Skip to main content

Nonlinear Frequency-Mixing Photoacoustic Characterisation of a Crack

  • Chapter
  • First Online:

Part of the book series: Springer Series in Measurement Science and Technology ((SSMST))

Abstract

A one and two dimensional imaging of a crack by a novel nonlinear frequency-mixing photoacoustic method is presented. Acoustic waves are initiated by a pair of laser beams intensity-modulated at two different frequencies. The first laser beam, intensity modulated at a low frequency \(f_L\), generates a thermoelastic wave which modulates the local crack rigidity up to complete closing/opening of the crack, corresponding to crack breathing. The second laser beam, intensity modulated at much higher frequency \(f_H\), generates an acoustic wave incident on the breathing crack. The detection of acoustic waves at mixed frequencies \(f_H\pm nf_L\) (\(n=1,2,\dots \)), absent in the excitation frequency spectrum, provides detection of the crack, which can be achieved all-optically. The theory attributes the generation of the frequency-mixed spectral components to the modulation of the acoustic waves reflected/transmitted by the time-varying nonlinear rigidity of the crack. The crack rigidity is modified due to stationary and oscillating components from the laser-induced thermoelastic stresses. The amplitudes of the spectral sidelobes are non-monotonous functions of the increasing thermoelastic loading. Fitting such experimental evolutions with theoretical ones leads to estimating various local parameters of the crack, including its width and rigidity.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The beam sizes given, here and after, correspond to the 1/e level in intensity.

  2. 2.

    The spectra in Fig. 6.5a,b were extracted from this 1D scan when the co-focused beams are localised 500 and 0 \(\upmu \text {m}\) away from the crack, respectively.

References

  1. C.B. Scruby, L.E. Drain, Laser Ultrasonics Techniques & Applications (Adam Hilger, New York, 1990)

    Google Scholar 

  2. V.E. Gusev, A.A. Karabutov, Laser Optoacoustics (American Institute of Physics, Maryland, 1993)

    Google Scholar 

  3. D. Royer, E. Dieulesaint, Elastic Waves in Solids II: Generation, Acousto-Optic Interaction, Applications (Springer, Berlin, 2000)

    Book  MATH  Google Scholar 

  4. W. Bai, G.J. Diebold, Moving photoacoustic sources: Acoustic waveforms in one, two, and three dimensions and application to trace gas detection. J. Appl. Phys. 125(6), 060902 (2019)

    Article  ADS  Google Scholar 

  5. K.-H. Lin, G.-W. Chern, C.-T. Yu, T.-M. Liu, C.-C. Pan, G.-T. Chen, J.-I. Chyi, S.-W. Huang, P.-C. Li, C.-K. Sun, Optical piezoelectric transducer for nano-ultrasonics. IEEE Trans. UFFC 52(8), 1404–1414 (2005)

    Article  Google Scholar 

  6. P.-A. Mante, Y.-R. Huang, S.-C. Yang, T.-M. Liu, A.A. Maznev, K.-K. Sheu, C.-K. Sun, THz acoustic phonon spectroscopy and nanoscopy by using piezoelectric semiconductor heterostructures. Ultrasonics 56, 52–65 (2015)

    Article  Google Scholar 

  7. A. Huynh, B. Perrin, A. Lemaître, Semiconductor superlattices: A tool for terahertz acoustics. Ultrasonics 56, 66–79 (2015)

    Article  Google Scholar 

  8. C. Mechri, P. Ruello, J.M. Breteau, M.R. Baklanov, P. Verdonck, V. Gusev, Depth-profiling of elastic inhomogeneities in transparent nanoporous low-k materials by picosecond ultrasonic interferometry. Appl. Phys. Lett. 95(9), 091907 (2009)

    Article  ADS  Google Scholar 

  9. A. Steigerwald, Y. Xu, J. Qi, J. Gregory, X. Liu, J.K. Furdyna, K. Varga, A.B. Hmelo, G. Lüpke, L.C. Feldman, N. Tolk, Semiconductor point defect concentration profiles measured using coherent acoustic phonon waves. Appl. Phys. Lett. 94(11), 111910 (2009)

