Skip to main content

Nonlinear Ultrasonic Phased Array for Measurement of Closed-Crack Depth

  • Chapter
  • First Online:
Measurement of Nonlinear Ultrasonic Characteristics

Abstract

This chapter summarizes the comprehensive review of the nonlinear ultrasonic phased array (PA) methods for the measurement of closed-crack depth. Various nonlinear ultrasonic PA methods are categorized into four groups: (I) subharmonics, (II) parallel and sequential transmission, (III) all-elements, odd-elements, and even-elements transmission, and (IV) utilization of thermal stress. Each method is described in the order of principles, experimental conditions and imaging results, key features.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Blitz, G. Simpson, Ultrasonic Methods of Non-Destructive Testing (Chapman & Hall, London, 1996)

    Google Scholar 

  2. L.W. Schmerr, Fundamentals of Ultrasonic Nondestructive Evaluation (Plenum, New York, 1998)

    Book  Google Scholar 

  3. J.D. Achenbach, Quantitative nondestructive evaluation. Int. J. Solids Struct. 37, 13–27 (2000)

    Article  MATH  Google Scholar 

  4. B.W. Drinkwater, P.D. Wilcox, Ultrasonic arrays for non-destructive evaluation: a review. NDT&E Int. 39, 525–541 (2006)

    Article  Google Scholar 

  5. L.W. Schmerr, Fundamentals of Ultrasonic Phased Array (Springer, Cham, 2015)

    Book  Google Scholar 

  6. T.L. Szabo, Diagnostic Ultrasound Imaging: Inside Out (Academic, New York, 2004)

    Google Scholar 

  7. S.-C. Wooh, Y. Shi, Optimum beam steering of linear phased arrays. Wave Motion 29, 245–265 (1999)

    Article  Google Scholar 

  8. B. Puel, D. Lesselier, S. Chatillon, P. Calmon, Optimization of ultrasonic arrays design and setting using a differential evalution. NDT&E Int. 44, 797–803 (2011)

    Article  Google Scholar 

  9. D.H. Johnson, D.E. Dudgeon, Array Signal Processing, Concepts and Techniques (Prentis Hall, Upper Saddle River, 1993)

    MATH  Google Scholar 

  10. C. Holmes, B.W. Drinkwater, P.D. Wilcox, Post-Processing of the full matrix of ultrasonic transmit-receive array data for non-destructive evaluation. NDT&E Int. 38, 701–711 (2005)

    Article  Google Scholar 

  11. M.-L. Zhu, F.-Z. Xuan, S.-T. Tu, Effect of load ratio on fatigue crack growth in the near-threshold regime: a literature review, and a combined crack closure and driving force approach. Eng. Fract. Mech. 141, 57–77 (2015)

    Article  Google Scholar 

  12. S. Horinouchi, M. Ikeuchi, Y. Shintaku, Y. Ohara, K. Yamanaka, Evaluation of closed stress corrosion cracks in Ni-based alloy weld metal using subharmonic phased array. Jpn. J. Appl. Phys. 51, 07GB15-1-5 (2012)

    Article  Google Scholar 

  13. J.D. Frandsen, R.V. Inman, O. Buck, A comparison of acoustic and strain gauge techniques for crack closure. Int. J. Fract. 11, 345–348 (1975)

    Article  Google Scholar 

  14. T. Mihara, S. Nomura, M. Akino, K. Yamanaka, Relationship between crack opening behavior and crack tips scattering and diffraction of longitudinal waves. Mater. Eval. 62, 943–947 (2004)

    Google Scholar 

  15. Y. Ohara, T. Mihara, K. Yamanaka, Nonlinear ultrasonic imaging method for closed cracks using subtraction of responses at different external loads. Ultrasonics 51, 661–666 (2011)

    Article  Google Scholar 

  16. W. Elber, Fatigue crack closure under cyclic tension. Eng. Fract. Mech. 2, 37–45 (1970)

    Article  Google Scholar 

  17. A.T. Stewart, The influence of environment and stress ratio on fatigue crack growth at near threshold stress intensities in low-alloy steels. Eng. Fract. Mech. 13, 463–478 (1980)

