  Google Scholar 

  • Addicott FT, Lyon JL (1973) Physiological ecology of abscission. In: Kozlowski TT (ed) Shedding of plant parts. Academic Press, New York/London, pp 85–124

    Chapter  Google Scholar 

  • Ahmad S, Raza I (2014) Optimization of management practices to improve cotton fiber quality under irrigated arid environment. J Food Agri Environ 2(2):609–613

    Google Scholar 

  • Ahmad S, Raza I, Ali H, Shahzad AN, Atiq-ur-Rehman, Sarwar N (2014) Response of cotton crop to exogenous application of glycine betaine under sufficient and scarce water conditions. Braz J Bot 37(4):407–415

    Article  Google Scholar 

  • Ahmad S, Abbas Q, Abbas G, Fatima Z, Atique-ur-Rehman Z, Naz S, Younis H, Khan RJ, Nasim W, Habib urRehman M, Ahmad A, Rasul G, Khan MA, Hasanuzzaman M (2017) Quantification of climate warming and crop management impacts on cotton phenology. Plan Theory 6(7):1–16

    Google Scholar 

  • Ahmad S, Iqbal M, Muhammad T, Mehmood A, Ahmad S, Hasanuzzaman M (2018) Cotton productivity enhanced through transplanting and early sowing. Acta Sci Biol Sci 40:e34610

    Article  Google Scholar 

  • Ali H, Afzal MN, Ahmad F, Ahmad S, Akhtar M, Atif R (2011) Effect of sowing dates, plant spacing and nitrogen application on growth and productivity on cotton crop. Int J Sci Eng Res 2(9):1–6

    Google Scholar 

  • Ali H, Abid SA, Ahmad S, Sarwar N, Arooj M, Mahmood A, Shahzad AN (2013a) Integrated weed management in cotton cultivated in the alternate-furrow planting system. J Food Agri Environ 11(3&4):1664–1669

    Google Scholar 

  • Ali H, Abid SA, Ahmad S, Sarwar N, Arooj M, Mahmood A, Shahzad AN (2013b) Impact of integrated weed management on flat-sown cotton (Gossypium hirsutum L.). J Anim Plant Sci 23(4):1185–1192

    CAS  Google Scholar 

  • Ali H, Hameed RA, Ahmad S, Shahzad AN, Sarwar N (2014a) Efficacy of different techniques of nitrogen application on American cotton under semi-arid conditions. J Food Agri Environ 12(1):157–160

    Google Scholar 

  • Ali H, Hussain GS, Hussain S, Shahzad AN, Ahmad S, Javeed HMR, Sarwar N (2014b) Early sowing reduces cotton leaf curl virus occurrence and improves cotton productivity. Cercetări Agronomice în Moldova XLVII(4):71–81

    Google Scholar 

  • Aliyan R (2013) Effects of different nitrogen fertilization rate on morphological and physiological characteristics of cotton root in Jujube cotton intercropping system. Acta Agriculturae Boreali-occidentalis Sinica 22:96–102

    Google Scholar 

  • Allakhverdiev SI, Kreslavski VD, Klimov VV, Los DA, Carpentier R, Mohanty P (2008) Heat stress: an overview of molecular responses in photosynthesis. Photosynth Res 98:541–550

    Article  CAS  PubMed  Google Scholar 

  • Allen GJ, Chu SP, Harrington CL, Schumacher K, Hoffmann T, Tang YY, Grill E, Schroeder JI (2001) A defined range of guard cell calcium oscillation parameters encodes stomatal movements. Nature 411:1053–1057

    Article  CAS  PubMed  Google Scholar 

  • Amanullah (2014) Source and rate of nitrogen application influence agronomic N-use efficiency and harvest index in maize (Zea mays L) genotypes. Maydica 59:80–89

    Google Scholar 

  • Amin A, Nasim W, Mubeen M, Nadeem M, Ali L, Hammad HM, Sultana SR, Jabran K, Habib urRehman M, Ahmad S, Awais M, Rasool A, Fahad S, Saud S, Shah AN, Ihsan Z, Ali S, Bajwa AA, Hakeem KR, Ameen A, Amanullah, Hafeez Ur Rehman, Alghabar F, Jatoi GH, Akram M, Khan A, Islam F, Ata-Ul-Karim ST, Rehmani MIA, Hussain S, Razaq M, Fathi A (2017) Optimizing the phosphorus use in cotton by using CSM-CROPGRO-cotton model for semi-arid climate of Vehari-Punjab, Pakistan. Environ Sci Pollut Res 24(6):5811–5823