    Article  ADS  Google Scholar 

  10. A.M. Lomonosov, A. Ayouch, P. Ruello, G. Vaudel, M.R. Baklanov, P. Verdonck, L. Zhao, V.E. Gusev, Nanoscale noncontact subsurface investigations of mechanical and optical properties of nanoporous low-k material thin film. ACS Nano 6(2), 1410–1415 (2012). PMID: 22211667

    Article  Google Scholar 

  11. V.E. Gusev, P. Ruello, Advances in applications of time-domain brillouin scattering for nanoscale imaging. Appl. Phys. Rev. 5(3), 031101 (2018)

    Article  ADS  Google Scholar 

  12. A. Vertikov, M. Kuball, A.V. Nurmikko, H.J. Maris, Time resolved pump-probe experiments with subwavelength lateral resolution. Appl. Phys. Lett. 69(17), 2465–2467 (1996)

    Article  ADS  Google Scholar 

  13. J.M. Atkin, S. Berweger, A.C. Jones, M.B. Raschke, Nano-optical imaging and spectroscopy of order, phases, and domains in complex solids. Adv. Phys. 61(6), 745–842 (2012)

    Article  ADS  Google Scholar 

  14. H.J. Maris, Picosecond ultrasonics. Sci. Am. 278(1), 86–89 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  15. K.-H. Lin, C.-M. Lai, C.-C. Pan, J.-I. Chyi, J.-W. Shi, S.-Z. Sun, C.-F. Chang, C.-K. Sun.: Spatial manipulation of nanoacoustic waves with nanoscale spot sizes. Nat. Nanotechnol. 2, 704 EP –, 10 (2007)

    Article  ADS  Google Scholar 

  16. P.-A. Mante, C.-C. Chen, Y.-C. Wen, H.-Y. Chen, S.-C. Yang, Y.-R. Huang, I.-J. Chen, Y.-W. Chen, V. Gusev, M.-J. Chen, J.-L. Kuo, J.-K. Sheu, and C.-K. Sun. Probing hydrophilic interface of solid/liquid-water by nanoultrasonics. Sci. Rep. 4, 6249 EP –, 09 (2014)

    Google Scholar 

  17. J.D.G. Greener, A.V. Akimov, V.E. Gusev, Z.R. Kudrynskyi, P.H. Beton, Z.D. Kovalyuk, T. Taniguchi, K. Watanabe, A.J. Kent, A. Patanè, Coherent acoustic phonons in van der Waals nanolayers and heterostructures. Phys. Rev. B 98, 075408 (2018)

    Google Scholar 

  18. C. Li, V. Gusev, E. Dimakis, T. Dekorsy, M. Hettich.: Broadband photo-excited coherent acoustic frequency combs and mini-brillouin-zone modes in a MQW-SESAM structure. Appl. Sci. 9(2), (2019)

    Article  Google Scholar 

  19. S.A. Akhmanov, V.E. Gusev, Laser excitation of ultrashort acoustic pulses: New possibilities in solid-state spectroscopy, diagnostics of fast processes, and nonlinear acoustics. Sov. Phys. Usp. 35(3), 153–191 (1992)

    Article  ADS  Google Scholar 

  20. P. Ruello, V.E. Gusev, Physical mechanisms of coherent acoustic phonons generation by ultrafast laser action. Ultrasonics 56, 21–35 (2015)

    Article  Google Scholar 

  21. C. Thomsen, H.T. Grahn, H.J. Maris, J. Tauc, Surface generation and detection of phonons by picosecond light pulses. Phys. Rev. B 34, 4129–4138 (1986)

    Article  ADS  Google Scholar 

  22. H.T. Grahn, H.J. Maris, J. Tauc, Picosecond ultrasonics. IEEE J. Quantum Electron. 25(12), 2562–2569 (1989)

    Article  ADS  Google Scholar 

  23. L.K. Zarembo, V.A. Krasil’nkov, Nonlinear phenomena in the propagation of elastic waves in solids. Sov. Phys. Usp. 13(6), 778–797 (1971)