    Article  Google Scholar 

  18. R.O. Ritchie, S. Suresh, C.M. Moss, Near-threshold fatigue crack growth in 2 1/4Cr-1Mo pressure vessel steel in air and hydrogen. J. Eng. Mater. Tech. 102, 293–299 (1980)

    Article  Google Scholar 

  19. K. Minakawa, A.J. McEvily, On crack closure in the near-threshold region. Scr. Metall. 15, 633–636 (1981)

    Article  Google Scholar 

  20. Y. Zheng, R.G. Maev, I.Y. Solodov, Nonlinear acoustic applications for material characterization: a review. Can. J. Phys. 77, 927–967 (1999)

    Article  ADS  Google Scholar 

  21. K.-Y. Jhang, Nonlinear ultrasonic techniques for nondestructive assessment of micro damage in material: a review. Int. J. Precis. Eng. Manuf. 10(1), 123–135 (2009)

    Article  Google Scholar 

  22. K.H. Matlack, J.-Y. Kim, L.J. Jacobs, J. Qu, Review of second harmonic generation measurement techniques for material state determination in metals. J. Nondestruct. Eval. 34, 273-1-23 (2015)

    Google Scholar 

  23. T. Kundu (ed.), Nonlinear Ultrasonic and Vibro-Acoustical Techniques for Nondestructive Evaluation (Springer, New York, 2018)

    Google Scholar 

  24. M.A. Breazeale, D.O. Thompson, Finite-amplitude ultrasonic waves in aluminum. Appl. Phys. Lett. 3(5), 77–78 (1963)

    Article  ADS  Google Scholar 

  25. O. Buck, W.L. Morris, J.M. Richardson, Acoustic harmonic generation at unbonded interfaces and fatigue cracks. Appl. Phys. Lett. 33(5), 371–373 (1978)

    Article  ADS  Google Scholar 

  26. I.Y. Solodov, Ultrasonics of non-linear contacts: propagation, reflection and NDE-applications. Ultrasonics 36, 383–390 (1998)

    Article  Google Scholar 

  27. I.Y. Solodov, N. Krohn, G. Busse, CAN: an example of nonclassical acoustic nonlinearity in solids. Ultrasonics 40, 621–625 (2002)

    Article  Google Scholar 

  28. R.A. Guyer, P.A. Johnson, Nonlinear mesoscopic elasticity: evidence for a new class of materials. Phys. Today 52, 30–36 (1999)

    Article  Google Scholar 

  29. R.A. Guyer, P.A. Johnson, Nonlinear Mesoscopic Elasticity: The Complex Behaviour of Rocks, Soil, Concrete (Wiley, New York, 2009)

    Book  Google Scholar 

  30. M.C. Remillieux, T.J. Ulrich, H.E. Goodman, J.A. Ten Cate, Propagation of a finite-amplitude elastic pulse in a bar of Berea sandstone: a detailed look at the mechanisms of classical nonlinearity, hysteresis, and nonequilibrium dynamics. J. Geophys. Res. Sol. Earth 122(11), 8892–8909 (2017)

    Article  ADS  Google Scholar 

  31. H. Ogi, M. Hirao, S. Aoki, Noncontact monitoring of surface-wave nonlinearity for predicting the remaining life of fatigued steels. J. Appl. Phys. 90(1), 438–442 (2001)

    Article  ADS  Google Scholar 

  32. Y. Ohara, K. Kawashima, Detection of internal micro defects by nonlinear resonant ultrasonic method using water immersion. Jpn. J. Appl. Phys. 43(5B), 3119–3120 (2004)

    Article  ADS  Google Scholar 

  33. S. Biwa, S. Hiraiwa, E. Matsumoto, Pressure-dependent stiffnesses and nonlinear ultrasonic response of contacting surfaces. J. Sol. Mech. Mater. Eng. 3(1), 10–21 (2009)

    Article  Google Scholar 

  34. I.Y. Solodov, C.A. Vu, Popping nonlinearity and chaos in vibrations of a contact interface between solids. Acoust. Phys. 39, 476–479 (1993)