    CAS  Google Scholar 

  • Amin A, Nasim W, Mubeen M, Ahmad A, Nadeem M, Urich P, Fahad S, Ahmad S, Wajid A, Tabassum F, Hammad HM, Sultana SR, Anwar S, Baloch SK, Wahid A, Wilkerson CJ, Hoogenboom G (2018) Simulated CSM-CROPGRO-cotton yield under projected future climate by SimCLIM for southern Punjab, Pakistan. Agric Syst 167:213–222

    Article  Google Scholar 

  • Bange MP, Milroy SP (2004) Growth and dry matter partitioning of diverse cotton genotypes. Field Crops Res 87:73–87

    Article  Google Scholar 

  • Bangerth F (1979) Calcium-related physiological disorders of plants. Arm Rev Phytopathol 17:97–122

    Article  CAS  Google Scholar 

  • Barraclough PB, Howarth JR, Jones J, Lopez-Bellido R, Parmar S, Shepherd C, Hawkesford MJ (2010) Nitrogen efficiency of wheat: genotypic and environmental variation and prospects for improvement. Eur J Agron 33:1–11

    Article  CAS  Google Scholar 

  • Barrett DI, Gifford RM (1995) Photosynthetic acclimation to elevated CO2 on relation to biomass allocation in cotton. J Biogeogr 2:331–339

    Article  Google Scholar 

  • Bassett DM, Anderson WD, Werkhoven CHE (1970) Dry matter production and nutrient uptake in irrigated cotton (Gossypium hirsutum). Agron J 62:299–303

    Article  Google Scholar 

  • Bauer PJ, May OL, Camberato JJ (1998) Planting date and potassium fertility effects on cotton yield and fiber properties. J Prod Agric 11(4):415–420

    Article  Google Scholar 

  • Bednarz C, Oosterhuis D (1999) Physiological changes associated with potassium deficiency in cotton. J Plant Nutr 22:303–313

    Article  Google Scholar 

  • Bisson P, Cretenet M, Jallas E (1994) Nitrogen phosphorus and potassium availability in the soil physiology of the assimilation and use of the nutrients by the plant. In: Proceedings of the world cotton research conference, 14–17 Feb 1994, Brisbane, Australia, pp 115–124

    Google Scholar 

  • Brouder S, Cassman K (1990) Root development of two cotton cultivars in relation to potassium uptake and plant growth in a vermiculitic soil. Field Crop Res 23:187–203

    Article  Google Scholar 

  • Buchanan BB (1980) Role of light in the regulation of chloroplast enzymes. Annu Rev Plant Physiol 31:341–374

    Article  CAS  Google Scholar 

  • Bundy LG, Andraski TW (2004) Diagnostic tests for site-specific nitrogen recommendations for winter wheat. Agron J 96:608–614

    Article  Google Scholar 

  • Burström H (1968) Calcium and plant growth. Biol Rev 43:287–316

    Article  Google Scholar 

  • Campbell CD, Sage RF (2006) Interactions between the effects of atmospheric CO2 content and P nutrition on photosynthesis in white lupin (Lupinus albus L.). Plant Cell Environ 29:844–853

    Article  CAS  PubMed  Google Scholar 

  • Cao Y, Fan XR, Sun SB, Xu G, Shen Q, Di T (2007) Effect of partial replacement of NH4 + by NO3 − on nitrate reductase activity and their genetic expression patterns in rice. Plant Nutr Fertil Sci 13:99–105

    CAS  Google Scholar 

  • Carranca C (2012) Nitrogen use efficiency by annual and perennial crops. In: Lichtfouse E (ed) Farming for food and water security. Springer Science+Business Media, Dordrecht, pp 57–82

    Chapter  Google Scholar 

  • Cassman KG (1993) Cotton. In: Bennett WF (ed) Nutrient deficiencies in crop plants. Am Phytopathol Soc Press, St Paul, MN, pp 111–119

    Google Scholar 

  • Cassman KG, Kerby TA, Roberts B, Bryant D, Brouder S (1989) Differential response of two cotton cultivars to fertilizer and soil potassium. Agron J 81:870–876

    Article  Google Scholar 

  • Cassman KG, Kerby TA, Roberts BA, Bryant DC, Higashi SL (1990) Potassium nutrition effects on lint yield and fiber quality of Acala cotton. Crop Sci 30(3):672–677

    Article  CAS  Google Scholar 

  • Cheng SH, Willmann MR, Chen HC, Sheen J (2002) Calcium signaling through protein kinases. The Arabidopsis calcium-dependent protein kinase gene family. Plant Physiol 129:469–485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christensen MN, Foy CD (1979) Fate and function of calcium in tissue. Commun Soil Sci Plant Anal 10:427–442

    Article  Google Scholar 

  • Clawson EL, Cothren JT, Blouin DC, Satterwhite JL (2008) Timing of maturity in ultra-narrow and conventional row cotton as affected by nitrogen fertilizer rate. Agron J 100:421–431