    Article  ADS  Google Scholar 

  24. O.V. Rudenko, S.I. Soluyan, Theoretical Foundations of Nonlinear Acoustics (Consultants Bureau, New York, 1977)

    Book  MATH  Google Scholar 

  25. V.E. Nazarov, L.A. Ostrovsky, I.A. Soustova, A.M. Sutin, Nonlinear acoustics of micro-inhomogeneous media. Phys. Earth Planet. Int. 50, 65–73 (1988)

    Article  ADS  Google Scholar 

  26. Robert A. Guyer, Paul A. Johnson, Nonlinear mesoscopic elasticity: evidence for a new class of materials. Phys. Today 52(4), 30–36 (1999)

    Article  Google Scholar 

  27. M. Born, K. Huang, Dynamical Theory of Crystal Lattices (Clarendon Press, Oxford, 1954)

    MATH  Google Scholar 

  28. V. Gusev, V. Tournat, B. Castagnède, Nonlinear acoustic phenomena in micro-inhomogeneous materials, in Materials and Acoustics Handbook, ed. by M. Bruneau, C. Potel (Wiley, London, New York, 2009), pp. 433–472

    Google Scholar 

  29. V. Tournat, V. Gusev, B. Castagnède, Non-destructive evaluation of micro-inhomogeneous solids by nonlinear acoustic methods, in Materials and Acoustics Handbook, ed. by M. Bruneau, C. Potel (Wiley, London, New York, 2009), pp. 473–504

    Google Scholar 

  30. P.P. Delsanto (ed.), Universality of Nonclassical Nonlinearity (Springer, New York, 2006)

    Google Scholar 

  31. K.E.A. Van Den Abeele, P.A. Johnson, A. Sutin, Nonlinear elastic wave spectroscopy (NEWS) techniques to discern material damage, part I: Nonlinear wave modulation spectroscopy (NWMS). Res. Nondestruct. Eval. 12(1), 17–30 (2000)

    Google Scholar 

  32. V.Y. Zaitsev, L.A. Matveev, A.L. Matveyev, Elastic-wave modulation approach to crack detection: Comparison of conventional modulation and higher-order interactions. NDT & E Int. 44(1), 21–31 (2011)

    Article  Google Scholar 

  33. O. Buck, W.L. Morris, J.M. Richardson, Acoustic harmonic generation at unbonded interfaces and fatigue cracks. Appl. Phys. Lett. 33, 371–373 (1978)

    Article  ADS  Google Scholar 

  34. A. Novak, M. Bentahar, V. Tournat, R. El Guerjouma, L. Simon, Nonlinear acoustic characterization of micro-damaged materials through higher harmonic resonance analysis. NDT & E Int. 45, 1–8 (2012)

    Article  Google Scholar 

  35. A. Moussatov, V. Gusev, B. Castagnède, Self-induced hysteresis for nonlinear acoustic waves in cracked material. Phys. Rev. Lett. 90(12), 124301 (2003)

    Article  ADS  Google Scholar 

  36. B.A. Korshak, I.Y. Solodov, E.M. Ballad, DC effects, sub-harmonics, stochasticity and "memory" for contact acoustic non-linearity. Ultrasonics 40(1–8), 707–713 (2002)

    Article  Google Scholar 

  37. A. Moussatov, B. Castagnède, V. Gusev, Observation of non linear interaction of acoustic waves in granular materials: demodulation process. Phys. Lett. A 283, 216–223 (2001)

    Article  ADS  Google Scholar 

  38. L. Fillinger, V. Zaitsev, V. Gusev, B. Castagnède, Wave self-modulation in an acoustic resonator due to self-induced transparency. Europhys. Lett. 76, 229–235 (2006)

    Article  ADS  Google Scholar 

  39. L. Fillinger, V.Y. Zaitsev, V.E. Gusev, B. Castagnède, Self-modulation of acoustic waves in resonant bars. J. Sound Vibr. 318, 527–548 (2008)

