Skip to main content

Sampled-Data Filtered Repetitive Control With Nonlinear Systems: An Additive-State-Decomposition Method

  • Chapter
  • First Online:
Filtered Repetitive Control with Nonlinear Systems
  • 289 Accesses

Abstract

In the previous chapter, continuous-time filtered repetitive control (FRC, or filtered repetitive controller, which is also designated as FRC), was proposed using an additive-state-decomposition-based method for nonlinear systems. In this chapter, the sampled-data FRC is proposed for the same nonlinear system, but with a different problem under the additive-state-decomposition-based tracking control framework [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The neutral-type system in the critical case is in the form \(\dot{x}\left( t\right) \) \(-\dot{x}\left( t-T\right) \) \(=A_{1}x\left( t\right) \) \(+A_{2}x\left( t-T\right) ,\) where \(x\left( t\right) \in \mathbb {R} ^{n},\) \(T>0,\) and \(A_{1},A_{2}\in \mathbb {R} ^{n\times n}\) [8, 9].

  2. 2.

    If \(\mathbf {A}\) is unstable, then, because of the observability of \(\left( \mathbf {A},\mathbf {c}^{\text {T}}\right) \) in Assumption 8.1, there always exists a vector \(\mathbf {p}\in \mathbb {R} ^{n}\) such that \(\mathbf {A}+\mathbf {pc}^{\text {T}}\) is stable, whose eigenvalues can be assigned freely. Then, (8.1) can be rewritten as \({\dot{\mathbf x}}=\left( \mathbf {A}+\mathbf {pc}^{\text {T}}\right) \mathbf {x}+\mathbf {b}u+\left( \varvec{\phi }\left( y\right) -\mathbf {p}y\right) +\mathbf {d}.\) Therefore, without loss of generality, \(\mathbf {A}\) is assumed to be stable.

  3. 3.

    Given that (8.16) and (8.12) are the only models existing in the design, the initial values \(\mathbf {x}_{s}\left( 0\right) \) and \({\hat{\mathbf x}}_{s}\left( 0\right) \) are both assigned by the designer and are all determinate.

  4. 4.

    Using (8.15) and (8.16), \(\hat{y}_{\text {p}}\) and \({\hat{\mathbf x}}_\mathrm{s}\ \)are obtained instead of the true state \(\mathbf {x}.\) Meanwhile, \(\mathbf {x}\) or \(\mathbf {x}_{\text {p}}\) is still unknown. We avoid solving \(\mathbf {x}\) using additive state decomposition.

  5. 5.

    Here, \(\mathscr {B}\left( \delta \right) \triangleq \left\{ \xi \in \mathbb {R} \left| \left| \xi \right| \le \delta \right. \right\} ,\) \(\delta >0;\) the notation \(x\left( t\right) \rightarrow \mathscr {B}\left( \delta \right) \) denotes \(\underset{y\in \mathscr {B}\left( \delta \right) }{\min }\) \(\left| x\left( t\right) -y\right| \rightarrow 0\ \)as \(t\rightarrow \infty .\)

References

  1. Quan, Q., Cai, K.-Y., & Lin, H. (2015). Additive-state-decomposition-based tracking control framework for a class of nonminimum phase systems with measurable nonlinearities and unknown disturbances. International Journal of Robust and Nonlinear Control, 25(2), 163–178.

    Article  MathSciNet  Google Scholar 

  2. Steinbuch, M. (2002). Repetitive control for systems with uncertain period-time. Automatica, 38(12), 2103–2109.

    Article  MathSciNet  Google Scholar 

  3. Steinbuch, M., Weiland, S., & Singh, T. (2007). Design of noise and period-time robust high order repetitive control with application to optical storage. Automatica, 43(12), 2086–2095.

    Article  Google Scholar 

  4. Pipeleers, P., Demeulenaere, B., & Sewers, S. (2008). Robust high order repetitive control: optimal performance trade offs. Automatica, 44(10), 2628–2634.

    Article  MathSciNet  Google Scholar 

  5. Kurniawan, E., Cao, Z., Mahendra, O., & Wardoyo, R. (2014). A survey on robust repetitive control and applications. IEEE International Conference on Control System, Computing and Engineering, 524–529.

    Google Scholar 

  6. Liu, T., & Wang, D. (2015). Parallel structure fractional repetitive control for PWM inverters. IEEE Transactions on Industrial Electronics, 62(8), 5045–5054.

    Article  Google Scholar 

  7. Nesić, D., & Teel, A. (2001). Sampled-data control of nonlinear systems: An overview of recent results. In S. Moheimani (Ed.), Perspectives in robust control. series Lecture notes in control and information sciences (Vol. 268, pp. 221–239). Berlin: Springer.

    Google Scholar 

  8. Quan, Q., Yang, D., & Cai, K.-Y. (2010). Linear matrix inequality approach for stability analysis of linear neutral systems in a critical case. IET Control Theory Application, 62(7), 1290–1297.

    Article  MathSciNet  Google Scholar 

  9. Hale, J. K., & Verduyn, L. S. M. (1993). Introduction to functional differential equations. New York: Springer.

    Google Scholar 

  10. Marino, R., & Tomei, P. (1995). Nonlinear control design: geometric, adaptive and robust. London: Prentice-Hall.

    Google Scholar 

  11. Ding, Z. (2003). Global stabilization and disturbance suppression of a class of nonlinear systems with uncertain internal model. Automatica, 39(3), 471–479.

    Article  MathSciNet  Google Scholar 

  12. Lee, S. J., & Tsao, T. C. (2004). Repetitive learning of backstepping controlled nonlinear electrohydraulic material testing system. Control Engineering Practice, 12(11), 1393–1408.

    Article  Google Scholar 

  13. Quan, Q., & Cai, K.-Y. (2013). Additive-state-decomposition-based tracking control for TORA benchmark. Journal of Sound and Vibration, 332(20), 4829–4841.

    Article  Google Scholar 

  14. Wei, Z.-B., Ren, J.-R., & Quan, Q. (2016). Further results on additive-state-decomposition-based output feedback tracking control for a class of uncertain nonminimum phase nonlinear systems. In 2016 Chinese Control and Decision Conference (CCDC), 28–30 May 2016.

    Google Scholar 

  15. Longman, R. W. (2010). On the theory and design of linear repetitive control systems. European Journal of Control, 16(5), 447–496.

    Article  MathSciNet  Google Scholar 

  16. Smith, J. O. (2007). Introduction to digital filters: with audio applications. W3K Publishing.

    Google Scholar 

  17. Green, M., & Limebeer, D. J. N. (1994). Robust linear control. Englewood Cliffs: Prentice-Hall.

    Google Scholar 

  18. Khalil, H. K. (2002). Nonlinear systems. Upper Saddle River, NJ: Prentice-Hall.

    Google Scholar 

  19. Goebel, R., Sanfelice, R. G., & Teel, A. R. (2012). Hybrid dynamical systems: modeling, stability, and robustness. Princeton: Princeton University Press.

    Google Scholar 

  20. Mao, J., Guo, J., & Xiang, Z. (2018). Sampled-data control of a class of uncertain switched nonlinear systems in nonstrict-feedback form. International Journal of Robust and Nonlinear Control, 28(3), 918–939.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quan Quan .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Quan, Q., Cai, KY. (2020). Sampled-Data Filtered Repetitive Control With Nonlinear Systems: An Additive-State-Decomposition Method. In: Filtered Repetitive Control with Nonlinear Systems. Springer, Singapore. https://doi.org/10.1007/978-981-15-1454-8_8

Download citation

Publish with us

Policies and ethics