    Article  CAS  Google Scholar 

  • Clement-Bailey J, Gwathmey CO (2007) Potassium effects on partitioning, yield, and earliness of contrasting cotton cultivars. Am Soc Agron 99:1130–1136

    Article  CAS  Google Scholar 

  • Colakoglu H (1980) Nutrient requirement and fertilization of cotton in Turkey. Potash Rev 12:3–9

    Google Scholar 

  • Constable GA, Bange MP (2015) The yield potential of cotton (Gossypium hirsutum L.). Field Crops Res 182:98–106

    Article  Google Scholar 

  • Cooke A, Cookson A, Earnshaw MJ (1986) The mechanism of action on calcium in the inhibition on high temperature-induced leakage of betacyanin from beet root discs. New Phytol 102:491–497

    Article  CAS  Google Scholar 

  • Cooper HP, Paden WR, Garman WH (1947) Some factors influencing the availability of magnesium in soil and the magnesium content of certain crop plants. Soil Sci 63:27–41

    Article  CAS  Google Scholar 

  • Cousson A (2009) Involvement of phospholipase C-independent calcium-mediated abscisic acid signaling during Arabidopsis response to drought. Biol Plant 53:53–62

    Article  CAS  Google Scholar 

  • Crop Nutrition (n.d.) Nutrients deficiencies-Cotton. Yara’s Podcast. https://www.yara.us/crop-nutrition/cotton/nutrient-deficiencies/potassium-deficiency-cotton/

  • Dai J, Dong H (2014) Intensive cotton farming technologies in China: achievements, challenges and countermeasures. Field Crop Res 155:99–110

    Article  Google Scholar 

  • Dai Y, Chen B, Meng Y, Zhao W, Zhou Z, Oosterhuis DM, Wang Y (2015) Effects of elevated temperature on sucrose metabolism and cellulose synthesis in cotton fibre during secondary cell wall development. Funct Plant Biol 42:909–919

    Article  CAS  PubMed  Google Scholar 

  • Dassanayake M, Larkin JC (2017) Making plants break a sweat: the structure, function, and evolution of plant salt glands. Front Plant Sci 8:1–20

    Google Scholar 

  • Davidonis GH, Johnson AS, Landivar JA, Fernandez CJ (2004) Cotton fiber quality is related to boll location and planting date. Agron J 96(1):42–47

    Article  Google Scholar 

  • Day IS, Reddy VS, Shad AG, Reddy ASN (2002) Analysis of EF-hand containing proteins in Arabidopsis. Genome Biol 3:RESEARCH0056. https://doi.org/10.1186/gb-2002-3-10-research0056

    Article  PubMed  PubMed Central  Google Scholar 

  • Dechorgnat J, Nguyen CT, Armengaud P, Jossier M, Diatloff E, Filleur S, Daniel-Vedele F (2011) From the soil to the seeds: the long journey of nitrate in plants. J Exp Bot 62:1349–1359

    Article  CAS  PubMed  Google Scholar 

  • dela Fuente RK, Leopold AC (1973) A role for calcium in Auxin transport. Plant Physiol 51:845–847

    Article  Google Scholar 

  • Delgado JA, Amacher MC (1995) Modeling the uptake of sulfur by crops on two alluvial soils of Louisiana: cotton. Commun Soil Sci Plant Anal 26:1921–1934

    Article  CAS  Google Scholar 

  • Digonnet C, Aldon D, Leduc N, Dumas C, Rougier M (1997) First evidence of a calcium transient in flowering plants at fertilization. Development 122:2867–2874

    Google Scholar 

  • Dodd AN, Kudla J, Sanders D (2010) The language of calcium signaling. Annu Rev Plant Biol 61:593–620

    Article  CAS  PubMed  Google Scholar 

  • Donald L (1964) Nutrient deficiencies in cotton. In: Sprague HB (ed) Hunger signs in crops. David McKay Company, New York, pp 59–98

    Google Scholar 

  • Dong H, Li W, Tang W, Zhang D (2005) Research progress in physiological premature senescence in cotton. Cotton Sci 17:56–60

    Google Scholar 

  • Epstein E (1961) The essential role of calcium in selective cation transport by plant cells. Plant Physiol 36:437–444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fageria VD (2001) Nutrient interactions in crop plants. J Plant Nutr 24:1269–1290

    Article  CAS  Google Scholar 

  • Foote BD, Hanson JB (1964) Ion uptake by soybean root tissue depleted of calcium by ethylene diamine-tetraacetic acid. Plant Physiol 39:450–460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foy CD, Fleming AJ, Arminger WH (1969) Aluminum tolerance of soybean varieties in relation to calcium nutrition. Agron J 61:505–511

    Article  CAS  Google Scholar 

  • Foy CD, Fleming AL, Gerloff GC (1972) Differential aluminum tolerance in two snap bean varieties. Agron J 64:815–818