    Article  ADS  Google Scholar 

  40. V. Zaitsev, V. Gusev, B. Castagnède, Luxemburg-Gorky effect retooled for elastic waves: a mechanism and experimental evidence. Phys. Rev. Lett. 89(10), 105502 (2002)

    Article  ADS  Google Scholar 

  41. V.Y. Zaitsev, V. Nazarov, V. Gusev, B. Castagnède, Novel nonlinear-modulation acoustic technique for crack detection. NDT&E Int. 39, 184–194 (2006)

    Article  Google Scholar 

  42. P.B. Nagy, Fatigue damage assessment by nonlinear ultrasonic materials characterization. Ultrasonics 36(1–5), 375–381 (1998)

    Article  Google Scholar 

  43. A.M. Sutin, Nonlinear acoustic nondestructive testing of cracks. J. Acoust. Soc. Am. 99(4), 2539–2574 (1996)

    Article  ADS  Google Scholar 

  44. Y. Zheng, R.G. Maev, I.Y. Solodov, Nonlinear acoustic applications for material characterization: A review. Can. J. Phys. 77(12), 927–967 (1999)

    Article  ADS  Google Scholar 

  45. K.-Y. Jhang, Nonlinear ultrasonic techniques for nondestructive assessment of micro damage in material: A review. Int. J. Precis. Eng. Manuf. 10(1), 123–135 (2009)

    Article  Google Scholar 

  46. M.W. Sigrist, Laser generation of acoustic waves in liquids and gases. J. Appl. Phys. 60(7), R83–R122 (1986)

    Article  ADS  Google Scholar 

  47. S.A. Akhmanov, V.E. Gusev, A.A. Karabutov, Pulsed laser optoacoustics: Achievements and perspective. Infrared Phys. 29(2–4), 815–838 (1989)

    Article  ADS  Google Scholar 

  48. A.A. Karabutov, V.T. Platonenko, O.V. Rudenko, B.A. Chupryna, Experimental investigation of shock-front formation in solid (in russian). Mosc. Univ. Phys. Bull. 25(3), 89–91 (1984)

    Google Scholar 

  49. Y. Yasumoto, A. Nakamura, R. Takeuchi, Developments in the use of acoustic shock pulses in the study of elastic properties of solids. Acta Acust. United Acust. 30(5), 260–267 (1974)

    Google Scholar 

  50. V.N. In’kov, E.B. Cherepetskaya, V.L. Shkuratnik, A.A. Karabutov, V.A. Makarov, Ultrasonic laser spectroscopy of mechanic-acoustic nonlinearity of cracked rocks. J. Appl. Mech. Tech. Phys. 46, 452–457 (2005)

    Article  ADS  MATH  Google Scholar 

  51. M. Li, A.M. Lomonosov, Z. Shen, H. Seo, K.-Y. Jhang, V.E. Gusev, C. Ni, Monitoring of thermal aging of aluminum alloy via nonlinear propagation of acoustic pulses generated and detected by lasers. Appl. Sci. 9(6), (2019)

    Article  Google Scholar 

  52. O.L. Muskens, J.I. Dijkhuis, High amplitude, ultrashort, longitudinal strain solitons in sapphire. Phys. Rev. Lett. 89(28), 285504 (2002)

    Article  ADS  Google Scholar 

  53. A. Bojahr, M. Herzog, D. Schick, I. Vrejoiu, M. Bargheer, Calibrated real-time detection of nonlinearly propagating strain waves. Phys. Rev. B 86, 144306 (2012)

    Article  ADS  Google Scholar 

  54. C. Klieber, V.E. Gusev, T. Pezeril, K.A. Nelson, Nonlinear acoustics at ghz frequencies in a viscoelastic fragile glass former. Phys. Rev. Lett. 114, 065701 (2015)

    Article  ADS  Google Scholar 

  55. H.-Y. Hao, H.J. Maris, Experiments with acoustic solitons in crystalline solids. Phys. Rev. B 64, 064302 (2001)

    Article  ADS  Google Scholar 

  56. P.J.S. van Capel, E. Péronne, J.I. Dijkhuis, Nonlinear ultrafast acoustics at the nano scale. Ultrasonics 56, 36–51 (2015)