    ADS  Google Scholar 

  35. B.A. Korshak, I.Y. Solodov, E.M. Ballad, DC effects, sub-harmonics, stochasticity and “memory” for contact acoustic non-linearity. Ultrasonics 40, 707–713 (2002)

    Article  Google Scholar 

  36. I. Solodov, J. Wackerl, K. Pfleiderer, G. Busse, Nonlinear self-modulation and subharmonic acoustic spectroscopy for damage detection and location. Appl. Phys. Lett. 84, 5386–5388 (2004)

    Article  ADS  Google Scholar 

  37. K. Yamanaka, T. Mihara, T. Tsuji, Evaluation of closed cracks by model analysis of subharmonic ultrasound. Jpn. J. Appl. Phys. 43, 3082–3087 (2004)

    Article  ADS  Google Scholar 

  38. Y. Ohara, T. Mihara, K. Yamanaka, Effect of adhesion force between crack planes on subharmonic and DC responses in nonlinear ultrasound. Ultrasonics 44, 194–199 (2006)

    Article  Google Scholar 

  39. J.G. Sessler, V. Weiss, Crack Detection Apparatus and Method. US Patent, 38667836 (1975)

    Google Scholar 

  40. K.E.-A. Van Den Abeele, P.A. Johnson, A. Sutin, Nonlinear elastic wave spectroscopy (NEWS) techniques to discern material damage, part I: nonlinear wave modulation spectroscopy (NWMS). Res. Nondestr. Eval. 12, 17–30 (2000)

    Article  Google Scholar 

  41. D. Donskoy, A. Sutin, A. Ekimov, Nonlinear acoustic interaction on contact interfaces and its use for nondestructive testing. NDT&E Int. 34, 231–238 (2001)

    Article  Google Scholar 

  42. V.V. Kazakov, A. Sutin, P.A. Johnson, Sensitive imaging of an elastic nonlinear wave-scattering source in a solid. Appl. Phys. Lett. 81(4), 646–648 (2002)

    Article  ADS  Google Scholar 

  43. Y. Ohara, T. Mihara, R. Sasaki, T. Ogata, S. Yamamoto, Y. Kishimoto, K. Yamanaka, Imaging of closed cracks using nonlinear response of elastic waves at subharmonic frequency. Appl. Phys. Lett. 90, 011802-1-3 (2007)

    Article  ADS  Google Scholar 

  44. J.N. Potter, A.J. Croxford, P.D. Wilcox, Nonlinear ultrasonic phased array imaging. Phys. Rev. Lett. 113, 144031-1-5 (2014)

    Google Scholar 

  45. S. Haupert, G. Renaud, A. Schnumm, Ultrasonic imaging of nonlinear scatterers buried in a medium. NDT&E Int. 87, 1–6 (2017)

    Article  Google Scholar 

  46. Y. Ohara, K. Takahashi, S. Murai, K. Yamanaka, High-selectivity imaging of closed cracks using elastic waves with thermal stress induced by global preheating and local cooling. Appl. Phys. Lett. 103, 031917-1-5 (2013)

    Article  ADS  Google Scholar 

  47. Y. Ohara, S. Yamamoto, T. Mihara, K. Yamanaka, Ultrasonic evaluation of closed cracks using subharmonic phased array. Jpn. J. Appl. Phys. 47(5), 3908–3915 (2008)

    Article  ADS  Google Scholar 

  48. S. Yamamoto, Y. Ohara, T. Mihara, K. Yamanaka, Application of laser interferometer to subharmonic phased array for crack evaluation (SPACE). J. Jpn. Soc. Nondestr. Insp. 57(4), 198–203 (2008)

    Google Scholar 

  49. Y. Ohara, H. Endo, T. Mihara, K. Yamanaka, Ultrasonic measurement of closed stress corrosion crack depth using subharmonic phased array. Jpn. J. Appl. Phys. 48(7), 07GD01-1-6 (2009)