    Article  CAS  Google Scholar 

  • Garnett T, Conn V, Kaiser BN (2009) Root based approaches to improving nitrogen use efficiency in plants. Plant Cell Environ 32:1272–1283

    Article  CAS  PubMed  Google Scholar 

  • Ge LL, Xie CT, Tian HQ, Russell SD (2009) Distribution of calcium in the stigma and style of tobacco during pollen germination and tube elongation. Sex Plant Reprod 22:87–96

    Article  CAS  PubMed  Google Scholar 

  • Gerard CJ, Hinojosa E (1973) Cell wall properties of cotton roots as influenced by calcium and salinity. Agron J 65:556–560

    Article  Google Scholar 

  • Gibson LR, Nance CD, Karlen DL (2007) Winter triticale response to nitrogen fertilization when grown after corn or soybean. Agron J 99:49–58

    Article  CAS  Google Scholar 

  • Gong M, Li YJ, Chen SZ (1998a) Abscisic acid-induced thermotolerance in maize seedlings is mediated by calcium and associated with antioxidant enzymes. J Plant Physiol 153:488–496

    Article  CAS  Google Scholar 

  • Gong M, van der Luit AH, Knight MR, Trewavas AJ (1998b) Heat-shock-induced changes in intracellular Ca2+ level in tobacco seedlings in relation to thermotolerance. Plant Physiol 116:429–437

    Article  CAS  PubMed Central  Google Scholar 

  • Gregory PJ, George TS (2011) Feeding nine billion: the challenge to sustainable crop production. J Exp Bot 62:5233–5239

    Article  CAS  PubMed  Google Scholar 

  • Guarda G, Padovan S, Delogu G (2004) Grain yield, nitrogen-use efficiency and baking quality of old and modern Italian bread-wheat cultivars grown at different nitrogen levels. Eur J Agron 2(1):181–192

    Article  CAS  Google Scholar 

  • Harris HC, Bledsoe RW, Calhoun PW (1945) Responses of cotton to sulfur fertilization. J Am Soc Agron 37:323–329

    Article  CAS  Google Scholar 

  • Havlin JL, Beaton JD, Tisdale SL, Nelson WL (2005) Sulfur, calcium, and magnesium. In: Havlin JL et al (eds) Soil fertility and fertilizers, 7th edn. Pearson Prentice Hall, Upper Saddle River, NJ, pp 219–243

    Google Scholar 

  • Hill P (2000) Crop response to tillage systems. In: Reeder R (ed) Conservation tillage systems and management, vol 45. Midwest Plan Service Publications/Iowa State University, Ames, IA, pp 47–60

    Google Scholar 

  • Hinkle DA, Brown AL (1968) Secondary nutrients and micronutrients. In: Elliot FC, Hoover M, Porter WK Jr (eds) Advances in production and utilization of quality cotton: principles and practices. Iowa State University Press, Ames, IA, pp 282–310

    Google Scholar 

  • Hirel B, Le Gouis J, Ney B, Gallais A (2007) The challenge of improving nitrogen use efficiency in crop plants: towards a more central role for genetic variability and quantitative genetics within integrated approaches. J Exp Bot 58:2369–2387

    Article  CAS  PubMed  Google Scholar 

  • Hou Z, Li P, Li B, Gong Z, Wang Y (2007) Effects of fertigation scheme on N uptake and N use efficiency in cotton. Plant Soil 290:115–126

    Article  CAS  Google Scholar 

  • IPCC (2007) Climate change 2007: the physical science basis. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge/New York, NY

    Google Scholar 

  • Jackson MR, Melideo SL, Jorns MS (2012) Human sulfide: Quinone oxidoreductase catalyzes the first step in hydrogen sulfide metabolism and produces a sulfane sulfur metabolite. Biochemistry 51:6804–6815

    Article  CAS  PubMed  Google Scholar 

  • Jacob J, Lawlor DW (1991) Stomatal and mesophyll limitations of photosynthesis in phosphate deficient sunflower, maize and wheat plants. J Exp Bot 42:1003–1011

    Article  CAS  Google Scholar 

  • Jin SH, Huang JQ, Li XQ, Zheng BS, Wu JS, Wang ZJ, Liu GH, Chen M (2011) Effects of potassium supply on limitations of photosynthesis by mesophyll diffusion conductance in Carya cathayensis. Tree Physiol 31:1142–1151

    Article  CAS  PubMed  Google Scholar 

  • Joham HE (1957) Carbohydrate distribution as affected by calcium in cotton. Plant Physiol 32:113–117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones RGW, Lunt OR (1967) The function of calcium in plants. Bot Rev 33:407–426