    Article  Google Scholar 

  57. A.A. Kolomenskii, A.M. Lomonosov, R. Kuschnereit, P. Hess, V.E. Gusev, Laser generation and detection of strongly nonlinear elastic surface pulses. Phys. Rev. Lett. 79, 1325–1328 (1997)

    Article  ADS  Google Scholar 

  58. A. Lomonosov, P. Hess, Effects of nonlinear elastic surface pulses in anisotropic silicon crystals. Phys. Rev. Lett. 83, 3876–3879 (1999)

    Article  ADS  Google Scholar 

  59. A. Lomonosov, V.G. Mikhalevich, P. Hess, EYu. Knight, M.F. Hamilton, E.A. Zabolotskaya, Laser-generated nonlinear rayleigh waves with shocks. J. Acoust. Soc. Am. 105(4), 2093–2096 (1999)

    Article  ADS  Google Scholar 

  60. A.M. Lomonosov, P. Hess, A.P. Mayer, Observation of solitary elastic surface pulses. Phys. Rev. Lett. 88, 076104 (2002)

    Article  ADS  Google Scholar 

  61. P. Hess, Surface acoustic waves in materials science. Phys. Today 55(3), 42–47 (2002)

    Article  Google Scholar 

  62. P. Hess, A.M. Lomonosov, A.P. Mayer, Laser-based linear and nonlinear guided elastic waves at surfaces (2D) and wedges (1D). Ultrasonics 54, 39–55 (2014)

    Article  Google Scholar 

  63. S. Choi, H. Seo, K.-Y. Jhang, Noncontact evaluation of acoustic nonlinearity of a laser-generated surface wave in a plastically deformed aluminum alloy. Res. Nondestr. Eval. 26, 13–22 (2015)

    Article  Google Scholar 

  64. H. Seo, J. Jun, K.-Y. Jhang, Assessment of thermal aging of aluminum alloy by acoustic nonlinearity measurement of surface acoustic waves. Res. Nondestruct. Eval. 28(1), 3–17 (2017)

    Article  ADS  Google Scholar 

  65. T. Stratoudaki, R. Ellwood, S. Sharples, M. Clark, M.G. Somekh, I.J. Collison, Measurement of material nonlinearity using surface acoustic wave parametric interaction and laser ultrasonics. J. Acoust. Soc. Am. 129(4), 1721–1728 (2011)

    Article  ADS  Google Scholar 

  66. R. Ellwood, T. Stratoudaki, S.D. Sharples, M. Clark, M.G. Somekh, Determination of the acoustoelastic coefficient for surface acoustic waves using dynamic acoustoelastography: An alternative to static strain. J. Acoust. Soc. Am. 135(3), 1064–1070 (2014)

    Article  ADS  Google Scholar 

  67. H. Xiao, P.B. Nagy, Enhanced ultrasonic detection of fatigue cracks by laser-induced crack closure. J. Appl. Phys. 83(12), 7453–7460 (1998)

    Article  ADS  Google Scholar 

  68. Z. Yan, P.B. Nagy, Thermo-optical modulation for improved ultrasonic fatigue crack detection in Ti-6Al-4V. NDT&E Int. 33, 213–223 (2000)

    Google Scholar 

  69. Z. Yan, P.B. Nagy, Thermo-optical modulation of ultrasonic surface waves for NDE. Ultrasonics 40(1–8), 689–696 (2002)

    Article  Google Scholar 

  70. C.-Y. Ni, N. Chigarev, V. Tournat, N. Delorme, Z.-H. Shen, V.E. Gusev, Probing of laser-induced crack modulation by laser-monitored surface waves and surface skimming bulk waves. J. Acoust. Soc. Am. 131(3) (2012)