    Article  Google Scholar 

  50. Y. Ohara, Y. Shintaku, S. Horinouchi, M. Hashimoto, Y. Yamaguchi, M. Tagami, K. Yamanaka, Ultrasonic imaging of stress corrosion crack formed in high temperature pressurized water using subharmonic phased array. Proc. Mtgs. Acoust. 10, 045007-1-8 (2010)

    Google Scholar 

  51. Y. Ohara, H. Endo, M. Hashimoto, K. Yamanaka, Monitoring growth of closed fatigue crack using subharmonic phased array. AIP Conf. Proc. 1211, 903–909 (2010)

    Article  ADS  Google Scholar 

  52. Y. Ohara, S. Horinouchi, Y. Shintaku, R. Shibasaki, Y. Yamaguchi, M. Tagami, K. Yamanaka, High-selectivity imaging of closed cracks in weld part of stainless steel using subharmonic phased array with a single array transducer. J. Jpn. Soc. Nondestr. Insp. 60(11), 658–664 (2011)

    Google Scholar 

  53. K. Yamanaka, Y. Ohara, M. Oguma, Y. Shintaku, Two-dimensional analyses of subharmonic generation at closed cracks in nonlinear ultrasonics. Appl. Phys. Express 4, 076601-1-3 (2011)

    Article  ADS  Google Scholar 

  54. Y. Ohara, Y. Shintaku, S. Horinouchi, M. Ikeuchi, K. Yamanaka, Enhancement of selectivity in nonlinear ultrasonic imaging of closed cracks using amplitude difference phased array. Jpn. J. Appl. Phys. 51, 07GB18-1-6 (2012)

    Article  Google Scholar 

  55. K. Jinno, A. Sugawara, Y. Ohara, K. Yamanaka, Analysis on nonlinear images of vertical closed cracks by damped double node model. Mater. Trans. 55(7), 1017–1023 (2014)

    Article  Google Scholar 

  56. T. Mihara, H. Ishida, Improvement in the identification of a crack tip echo in ultrasonic inspection using large displacement ultrasound transmission. J. Phys. Conf. Ser. 520, 012010-1-6 (2014)

    Google Scholar 

  57. A. Ouchi, A. Sugawara, Y. Ohara, K. Yamanaka, Subharmonic phased array for crack evaluation using surface acoustic wave. Jpn. J. Appl. Phys. 54, 07HC05-1-6 (2015)

    Article  Google Scholar 

  58. A. Sugawara, K. Jinno, Y. Ohara, K. Yamanaka, Closed-crack imaging and scattering behavior analysis using confocal subharmonic phased array. Jpn. J. Appl. Phys. 54, 07HC08-1-8 (2015)

    Article  Google Scholar 

  59. C.-S. Park, J.-W. Kim, S. Cho, D.-C. S, A high resolution approach for nonlinear sub-harmonic imaging. NDT&E Int. 79, 114–122 (2016)

    Article  Google Scholar 

  60. Y. Ohara, J. Potter, S. Haupert, H. Nakajima, T. Tsuji, T. Mihara, Multi-mode nonlinear ultrasonic phased array for closed crack imaging. Proc. Mtgs. Acoust. 34, 055001-1-5 (2018)

    Google Scholar 

  61. Y. Ohara, J. Potter, H. Nakajima, T. Tsuji, T. Mihara, Multi-mode nonlinear ultrasonic phased array for imaging closed cracks. Jpn. J. Appl. Phys. 58, SGGB06-1-7 (2019)

    Article  Google Scholar 

  62. I.Y. Solodov, N. Krohn, G. Busse, Nonlinear Ultrasonic NDT for Early Defect Recognition and Imaging. Proceedings of 10th European Conference on Non-Destructive Testing (2010)

    Google Scholar 

  63. R. Koda, T. Mihara, K. Inoue, G. Konishi, Y. Udagawa, Transmission of larger amplitude ultrasound with SiC transistor pulser for subharmonic signal measurements at closed cracks. Phys. Proc. 70, 528–531 (2015)