    Article  CAS  Google Scholar 

  • Khan MA, Soomro AW, Khan RU, Arain AS (1987) Response of cotton to phosphorus fertilizer and its time of application at Sakrand Sindh. Pak Cottons 31:55–62

    Google Scholar 

  • Khan MN, Siddiqui MH, Mohammad F, Naeem M, Khan MMA (2010) Calcium chloride and gibberellic acid protect linseed (Linum usitatissimum L.) from NaCl stress by inducing antioxidative defence system and osmoprotectant accumulation. Acta Physiol Plant 32:121–132

    Article  CAS  Google Scholar 

  • Khan A, Najeeb U, Wang L, Tan DKY, Yang G, Munsif F, Ali S, Hafeez A (2017a) Planting density and sowing date strongly influence growth and lint yield of cotton crops. Field Crops Res 209:129–135. https://doi.org/10.1016/j.fcr.2017.04.019

    Article  Google Scholar 

  • Khan A, Tan DKY, Afridi MZ, Luo H, Tung SA, Ajab M, Fahad S (2017b) Nitrogen fertility and abiotic stresses management in cotton crop: a review. Environ Sci Pollut Res 24:1–16

    Article  CAS  Google Scholar 

  • Kudla J, Batistic O, Hashimoto K (2010) Calcium signals: the lead currency of plant information processing. Plant Cell 22:541–563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larkindale J, Huang B (2004) Thermotolerance and antioxidant systems in Agrostis stolonifera: involvement of salicylic acid, abscisic acid, calcium, hydrogen peroxide, and ethylene. J Plant Physiol 161:405–413

    Article  CAS  PubMed  Google Scholar 

  • Latif F, Ullah F, Mehmood S, Khattak A, KhanAU KS, Hussain I (2015) Effects of salicylic acid on growth and accumulation of Phenolics in Zea mays L. under drought stress. Acta Agric Scand Sect B Soil Plant Sci 66:325–332

    Google Scholar 

  • Lenka NK, Lal R (2012) Soil-related constraints to the carbon dioxide fertilization effect. Crit Rev Plant Sci 31:342–357

    Article  CAS  Google Scholar 

  • Liu J, Ma Y, LvF CJ, Zhou Z, Wang Y, Abudurezike A, Oosterhuis DM (2013) Changes of sucrose metabolism in leaf subtending to cotton boll under cool temperature due to late planting. Field Crops Res 144:200–211

    Article  Google Scholar 

  • Lobell DB, Asner GP (2003) Climate and management contributions to recent trends in U.S. agricultural yields. Science 299:1032

    Article  CAS  PubMed  Google Scholar 

  • Lokhande S, Reddy KR (2015) Cotton reproductive and fiber quality responses to nitrogen nutrition. Int J Plant Prod 9:191–210

    Google Scholar 

  • Lunn JE, Hatch MD (1995) Primary partitioning and storage of photosynthate in sucrose and starch in leaves of C4 plants. Planta 197:385–391

    Article  CAS  Google Scholar 

  • Mahler RJ (1989) Sulfur effects on cotton cultivars grown in a greenhouse. J Plant Nutr 12:187–206

    Article  CAS  Google Scholar 

  • Marinos NG (1962) Studies on submicroscopic aspects of mineral deficiencies. 1. Calcium deficiency in the shoot apex of barley. Am J Bot 49:834–841

    Article  CAS  Google Scholar 

  • Marschner H (1995) Mineral Nutrition in higher plants, 2nd edn. Academic Press, London

    Google Scholar 

  • Mason TG, Maskell EJ (1931) Further studies on transport in the cotton plant. Ann Bot 45:125–173

    Article  CAS  Google Scholar 

  • McAinsh MR, Hetherington AM (1998) Encoding specificity in Ca2+signalling systems. Trends Plant Sci 3:32–36

    Article  Google Scholar 

  • Messick DL (1992) Soil test interpretation for Sulphur in the United States an overview. Sulphur in Agric 16:24–25

    Google Scholar 

  • Millaway RM, Wiersholm L (1979) Calcium and metabolic disorders. Comm Soil Sci Plant Anal 10:1–28

    Article  CAS  Google Scholar 

  • Miller AJ, Fan XR, Orsel M, Smith SJ, Wells DM (2007) Nitrate transport and signalling. J Exp Bot 58:2297–2306

    Article  CAS  PubMed  Google Scholar 

  • Minton EB, Ebelhar MW (1991) Potassium and aldicarb-disulfoton effects on verticillium wilt, yield, and quality of cotton. Crop Sci 31(1):209–212

    Article  CAS  Google Scholar 

  • Mithaiwala IK, Mirbahar MJ, Channa AA, Arain MH (1981) Effect of fertilizers on the yield of long staple variety K-68/9 in Guddu Barrage area. Pak Cottons 25:73–79