    Article  Google Scholar 

  71. C.-Y. Ni, N. Chigarev, V. Tournat, N. Delorme, Z.-H. Shen, V.E. Gusev, Probing of laser-induced crack closure by pulsed laser-generated acoustic waves. J. Appl. Phys. 113(1), 014906 (2013)

    Article  ADS  Google Scholar 

  72. V. Tournat, C. Ni, N. Chigarev, N. Delorme, Z. Shen, V. Gusev, Probing of crack breathing by pulsed laser-generated acoustic waves. Proc. Meet. Acoust. 19(030081), (2013)

    Google Scholar 

  73. N. Krohn, R. Stoessel, G. Busse, Acoustic non-linearity for defect selective imaging. Ultrasonics 40(1–8), 633–637 (2002)

    Article  Google Scholar 

  74. I.Y. Solodov, J. Wackerl, K. Pfleiderer, G. Busse, Nonlinear self-modulation and subharmonic acoustic spectroscopy for damage detection and location. Appl. Phys. Lett. 84(26), 5386–5388 (2004)

    Article  ADS  Google Scholar 

  75. S.-H. Park, J. Kim, K.-Y. Jhang, Relative measurement of the acoustic nonlinearity parameter using laser detection of an ultrasonic wave. Int. J. Precis. Eng. Manuf. 18(10), 1347–1352 (2017)

    Article  Google Scholar 

  76. G. Grégoire, V. Tournat, D. Mounier, V. Gusev, Nonlinear photothermal and photoacoustic processes for crack detection. Eur. Phys. J. Spec. Top. 153, 313–315 (2008)

    Article  Google Scholar 

  77. N. Chigarev, J. Zakrzewski, V. Tournat, V. Gusev, Nonlinear frequency-mixing photoacoustic imaging of a crack. J. Appl. Phys. 106(036101) (2009)

    Article  ADS  Google Scholar 

  78. V. Gusev, N. Chigarev, Nonlinear frequency-mixing photoacoustic imaging of a crack: Theory. J. Appl. Phys. 107(124905) (2010)

    Article  ADS  Google Scholar 

  79. J. Zakrzewski, N. Chigarev, V. Tournat, V. Gusev, Combined photoacoustic-acoustic technique for crack imaging. Int. J. Thermophys. 31(1), 199–207 (2010)

    Article  ADS  Google Scholar 

  80. S. Mezil, N. Chigarev, V. Tournat, V. Gusev, All-optical probing of the nonlinear acoustics of a crack. Opt. Lett. 36(17), 3449–3451 (2011)

    Article  ADS  Google Scholar 

  81. S. Mezil, N. Chigarev, V. Tournat, V. Gusev, Two dimensional nonlinear frequency-mixing photo-acoustic imaging of a crack and observation of crack phantoms. J. Appl. Phys. 114(174901) (2013)

    Article  ADS  Google Scholar 

  82. V.E. Gusev, N. Chigarev, S. Mezil, V. Tournat, All-optical nonlinear frequency - mixing acoustics of cracks. Proc. Meet. Acoust. 19(1), 030079 (2013)

    Article  Google Scholar 

  83. S. Mezil, N. Chigarev, V. Tournat, V.E. Gusev, Evaluation of crack parameters by a nonlinear frequency-mixing laser ultrasonics method. Ultrasonics 69, 225–235 (2016)

    Article  Google Scholar 

  84. S. Mezil, N. Chigarev, V. Tournat, V. Gusev, Review of a nonlinear frequency-mixing photo-acoustic method for imaging a crack. J. JSNDI 66(12), 589–592 (2017)

    Google Scholar 

  85. C. Bakre, P. Rajagopal, K. Balasubramaniam, Nonlinear mixing of laser generated narrowband rayleigh surface waves. AIP Conf. Proc. 1806(1), 020004 (2017)

    Article  Google Scholar 

  86. Y. Liu, S. Yang, X. Liu, Detection and quantification of damage in metallic structures by laser-generated ultrasonics. Appl. Sci. 8(5) (2018)

    Article  Google Scholar 

  87. P. Liu, J. Jang, S. Yang, H. Sohn, Fatigue crack detection using dual laser induced nonlinear ultrasonic modulation. Opt. Lasers Eng. 110, 420–430 (2018)