    Article  ADS  Google Scholar 

  64. M. Scalerandi, A.S. Gliozzi, C.L.E. Bruno, D. Masera, P. Bocca, A scaling method to enhance detection of a nonlinear elastic response. Appl. Phys. Lett. 92, 101912-1-3 (2008)

    Article  ADS  Google Scholar 

  65. C.L.E. Bruno, A.S. Gliozzi, M. Scalerandi, P. Antonaci, Analysis of elastic nonlinearity using the scaling subtraction method. Phys. Rev. B 79, 0641108-1-13 (2009)

    Google Scholar 

  66. M. Scalerandi, M. Griffa, P. Antonaci, M. Wyrzykowski, P. Lura, Nonlinear elastic response of thermally damaged consolidated granular media. J. Appl. Phys. 113, 154902-1-9 (2013)

    Article  ADS  Google Scholar 

  67. P. Antonaci, C.L.E. Bruno, M. Scalerandi, F. Tondolo, Effects of corrosion on linear and nonlinear elastic properties of reinforced concrete. Cem. Concr. Res. 51, 96–103 (2013)

    Article  Google Scholar 

  68. M. Ikeuchi, K. Jinno, Y. Ohara, K. Yamanaka, Improvement of closed crack selectivity in nonlinear ultrasonic imaging using fundamental wave amplitude difference. Jpn. J. Appl. Phys. 52, 07HC08-1-5 (2013)

    Article  Google Scholar 

  69. Y. Ohara, K. Yamanaka, Japan Patent, 6,025,049 (2016)

    Google Scholar 

  70. X. Han, W. Li, Z. Zeng, L.D. Favro, R.L. Thomas, Acsoutic chaos and sonic infrared imaging. Appl. Phys. Lett. 81, 3188–3190 (2002)

    Article  ADS  Google Scholar 

  71. F. Mabrouki, M. Thomas, M. Genest, A. Fahr, Frictional heating model for efficient use of vibrothermography. NDT&E Int. 42, 345–352 (2009)

    Article  Google Scholar 

  72. L. Pieczonka, F. Aymerich, G. Brozek, M. Szwedo, W.J. Staszewski, T. Uhl, Nonlinear vibroacoustic wave modulations for structural damage detection: an overview. Struct. Control Health Monit. 20, 626–638 (2013)

    Article  Google Scholar 

  73. I. Solodov, G. Busse, Resonance ultrasonic thermography: highly efficient contact and air-coupled remote modes. Appl. Phys. Lett. 102, 061905-1-3 (2013)

    Article  ADS  Google Scholar 

  74. K. Truyaert, V. Aleshin, K.V.D. Abeele, S. Delrue, Theoretical calculation of the instantaneous friction-induced energy losses in arbitrarily excited axisymmetric mechanical contact systems. Int. J. Solids Struct. 158, 268–276 (2019)

    Article  Google Scholar 

  75. J.N. Potter, J. Chen, A.J. Croxford, B.W. Drinkwater, Ultrasonic phased array imaging of contact acoustic nonlinearity. Proc. Mtgs. Acoust. 29, 045002-1-6 (2016)

    Google Scholar 

  76. J. Cheng, J.N. Potter, A.J. Croxford, B.W. Drinkwater, Monitoring fatigue crack growth using nonlinear ultrasonic phased array imaging. Smart Mater. Struct., 26, 05506-1-10 (2017)

    Article  Google Scholar 

  77. J. Cheng, J.N. Potter, B.W. Drinkwater, The parallel-sequential field subtraction technique for coherent nonlinear ultrasonic imaging. Smart Mater. Struct. 27, 065002-1-10 (2018)

    Article  Google Scholar 

  78. J. Potter, A.J. Croxford, Characterization of nonlinear ultrasonic diffuse energy imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65(5), 870–880 (2018)

    Article  Google Scholar 

  79. S. Haupert, Y. Ohara, E. Carcreff, G. Renaud, Fundamental wave amplitude difference imaging for detection and characterization of embedded cracks. Ultrasonics 96, 132–139 (2019)