    Google Scholar 

  • Miwa H, Sun J, Oldroyd GE, Downie JA (2006) Analysis of calcium spiking using a cameleon calcium sensor reveals that nodulation gene expression is regulated by calcium spike number and the developmental status of the cell. Plant J 48:883–894

    Article  CAS  PubMed  Google Scholar 

  • Mullins GL (1998) Cotton response to the rate and source of sulfur on a sandy coastal plain soil. J Prod Agric 11:214–218

    Article  Google Scholar 

  • Mullins GL, Burmester CH (1993) Uptake of sulfur by four cotton cultivars grown under field conditions. J Plant Nutr 16:1071–1081

    Article  CAS  Google Scholar 

  • Olesen JE, Berntsen J, Hansen EM, Petersen BM, Petersen J (2002) Crop nitrogen demand and canopy area expansion in winter wheat during vegetative growth. Eur J Agron 16:279–294

    Article  Google Scholar 

  • Olson LC, Bledsoe RP (1942) The chemical composition of the cotton plant and the uptake of nutrients at different growth stages. Georgia Agr Exp Sta Bul 222

    Google Scholar 

  • Paul JW, Beauchamp EG, Zhang X (1993) Nitrous and nitric oxide emissions during nitrification and denitrification from manure-amended soil in the laboratory. Can J Soil Sci 73:539–553

    Article  CAS  Google Scholar 

  • Pettigrew W (2003) Relationships between insufficient potassium and crop maturity in cotton. Agron J 95(5):1323–1329

    Article  Google Scholar 

  • Pettigrew W, Meredith W, Young L (2005) Potassium fertilization effects on cotton lint yield, yield components, and reniform nematode populations. Agron J 97:1245–1251

    Article  CAS  Google Scholar 

  • Poovaiah BW, Leopold AC (1973) Deferral of leaf senescence with calcium. Plant Physiol 52:236–239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rahman MH, Ahmad A, Wang X, Wajid A, Nasim W, Hussain M, Ahmad B, Ahmad I, Ali Z, Ishaque W, Awais M, Shelia V, Ahmad S, Fahad S, Alam M, Ullah H, Hoogenboom G (2018) Multi-model projections of future climate and climate change impacts uncertainty assessment for cotton production in Pakistan. Agric For Meteorol 253-254:94–113

    Article  Google Scholar 

  • Rains DW, Schmid WE, Epstein E (1964) Absorption of cations by roots. Effect of hydrogen ions and essential role of calcium. Plant Physiol 39:274–278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reddy KR, Davidonis GH, Johnson AS, Vinyard BT (1999) Temperature regime and carbon dioxide enrichment alter cotton boll development and fiber properties. Agron J 91:851–858

    Article  Google Scholar 

  • Robert L, Boman R, McFarl M, Bean B, Provin T, Hons F (2009) Nitrogen management in cotton. J Agric Life Ext 1–9

    Google Scholar 

  • Rochester IJ (2007) Nutrient uptake and export from an Australian cotton field. Nut Cyc Agroecosys 77:213–223

    Article  CAS  Google Scholar 

  • Rogers GS, Payne L, Milham P, Conroy J (1993) Nitrogen and phosphorus requirements of cotton and wheat under changing atmospheric CO2 concentrations. Plant Soil 155–56:231–234

    Article  Google Scholar 

  • Ruan YL, Llewellyn DJ, Furbank RT (2001) The control of single-celled cotton fiber elongation by developmentally reversible gating of plasmodesmata and coordinated expression of sucrose and K+ transporters and expansin. Plant Cell 13(1):47–60

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saidi Y, Finka A, Muriset M, Bromberg Z, Weiss YG, Maathuis FJ, Goloubinoff P (2009) The heat shock response in moss plants is regulated by specific calcium-permeable channels in the plasma membrane. Plant Cell 21:2829–2843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanders D, Pelloux J, Brownlee C, Harper JF (2002) Calcium at the crossroads of signaling. Plant Cell 14:S401–S417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schenkel R (2010) Science policy. The challenge of feeding scientific advice into policy-making. Science 330:1749–1751

    Article  CAS  PubMed  Google Scholar 

  • Scherer HW (2001) Sulphur in crop production. Eur J Agron 14:81–111

    Article  CAS  Google Scholar 

  • Setatou HB, Simonis AD (1994) Response of cotton to NPK fertilization B the Greek experience. Proc World Cotton Res Conf 1:147–151

    Google Scholar 

  • Shabala S, Cuin TA (2008) Potassium transport and plant salt tolerance. Physiol Plant 133:651–669

    Article  CAS  PubMed  Google Scholar 

  • Shahzad S, Chaudhry UK, Anwar B, Saboor A, Yousaf MF, Saeed F, Yaqoob S (2016) Drought stress effect on morphological and physiological characteristics of different varieties of annual verbena (Verbena hybrida). J Bio Env Sci 9:32–46