    Article  Google Scholar 

  88. S. Mezil, Nonlinear optoacoustics method for crack detection & characterization. Ph.D. thesis, LUNAM Université, Université du Maine (2012)

    Google Scholar 

  89. Y. Ohara, K. Takahashi, Y. Ino, K. Yamanaka, T. Tsuji, T. Mihara, High-selectivity imaging of closed cracks in a coarse-grained stainless steel by nonlinear ultrasonic phased array. NDT & E Int. 91, 139–147 (2017)

    Article  Google Scholar 

  90. O.B. Wright, K. Kawashima, Coherent phonon detection from ultrasfast surface vibrations. Phys. Rev. Lett. 69(11), 1668–1671 (1992)

    Article  ADS  Google Scholar 

  91. J.E. Rothenberg, Observation of the transient expansion of heated surfaces by picosecond photothermal deflection spectroscopy. Opt. Lett. 13(9), 713–715 (1988)

    Article  ADS  Google Scholar 

  92. V. Gusev, A. Mandelis, R. Bleiss, Theory of second harmonic thermal wave generation: 1D geometry. Int. J. Thermophys. 14, 321 (1993)

    Article  ADS  Google Scholar 

  93. V. Gusev, A. Mandelis, R. Bleiss, Theory of strong photothermal nonlinearity from sub-surface non-stationary (“breathing”) cracks in solids. Appl. Phys. A 57, 229–233 (1993)

    Article  ADS  Google Scholar 

  94. V. Gusev, A. Mandelis, R. Bleiss, Non-linear photothermal response of thin solid films and coatings. Mat. Sci. Eng. B 26, 111 (1994)

    Article  Google Scholar 

  95. V. Gusev, A. Mandelis, R. Bleiss, Theory of combined acousto-photo-thermal spectral decomposition in condensed phases: parametric generation of thermal waves by a non-stationary (“breathing”) sub-surface defect. Mat. Sci. Eng. B 26, 121 (1994)

    Article  Google Scholar 

  96. V.E. Gusev, B. Castagnède, A.G. Moussatov, Hysteresis in response of nonlinear bistable interface to continuously varying acoustic loading. Ultrasonics 41, 643–654 (2003)

    Article  Google Scholar 

  97. I.Y. Solodov, B.A. Korshak, Instability, chaos, and “memory” in acoustic-wave-crack interaction. Phys. Rev. Lett. 88(1), 014303 (2001)

    Google Scholar 

  98. I. Y. Solodov, B. A. Korshak, K. Pfleiderer, J. Wackerl, and G. Busse. Nonlinear ultrasonics inspection and NDE using subharmonic and self-modulation modes. WCU. Paris, France (2003)

    Google Scholar 

  99. V. Tournat, C. Inserra, V. Gusev, Non-cascade frequency-mixing processes for elastic waves in unconsolidated granular materials. Ultrasonics 48(6), 492–497 (2008)

    Article  Google Scholar 

  100. I.Y. Solodov, N. Krohn, G. Busse, CAN: an example of nonclassical acoustic nonlinearity in solids. Ultrasonics 40, 621–625 (2002)

    Article  Google Scholar 

  101. K.L. Johnson, Contact Mechanics, 2nd edn. (Cambridge University Press, Cambridge, Angleterre, 1985)

    Google Scholar 

  102. G.C. Wetzel Jr., J.B. Spiecer, Nonlinear effects in photothermal-optical-beam-deflection imaging. Can. J. Phys. 64, 1269 (1986)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvain Mezil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mezil, S., Chigarev, N., Tournat, V., Gusev, V. (2020). Nonlinear Frequency-Mixing Photoacoustic Characterisation of a Crack. In: Jhang, KY., Lissenden, C., Solodov, I., Ohara, Y., Gusev, V. (eds) Measurement of Nonlinear Ultrasonic Characteristics. Springer Series in Measurement Science and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-15-1461-6_6

Download citation

Publish with us

Policies and ethics