    Article  Google Scholar 

  80. Y. Ohara, H. Nakajima, S. Haupert, T. Tsuji, T. Mihara, Nonlinear ultrasonic phased array with fixed-voltage fundamental wave amplitude difference for high-selectivity imaging of closed cracks. J. Acoust. Soc. Am. 146(1), 266–277 (2019)

    Article  ADS  Google Scholar 

  81. Y. Ohara, H. Nakajima, T. Tsuji, T. Mihara, Nonlinear surface-acoustic-wave phased array with fixed-voltage fundamental wave amplitude difference for imaging closed cracks. NDT&E Int. 108, 102170–1–10 (2019)

    Google Scholar 

  82. G. Tang, L.J. Jacobs, J. Qu, Scattering of time-harmonic elastic waves by an elastic inclusion with quadratic nonlinearity. J. Acoust. Soc. Am. 131, 2570–2578 (2012)

    Article  ADS  Google Scholar 

  83. C.M. Kube, Scattering of harmonic waves from a nonlinear elastic inclusion. J. Acoust. Soc. Am. 141, 4756–4767 (2017)

    Article  ADS  Google Scholar 

  84. Y. Wang, J.D. Achenbach, Reflection of ultrasound from a region of cubic material nonlinearity due to harmonic generation. Acta Mech. 229, 763–778 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  85. N. Walker, C.J. Beevers, A fatigue crack closure mechanism in titanium. Fatigue Eng. Mater. Struct. 1, 135–148 (1979)

    Article  Google Scholar 

  86. J. Jin, J. Rivière, Y. Ohara, P. Shokouhi, Dynamic acoustic-elastic response of single fatigue cracks with different microstructural features: an experimental investigation. J. Appl. Phys. 124, 075303-1-14 (2018)

    Article  ADS  Google Scholar 

  87. A. Steuwer, M. Rahman, A. Shterenlikht, M.E. Fitzpatrick, L. Edwards, P.J. Withers, The evolution of crack-tip stresses during a fatigue overload event. Acta Mater. 58, 4039–4052 (2010)

    Article  Google Scholar 

  88. J.D. Carroll, W. Abuzaid, J. Lambros, H. Sehitoglu, High resolution digital image correlation measurements of strain accumulation in fatigue crack growth. Int. J. Fatigue 57, 140–150 (2013)

    Article  Google Scholar 

  89. I.Y. Solodov, B.A. Korshak, Instability, chaos, and ‘memory’ in acoustic-wave-crack interaction. Phys. Rev. Lett. 88(1), 014303-1-3 (2001)

    Google Scholar 

  90. A. Moussatov, V. Gusev, B. Castagnede, Self-induced hysteresis for nonlinear acoustic waves in cracked material. Phys. Rev. Lett. 90(12), 124301-1-4 (2003)

    Google Scholar 

  91. R.B. Mignogna, R.E. Green Jr., J.C. Duke, E.G. Henneke, K.L. Reifsnifer, Thermographic investigation of high-power ultrasonic heating in materials. Ultrasonics 19, 159–163 (1981)

    Article  Google Scholar 

  92. I. Solodov, G. Busse, Nonlinear air-coupled emission: the signature to reveal and image microdamage in solid materials. Appl. Phys. Lett. 91, 251910-1-3 (2007)

    Article  ADS  Google Scholar 

  93. I. Solodov, J. Bai, S. Bekgulyan, G. Busse, A local defect resonance to enhance acoustic wave-defect interaction in ultrasonic nondestructive evaluation. Appl. Phys. Lett. 99, 211911-1-3 (2011)

    Article  ADS  Google Scholar 

  94. P.B. Nagy, G. Blaho, Identification of distributed fatigue cracking by dynamic crack-closure. Rev. Prog. Quant. Nondestr. Eval. 14, 1979–1986 (1995)

    Article  Google Scholar 

  95. S.R. Ahmed, M. Saka, Y. Matsuura, D. Kobayashi, Y. Miyachi, Y. Kagiya, An effective method of local thermal treatment for sensitive NDE of closed surface cracks. Res. Nondestruct. Eval. 21, 51–70 (2009)