    Google Scholar 

  • Shao HB, Song WY, Chu LY (2008) Advances of calcium signals involved in plant anti-drought. C R Biol 331:587–596

    Article  CAS  PubMed  Google Scholar 

  • Sharkey TD (2005) Effects of moderate heat stress on photosynthesis: importance of thylakoid reactions, rubisco deactivation, reactive oxygen species, and thermotolerance provided by isoprene. Plant Cell Environ 28:269–277

    Article  CAS  Google Scholar 

  • Sharpies RO, Johnson DS (1977) The influence of calcium on senescence changes in apples. Ann Appl Biol 85:450–453

    Google Scholar 

  • Shu H, Wang Y, Chen B, Hu H, Zhang W, Zhou Z (2007) Genotypic differences in cellulose accumulation of cotton fiber and its relationship with fiber strength. Acta Agron Sin 33:921–926

    CAS  Google Scholar 

  • Soileau JM, Engelstad OP, Martin JB Jr (1969) Cotton growth in an acid fragipan subsoil: 11. Effects of soluble calcium, magnesium, and aluminum on roots and tops. Soil Sci Soc Am Proc 33:919–924

    Article  CAS  Google Scholar 

  • Srivastava AK, Penna S, Nguyen DV, Tran LS (2016) Multifaceted roles of aquaporins as molecular conduits in plant responses to abiotic stresses. Crit Rev Biotechnol 36:389–398

    CAS  PubMed  Google Scholar 

  • Stocking CR, Ongun A (1962) The intracellular distribution of some metallic elements in leaves. Am J Bot 49:284–289

    Article  CAS  Google Scholar 

  • Suhag SM, Memon AB, Jhatyal NA (1981) Fertilizer requirement of cotton for two series in Sindh. Pak Cottons 25:161–168

    Google Scholar 

  • Tanoi K, Kobayashi NI (2015) Leaf senescence by magnesium deficiency. Plan Theory 4:756–772

    CAS  Google Scholar 

  • Tariq M, Yasmeen A, Ahmad S, Hussain N, Afzal MN, Hasanuzzaman M (2017) Shedding of fruiting structures in cotton: factors, compensation and prevention. Trop Subtrop Agroecosyst 20(2):251–262

    Google Scholar 

  • Tariq M, Afzal MN, Muhammad D, Ahmad S, Shahzad AN, Kiran A, Wakeel A (2018) Relationship of tissue potassium content with yield and fiber quality components of Bt cotton as influenced by potassium application methods. Field Crops Res 229:37–43

    Article  Google Scholar 

  • Tewolde H, Fernandez C, Foss D (1994) Maturity and lint yield of nitrogen-and phosphorus-deficient Pima cotton. Agron J 86:303–309

    Article  Google Scholar 

  • Toprover Y, Glinka Z (1976) Calcium ions protect beet root cell membranes against thermally induced changes. Physiol Plant 37:131–134

    Article  CAS  Google Scholar 

  • Uchida R (2000) Essential nutrients for plant growth: nutrient functions and deficiency symptoms. In: Silva JA, Uchida R (eds) Plant nutrient management in Hawaii’s soils, approaches for tropical and subtropical agriculture. College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Hawaii, HI

    Google Scholar 

  • Usman M, Ahmad A, Ahmad S, Irshad M, Khaliq T, Wajid A, Hussain K, Nasim W, Chattha TM, Trethowan R, Hoogenboom G (2009) Development and application of crop water stress index for scheduling irrigation in cotton (Gossypium hirsutum L.) under semiarid environment. J Food Agri Environ 7(3&4):386–391

    Google Scholar 

  • Varshney OP (1979) Effect of NPK alone and in various combinations on the development yield of cotton (Gossypium hirsutum L.). Soils Fertil 42:273–285

    Google Scholar 

  • Velthof G, van Bruggen C, Groenestein C, De Haan B, Hoogeveen M, Huijsmans J (2011) A model for inventory of ammonia emissions from agriculture in the Netherlands. Atmos Environ 46:248–255

    Article  CAS  Google Scholar 

  • Viets FG Jr (1944) Calcium and other polyvalent cations as accelerators of ion accumulation by excised barley roots. Plant Physiol 19:466–480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waddoups M (2011) Interpreting soil & plant tissue tests. Northwest Agricultural Consultants, Kennewick, WA. http://www.nwag.com/interpre.shtml. Accessed 21 Apr 2011; verified 15 Sept 2011

  • Wahhab A (1985) Crop response to fertilizer and soil data interpretation. FAO, project report NEDC/069/Pak