    Article  ADS  Google Scholar 

  96. H. Xiao, P.B. Nagy, Enhanced ultrasonic detection of fatigue cracks by laser-induced crack closure. J. Appl. Phys. 83(12), 7453–7460 (1998)

    Article  ADS  Google Scholar 

  97. Z. Yan, P.B. Nagy, Thermo-optical modulation of ultrasonic surface waves for NDE. Ultrasonics 40, 689–696 (2002)

    Article  Google Scholar 

  98. C.-Y. Ni, N. Chigarev, V. Tournat, N. Delorme, Z.-H. Shen, V.E. Gusev, Probing of laser-induced crack modulation by laser-monitored surface waves and surface skimming bulk waves. JASA Express Lett. 131(3), EL250–EL255 (2012)

    Google Scholar 

  99. C. Ni, N. Chigarev, V. Tournat, N. Delorme, Z. Shen, V.E. Gusev, Probing of laser-induced crack closure by pulsed laser-generated acoustic waves. J. Appl. Phys. 113, 014906-1-8 (2013)

    Google Scholar 

  100. S. Mezil, N. Chigarev, V. Tournat, V. Gusev, Two dimensional nonlinear frequency-mixing photo-acoustic imaging of a crack and observation of crack phantoms. J. Appl. Phys. 114, 174901-1-17 (2013)

    Article  ADS  Google Scholar 

  101. S. Mezil, N. Chigarev, V. Tournat, V. Gusev, Evaluation of crack parameters by a nonlinear frequency-mixing laser ultrasonics method. Ultrasonics 69, 225–235 (2016)

    Article  Google Scholar 

  102. H. Tohmyoh, M. Saka, Y. Kondo, Thermal opening technique for nondestructive evaluation of closed cracks. J. Pressure Vessel Technol. 129, 103–108 (2007)

    Article  Google Scholar 

  103. Y. Ohara, K. Takahashi, K. Jinno, K. Yamanaka, High-selectivity ultrasonic imaging of closed cracks using global preheating and local cooling. Mater. Trans. 55(7), 1003–1010 (2014)

    Article  Google Scholar 

  104. K. Takahashi, K. Jinno, Y. Ohara, K. Yamanaka, Evaluation of crack closure stress by analyses of ultrasonic phased array images during global preheating and local cooling. Jpn. J. Appl. Phys. 53, 07KC20-1-7 (2014)

    Article  Google Scholar 

  105. K. Tkahashi, K. Ohmachi, Y. Ohara, K. Yamanaka, Estimation of saturated duration in phased array imaging of closed cracks by global preheating and local cooling. J. Jpn. Soc. Nondestr. Inspect. 65(10), 513–520 (2016)

    Google Scholar 

  106. Y. Ohara, K. Takahashi, Y. Ino, K. Yamanaka, T. Tsuji, T. Mihara, High-selectivity imaging of closed cracks in a coarse-grained stainless steel by nonlinear ultrasonic phased array. NDT&E Int. 91, 139–147 (2017)

    Article  Google Scholar 

  107. N. Noraphaiphipaksa, T. Putta, A. Manonukul, C. Kanchanomai, Interaction of plastic zone, pores, and stress ratio with fatigue crack growth of sintered stainless steel. Int. J. Fract. 176, 25–38 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

It is our great pleasure to thank all those who have collaborated with us regarding nonlinear ultrasonic PA. Financial support by Japan Society for the Promotion of Science (JSPS) KAKENHI and other various projects for part of the work described in this chapter is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshikazu Ohara .

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 0.499

 MB)

Supplementary material 1 (PDF 0.081

 MB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ohara, Y., Mihara, T., Yamanaka, K. (2020). Nonlinear Ultrasonic Phased Array for Measurement of Closed-Crack Depth. In: Jhang, KY., Lissenden, C., Solodov, I., Ohara, Y., Gusev, V. (eds) Measurement of Nonlinear Ultrasonic Characteristics. Springer Series in Measurement Science and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-15-1461-6_5

Download citation

Publish with us

Policies and ethics