    Google Scholar 

  • Wan H, Chen L, Guo J, Li Q, Wen J, Yi B, Ma C, Tu J, Fu T, Shen J (2017) Genome-wide association study reveals the genetic architecture underlying salt tolerance-related traits in rapeseed (Brassica napus L.). Front Plant Sci 8:1–15. https://doi.org/10.3389/fpls.2017.00593

    Article  Google Scholar 

  • Wang Y, Yu Q, Tang X, Wang L (2009) Calcium pretreatment increases thermotolerance of Laminaria japonica sporophytes. Prog Nat Sci 19:435–442

    Article  CAS  Google Scholar 

  • Wang JP, Munyampundu JP, Xu YP, Cai XZ (2015) Phylogeny of plant calcium and calmodulin-dependent protein kinases (CCaMKs) and functional analyses of tomato CCaMK in disease resistance. Front Plant Sci 6:1075

    PubMed  PubMed Central  Google Scholar 

  • Wani SH, Kumar V, Shriram V, Sah SK (2016) Phytohormones and their metabolic engineering for abiotic stress tolerance in crop plants. Crop J 4:162–176

    Article  Google Scholar 

  • Wright P (1999) Premature senescence of cotton (Gossypium hirsutum L.)–predominantly a potassium disorder caused by an imbalance of source and sink. Plant Soil 211:231–239

    Article  CAS  Google Scholar 

  • Wu L, Liu M (2008) Preparation and properties of chitosan-coated NPK compound fertilizer with controlled-release and water-retention. Carbohydr Polym 72(2):240–224

    Article  CAS  Google Scholar 

  • Xu WF, Jia L, BaluÅ¡ka F, Ding G, Shi W, Ye N, Zhang J (2012) PIN2 is required for the adaptation of Arabidopsis roots to alkaline stress by modulating proton secretion. J Exp Bot 63:6105–6114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang G, Tang H, Nie Y, Zhang X (2011) Responses of cotton growth, yield, and biomass to nitrogen split application ratio. Eur J Agron 35:164–170

    Article  CAS  Google Scholar 

  • Yang G, Chu K, Tang H, Nie Y, Zhang X (2013a) Fertilizer 15N accumulation, recovery and distribution in cotton plant as affected by N rate and split. J Integr Agric 12(6):999–1007

    Article  Google Scholar 

  • Yang S, Wang F, Guo F, Meng JJ, Li XG, Dong ST, Wan SB (2013b) Exogenous calcium alleviates photoinhibition of PSII by improving the xanthophyll cycle in peanut (Arachis hypogaea) leaves during heat stress under high irradiance. PLoS One 8:e71214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang J, Hu W, Zhao W, Chen B, Wang Y, Zhou Z, Meng Y (2016a) Fruiting branch K+ level affects cotton fiber elongation through osmoregulation. Front Plant Sci 7:13

    PubMed  PubMed Central  Google Scholar 

  • Yang JS, Hu W, Zhao W, Meng Y, Chen B, Wang Y, Zhou Z (2016b) Soil potassium deficiency reduces cotton fiber strength by accelerating and shortening fiber development. Sci Rep 6:28856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Young RJ (1990) In: Kroschwitz JI (ed) Polymers: fibers and textiles, a compendium. Wiley, New York

    Google Scholar 

  • Younge OR (1942) Sulfur deficiency and its effect on cotton production on Coastal Plain soils. Soil Sci Soc Am Proc 6:215–218

    Article  Google Scholar 

  • Zhang L, Spiertz JHJ, Li Z, van derWerf B (2008) Nitrogen economy in relay intercropping systems of wheat and cotton. Plant Soil 303:55–68

    Article  CAS  Google Scholar 

  • Zhang H, Khan A, Tan DKY, Luo H (2017a) Rational water and nitrogen management improves root growth, increases yield and maintains water use efficiency of cotton under mulch drip irrigation. Front Plant Sci 8:912

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Khan A, Tan DKY, Luo H (2017b) Rational water and management improves root growth, increases yield and maintains water use efficiency of cotton under mulch drip irrigation. Front Plant Sci 8:912

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao W, Meng Y, Li W, Chen B, Xu N, Wang Y, Zhou Z, Oosterhuis DM (2012) A model for cotton (Gossypium hirsutum L.) fiber length and strength formation considering temperature-radiation and N nutrient effects. Ecol Model 243:112–122

    Article  CAS  Google Scholar 

  • Zhu JK (2016) Abiotic stress signaling and responses in plants. Cell 167:313–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Arif Ali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ahmed, N. et al. (2020). Role of Macronutrients in Cotton Production. In: Ahmad, S., Hasanuzzaman, M. (eds) Cotton Production and Uses. Springer, Singapore. https://doi.org/10.1007/978-981-15-1472-2_6

Download citation

Publish with us

Policies and ethics